当前位置:文档之家› 导数和微分的概念

导数和微分的概念

导数和微分的概念
导数和微分的概念

一元函数微分学

§1 导数和微分的概念

基本概念

1. 导数定义

00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx

dy x y x f =='='= 几种极限形式都要掌握

函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导,

)(lim

00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。

2. 导函数)(x f ',dx

dy . f (x )在(a , b )可导, f (x )在[a , b ]可导

3. 可导与连续的关系

可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导)

4. 导数的几何意义

切线方程:))((000x x x f y y -'=-; 法线方程:)()

(1000x x x f y y -'-

=- 0)(0≠'x f , 5. 微分的定义

微分的几何意义

6. 微分与导数的关系

)(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('=

同时 dx x f dy x x )(|00'==。

§2 导数与微分的计算

基本概念

1. 基本初等函数的导数、微分公式(书159页,166页)

2. 导数(微分)四则运算公式

)()())()((x g x f x g x f '±'='±,

)()()()())()((x g x f x g x f x g x f '+'=',

特别地 )())((x f k x kf '=',

)

()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 )

()())(1(2x f x f x f '-='。 后面两个公式不要记错。

3. 复合函数的求导法则

如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合

4.高阶导数(计算同一阶导数)。

§3 中值定理

基本概念

1. 罗尔定理

若函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,则至少存在一点ξ,使得0)(='ξf 。

罗尔定理的几何解释

2. 拉格朗日中值定理

若函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,则至少存在一点ξ,使得))(()()(a b f a f b f -'=-ξ,

或 )))((()()(a b a b a f a f b f --+'=-θ )10(<<θ。 拉格朗日中值定理的几何解释

罗尔定理 是拉格朗日中值定理的特殊情形

3. 拉格朗日中值定理的推论1

若函数)(x f 在区间I 上的导数恒为零,则)(x f 在区间I 上是一个常数。

4. 拉格朗日中值定理的推论2

若函数)(x f ,)(x g 在区间I 上每一点导数都相等,则这两个函数在区间I 上至多相差一个常数。

§4 导数的应用

基本概念

1. 罗比达法则:若函数)(x f ,)(x g 满足

(1))(0)(lim )(lim 0

0∞==→→或x g x f x x x x ; (2)在极限点附近,)(x f ',)(x g '都存在,且0)(≠'x g ;

(3))

()(lim 0x g x f x x ''→存在或为无穷大。 则有)

()(lim )()(lim 00x g x f x g x f x x x x ''=→→。 注(1) 罗比达法则运用的条件:00或∞

∞型不定式; (2)每次使用看之前是否能够化简或等价无穷小代换;

(3)只要符合罗比达法则条件,可多次使用。

2. 函数的单调性

用函数的一阶导数的符号判定单调性

3. 极值的概念 极值是局部性质

4. 极值存在的必要条件,驻点

5. 极值存在的充分条件

第一充分条件(用一阶导数即单调性来判断是否是极值以及是极大值还是极小值)

设函数)(x f 在点0x 的邻域内可导(可在点0x 不可导,但连续),当),(00x x x δ-∈时,0)(>'x f ,当),(00δ+∈x x x 时,0)(<'x f ,则函数)(x f 在点0x 处取得极大值;当),(00x x x δ-∈时,0)(<'x f ,当),(00δ+∈x x x 时,0)(>'x f ,则函数)(x f 在点0x 处取得极小值;当),(00δδ+-∈x x x 时,)(x f '不变号 ,则)(x f 在0x 处不是极值。 第二充分条件(用二阶导数来判断是否是极值以及是极大值还是极小值)

设函数)(x f 在点0x 处具有二阶导数,且0)(0='x f ,0)(0≠''x f ,则当0)(0<''x f 时,函数)(x f 在点0x 处取得极大值;当0)(0>''x f 时,函数)(x f 在点0x 处取得极小值。

两个充分条件各有利弊,第一条件对函数的要求较低,结论直观上非常好理解,而第二条件对函数要求较高(二阶导数要存在),运用较方便。

6. 函数的最值 最值是整体性质

若)(x f 在),(b a 内可导,且0x 点是)(x f 在),(b a 内唯一驻点,若0x 是)(x f 的极小(大)值点,则0x 必是)(x f 的最小(大)值点。此结论在实际中非常有用。

7. 函数的凹凸性及其判定,拐点

若函数)(x f 在区间I 上0)(>''x f ,则)(x f 在区间I 上是凹的;若函数)(x f 在区间I 上0)(<''x f ,则)(x f 在区间I 上是凸的。

用函数的二阶导数的符号判定凹凸性,在连续曲线上,凹凸部分分界点称为曲线的拐点。

8. 曲线的渐近线

垂直渐近线 :当0x x →(+→0x x 或-→0x x )时,有∞→)(x f ,称0x x =是曲线的垂直渐近线;

水平渐近线:当∞→x (+∞→x 或-∞→x )时,有c x f →)(,称c y =是曲线的水平渐近线。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

高等数学公式导数基本公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 222122an 11cos 12sin u du dx x t u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x x x x a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(cot sec )(tan 22= '='?-='?='-='='2 2 22 11 )cot (11 )(arctan 11 )(arccos 11 )(arcsin x x arc x x x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x xdx x C x dx x x C x xdx x dx C x xdx x dx x x )ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x a x a dx C x x xdx C x x xdx C x xdx C x xdx t +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln an 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

微积分公式大全

导数公式: 基本积分表: 三角函数的有理式积分: 2222 212sin cos 1121u u x du x x u tg dx u u u -==== +++, , ,  22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+' = 2 2 2 (arcsin )(arccos )1 (arctan )11 (arc cot )11 ()x x x x x x thx ch '= '='= +'=- +' = 2 22 2sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x x dx xdx x C x dx xdx x C x x xdx x C x xdx x C a a dx C a shxdx chx C chxdx shx C x C ==+==-+?=+?=-+=+=+=+=+????????? 222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x C dx x C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+???????? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

最新导数微积分公式

导数微积分公式

导数、微分、积分公式总结 【导数】 (1)(u ± v)′=u′±v′ (2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前) ╭u╮′u′v- u v′ (4)│——│=———————( v ≠ 0 ) ╰v╯v2 【关于微分】 左边:d打头 右边:dx置后 再去掉导数符号′即可 【微分】 设函数u=u(x),v=v(x)皆可微,则有: (1)d(u ± v)= du ± dv (2)d(u v)= du·v + u·dv ╭u╮du·v - u·dv (3)d│——│=———————( v ≠ 0 ) ╰v╯v2 (5)复合函数(由外至里的“链式法则”) dy ——=f′(u)·φ′(x)

dx 其中y = f(u),u =φ′(x) (6)反函数的导数: 1 [ fˉ1(y)]′=————— f′(x) 其中,f′(x)≠ 0 【导数】 注:【】里面是次方的意思 (1)常数的导数: (c)′= 0 (2)x的α次幂: ╭【α】╮′【α - 1】 │x│=αx ╰╯ (3)指数类: ╭【x】╮′【x】 │a│=a lna(其中a > 0 ,a ≠ 1) ╰╯ ╭【x】╮′【x】 │e│=e ╰╯ (4)对数类:

╭╮′ 1 1 │logx│=——log e=———(其中a > 0 ,a ≠ 1) ╰a╯ x a xlna 1 (lnx)′=—— x (5)正弦余弦类: (sinx)′= cosx (cosx)′=-sinx 【微分】 注:【】里面是次方的意思 (1)常数的微分: dC = 0 (2)x的α次幂: 【α】【α - 1】 dx=αxdx (3)指数类: 【x】【x】 da=a lnadx(其中a > 0 ,a ≠ 1) 【x】【x】 de=e dx

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

高中导数公式大全

C'=0(C为常数函数); (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) .y=c(c为常数) y'=0 .y=x^n y'=nx^(n-1) .y=a^x y'=a^xlna y=e^x y'=e^x y=lnx y'=1/x .y=sinx y'=cosx .y=cosx y'=-sinx .y=tanx y'=1/cos^2x .y=cotx y'=-1/sin^2x

偏导数与全导数-偏微分与全微分的关系

1。偏导数 代数意义 偏导数是对一个变量求导,另一个变量当做数 对x求偏导的话y就看作一个数,描述的是x方向上的变化率 对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义 对x求偏导是曲面z=f(x,y)在x方向上的切线 对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分 偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在detax趋进于0时偏增量的线性主要部分 detaz=fx(x,y)detax+o(detax) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分 这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分 全增量:x,y都增加时f(x,y)的增量 全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分 同样也有求全微分公式,也建立了全微分和偏导数的关系 dz=Adx+Bdy 其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也

指明了求微分的方法。 3.全导数 全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。 u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数 如果z=f(x^2,2^x) 只有这种情况下dz/dx才是全导数! 偏导数就是 在一个范围里导数,如在(x0,y0)处导数。 全导数就是定义域为R的导数,如在实数内都是可导的 在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为或。偏导数符号是圆体字母,区别于全导数符号的正体d。这个符号是阿德里安-马里·勒让德介入的并在雅可比的重新介入后

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

导数与微分的关系

导数与微分的关系 宁小青 我们知道一个函数在某点可导和可微是等价的,大部分高等数学、经济数学和数学分析课本中都是先引进导数的概念,再引进微分的概念,到底导数和微分这两个概念,哪个概念产生在前、哪个概念产生在后呢? 一、微分概念的导出背景 当一个函数的自变量有微小的改娈时,它的因变量一般说来也会有一个相应的改变。微分的原始思想在于去寻找一种方法,当因变量的改变也是很微小的时候,能够简便而又比较精确地估计出这个改变量。 我们来看一个简单的例子: 维持物体围绕地球作永不着地(理论上)的飞行所需要的最低速度称为第一宇宙速度。在中学里,利用计算向凡加速度的办法已经求出这种速度约为7.9千米/秒,现在我们改用另一种思路去推导它。 设卫星当前时刻在地球表面附近的A点沿着水平方向飞行,假如没有外力影响的话,那么它在一秒种后本应到达B点,但事实上它要受到地球的引力,因而实际到达的并非是B 点,而是C点,BC=4.9米是自由落体在重力加速度的作用下,第一秒中所走过的距离。 容易看出,若C点与地心O的距离与A事点到O的距离是相等的,那么由运动的独立性原理,就可以推断出卫星在沿地球的一个同心圆轨道运行,也就是作环绕地球的飞行了。因此,卫星应具有最小每秒飞行速度恰好在线段AB的长度。△OAB是直角三角形,OA和OC可近似的取为地球的平均半径6371千米,也就是6371000米,于是由勾股定理 显然就这样按上式去计算是不可取的——这将导致两个量级的数在直接相减,工作量大不说,在字长较短的计算机上,还可能产生较大的误差。 利用乘法公式 可将上式改为 由于,因此这一项与这一项想比可以忽略不计,于是可以把计算简化为 由此计算出千米。 这就是说,卫星的速度至少要达到每秒7.9千米才能维持其围绕地球的飞行,此即所要求的第一宇宙速度。 上面所计算的,实际上就是函数在处,自变量出现了一个微小的改变量之后,函数值的相应改变量4.9。然而在计算过程中,我们并没有完全精确地去算

导数与微分习题及答案

第二章 导数与微分 (A) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量 =?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可,则()() =?-?-→?x x f x x f x 000 lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则 =dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A . ()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0,2sin 0 ,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

求导公式大全

求导公式大全 1、原函数:y=c(c为常数) 导数: y'=0

导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx 6、原函数:y=cosx 导数: y'=-sinx 7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x

导数:y'=logae/x 10、原函数:y=lnx 导数:y'=1/x 求导公式大全整理 y=f(x)=c (c为常数),则f'(x)=0 f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosx f(x)=cosx f'(x)=-sinx f(x)=tanx f'(x)=sec^2x f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0) f(x)=e^x f'(x)=e^x f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0) f(x)=lnx f'(x)=1/x (x>0) f(x)=tanx f'(x)=1/cos^2 x f(x)=cotx f'(x)=- 1/sin^2 x f(x)=acrsin(x) f'(x)=1/√(1-x^2)

f(x)=acrcos(x) f'(x)=-1/√(1-x^2) f(x)=acrtan(x) f'(x)=-1/(1 x^2) 高中数学导数学习方法 1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。 2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。 3、一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。 根据图像就可以求出你想要的东西,比如最大值或最小值等。 4、特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。

导数与微分

导数和微分 问题 1.为什么用导数能研究函数的性态? 答:应用导数之所以研究函数的性态是因为函数 () f x 在点 0 x 导数 00 0 0 0 0 ()() '()lim lim x x x f x f x y f x x x x ?? - D == D - 本身蕴含了函数 () f x 在点 0 x 最本质的属性.为了说明这个事实,我们首先从比数 0 0 ()() f x f x y x x x - D = D - 说起,比数 y x D D 对研究函数 () f x 在点 0 x 的性态有什么意义呢? 我们知道,两个量a 与b 之比数 a k b = (或a kb = )是一个抽象的数,称为率。 在数学中有很多的率。例如,圆周率,离心率,斜率,曲率等。在社会科学中, “率”就更多了,例如,增长率,出生率,利率等。率这个抽象的数k 给出了两 个量a 与b 之间的倍数关系,即a 与b 的k 倍,它能刻划事物内在的规律和属性。 例如,椭圆 22 22 1 x y a b += 的离心率 22 (01) a b e e a - = £< 描绘了椭圆的扁圆的程度:e 愈大,椭圆愈扁;e 愈小,椭 圆愈近似于圆。 由此可见, 椭圆的离心率e 对认识椭圆的几何性态是十分必要的。 这就是几何性质定量化,是“以数表性”的实例。同样,导数这个“率”也能够 以数表性(函数的性态),而应用的范围更为广泛。 设函数 () y f x = 在点 0 x 可导,任取一点 x ,有自变量的改变量 0 , x x x D =- 相应函数 () y f x = 的改变量 0 ()(). y f x f x D =- 两者的比数为 0 0 ()() '. f x f x y k x x x - D == D - 用分析的语言说, ' k 是函数 () y f x = 在 0 x 附近的平均变化率。用几何的语言说, ' k 是曲线 () y f x = 过点 00 (,()) x f x 与 (,()) x f x 的割线斜率。 当 x 很靠近 0 x 时 (或 x D 很小时),平均变化率 ' k 能够近似地描绘函数 () y f x = 在点 0 x 附近的性态。例如,

高等数学必背公式大全一目了然版

高 等数 学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

导数与微分导数概念

第二章 导数与微分 第一节 导数概念 1.x x x y = ,求y ' 2.求函数y =2tan x +sec x -1的导数y ' 3. x x y 1010 +=,求y ' 4. 求曲线y =cos x 上点)2 1 ,3(π处的切线方程和法线方程式. 5.3ln ln +=x e y ,求y ' 6.已知? ??<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 7.设????? =≠=0 ,00 ,1sin )(x x x x x f ,用定义证明)(x f 在点0=x 处连续,但不可导。

8. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 . 9.讨论函数y =|sin x |在x =0处的连续性与可导性: 10.设函数? ??>+≤=1 1 )(2x b ax x x x f ,为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 第二节 函数的求导法则 1.设()22arcsin x y =,求y ' 2.求函数y =sin x ?cos x 的导数y ' 3.求函数y =x 2ln x 的导数y '

4.求函数x x y ln =的导数y ' 5.求函数3ln 2+=x e y x 的导数y ' 6. )(cos )(sin 2 2x f x f y +=,求y ' 7. n b ax f y )]([+=,求y ' 8. ) ()(x f x e e f y =,求y ' 9. x x x y arcsin 12 +-=,求y ' 10.求函数y =x 2ln x cos x 的导数y ' 第三节 高阶导数 1. x x x y ln 1 arctan +=,求y ''

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3 π ,21)处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, ; 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点 x 处连续是在该点 x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ]

导数与微分单元归纳

学科:数学 教学内容:导数与微分单元达纲检测 【知识结构】 【内容提要】 1.本章主要内容是导数与微分的概念,求导数与求微分的方法,以及导数的应用. 2.导数的概念. 函数y=f(x)的导数f ′(x),就是当△x →0时,函数的增量△y 与自变量△x 的比x y ??的极限,即 x x f x x f x y x f x x ?-?+=??=→?→?) ()(lim lim )('00 函数y=f(x)在点0x 处的导数的几何意义,就是曲线y=f(x)在点))(,(00x f x P 处的切线的斜率. 3.函数的微分

函数y=f(x)的微分,即dy=f ′(x)dx . 微分和导数的关系:微分是由导数来定义的,导数也可用函数的微分与自变量的微分的商来表示,即dx dy x f = )('. 函数值的增量△y 也可以用y 的微分近似表示,即△y ≈dy 或△y ≈f ′(x)dx 。 4.求导数的方法 (1)常用的导数公式 c ′=0(c 为常数); )()'(1 Q m mx x m m ∈=-; (sinx)′=cosx ; (cosx)′=-sinx ; x x e e =)'(, a a a x x ln )'(=; x x 1)'(ln = , e x a x a log 1)'(log =。 (2)两个函数四则运算的导数: (u ±v)′=u ′±v ′; (uv)′=u ′v+uv ′ )0(' ''2 ≠-= ?? ? ??v v uv v u v u 。 (3)复合函数的导数 设y=f(u),)(x u ?=, 则)(')(''''x u f u y y x u x ??=?=. 5.导数的应用

最全高等数学导数和积分公式汇总表

高等数学导数及积分公式汇总表 一、导数公式 1.幂函数 0='c 1)(-='n n nu u 2.指数函数 a a a u u ln )(=' e e e u u ln )(=' 3.对数函数 a u a u ln 1 )(log =' u u 1)(ln = ' 4.三角函数 u u cos )(sin =' u u sin )(cos -=' u u 2sec )(tan =' u u 2csc )(cot -=' u u u tan sec )(sec =' u u u cot csc )(csc -=' 5.反三角函数 2 11)(arcsin u u -= ' 2 11)(arccos u u -- =' 11)(arctan u u +=' 11)cot (u u arc +-=' 6.其他 1='u 2 11)(u u -=' u u 21)(= ' 2 3 21 1 )( u u - =' 2 2 )(22a u u a u ±= '± 二、积分公式 1.幂函数 C du =?0 C u du u n n n += ++?11 1 2.指数函数 C e du e u u +=? C du a a a u u += ?ln 3.有关对数 C u du +=? ln 4.三角函数 C u udu +-=?cos sin C u udu +=?sin cos C u udu +=?tan sec 2 C u udu +-=?cot csc 2 C u udu u +=?sec tan sec C u udu u +-=?csc cot csc C u udu +-=?cos ln tan C u udu +=?sin ln cot C u u udu ++=?tan sec ln sec C u u udu +-=?cot csc ln csc 5.反三角函数 C a u u a u du +±+=? ±22ln 2 2 C a u u a du +=?-arcsin 2 2 C u a u a a u a du += -+-?ln 212 2 C a u a u a du +=? +arctan 12 2 6.其他 C u u du +-=? 12 C u du u +=? 23 3 2 C u du u +=? 2 1 21 C u u udu +-=? -222 2 C u u udu ++=? +2 2111ln 2

导数公式证明大全

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx

f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1) =lim a^x*m/[ln(m+1)/lna] =lim a^x*lna*m/ln(m+1) =lim a^x*lna/[(1/m)*ln(m+1)]

相关主题
文本预览
相关文档 最新文档