当前位置:文档之家› 定积分典型例题20例答案

定积分典型例题20例答案

定积分典型例题20例答案
定积分典型例题20例答案

定积分典型例题20例答案

例1 求33322

32

1lim

(2)n n n n n →∞+++.

分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.

解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n

=?的一个因子1

n 乘

入和式中各项.于是将所求极限转化为求定积分.即

33322

32

1lim

(2)n n n n n →∞+++=333

112

lim ()n n n n n

n →∞++

+=1303

4

xdx =?.

例2 2

20

2x x dx -?

=_________.

解法1 由定积分的几何意义知,2

20

2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥)

与x 轴所围成的图形的面积.故220

2x x dx -?

=

2

π

. 解法2 本题也可直接用换元法求解.令1x -=sin t (2

2

t π

π

-

≤≤

),则

2

2

2x x dx -?

=2

2

2

1sin cos t tdt ππ-

-?

=2

2

21sin cos t tdt π

-?

=220

2cos tdt π

?=

2

π 例3 (1)若2

2

()x t x

f x e dt -=?,则()f x '=___;(2)若0

()()x

f x xf t dt =?,求()f x '=___.

分析 这是求变限函数导数的问题,利用下面的公式即可

()

()

()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?.

解 (1)()f x '=42

2x x xe e ---;

(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x

f x x f t dt =?,则

可得

()f x '=0()()x

f t dt xf x +?.

例4 设()f x 连续,且31

()x f t dt x -=?,则(26)f =_________.

解 对等式310

()x f t dt x -=?

两边关于x 求导得

32(1)31f x x -?=,

故321(1)3f x x -=

,令3

126x -=得3x =,所以1(26)27

f =. 例5 函数1

1

()(3)(0)x F x dt x t =->?的单调递减开区间为_________.

解 1()3F x x

'=-

,令()0F x '<得13x >,解之得109x <<,即1

(0,)9为所求. 例6 求0

()(1)arctan x

f x t tdt =-?的极值点.

解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:

故1x =为()f x 的极大值

点,0x =为极小值点.

例7 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中

2

arcsin 0

()x

t g x e dt -=?

,[1,1]x ∈-,

试求该切线的方程并求极限3

lim ()n nf n

→∞.

分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.

解 由已知条件得

2

(0)(0)0t f g e dt -===?,

且由两曲线在(0,0)处切线斜率相同知

2

(arcsin )2

(0)(0)11x x e f g x -=''==

=-.

故所求切线方程为y x =.而

3

()(0)

3

lim ()lim33(0)330n n f f n nf f n n

→∞→∞

-'=?==-. 例8 求 2

20

00

sin lim

(sin )x x x

tdt

t t t dt

→-??

分析 该极限属于

型未定式,可用洛必达法则. 解 2

2000sin lim (sin )x x x

tdt

t t t dt

→-?

?=22

02(sin )lim (1)(sin )x x x x x x →-??-=220()(2)lim sin x x x x →-?-=304(2)lim 1cos x x x

→-?-

x

(,0)-∞

0 (0,1)

1 (1,)+∞

()

f x '

-

=2

012(2)lim sin x x x

→-?=0.

注 此处利用等价无穷小替换和多次应用洛必达法则.

例9 试求正数a 与b ,使等式2

201lim

1sin x x t dt x b x a t

→=-+?成立. 分析 易见该极限属于

型的未定式,可用洛必达法则. 解 20201lim sin x x t dt x b x a t →-+?=2

20lim 1cos x x a x b x →+-=22001lim lim 1cos x x x b x a x

→→?-+

2

01

lim 11cos x x b x a →==-,

由此可知必有0

lim(1cos )0x b x →-=,得1b =.又由

201

2lim 11cos x x x a a

→==-, 得4a =.即4a =,1b =为所求. 例10 设sin 20

()sin x f x t dt =?

,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).

A .等价无穷小.

B .同阶但非等价的无穷小.

C .高阶无穷小.

D .低阶无穷小.

解法1 由于 223

00()sin(sin )cos lim lim

()34x x f x x x

g x x x →→?=+ 2200cos sin(sin )

lim lim

34x x x x x x →→=?+ 22011lim 33

x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .

解法2 将2sin t 展成t 的幂级数,再逐项积分,得到

sin 223370

111

()[()]sin sin 3!342

x f x t t dt x x =-

+=-+

?

34434

00011

11

sin (sin )

sin ()1

342342lim lim lim ()13

x x x x x x f x g x x x x

→→→-+

-+

===++. 例11 计算2

1||x dx -?.

分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.

解 2

1||x dx -?=0

2

10()x dx xdx --+??=220210[][]22x x --+=5

2

注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3322

2111[]6

dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21

x 在0x =处间断且在被

积区间内无界.

例12 设()f x 是连续函数,且1

0()3()f x x f t dt =+?,则()________f x =.

分析 本题只需要注意到定积分()b

a

f x dx ?是常数(,a b 为常数).

解 因()f x 连续,()f x 必可积,从而10

()f t dt ?是常数,记1

()f t dt a =?,则

()3f x x a =+,且11

(3)()x a dx f t dt a +==??.

所以

2101[3]2x ax a

+=,即1

32

a a +=, 从而14a =-,所以 3

()4

f x x =-.

例13 计算21

1

2

211x x dx x

-++-?

分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21

1

2

211x x dx x

-++-?

=21

1

11

2

2

21111x x dx dx x x

--++-+-?

?

.由于

22

211x x

+-是偶函数,而

2

11x x

+-是奇函数,有1

1

2

011x

dx x

-=+-?

, 于是

21

12211x x dx x -++-?=2

102411x dx x +-?=221

20(11)4x x dx x

--?=112

00

441dx x dx --?? 由定积分的几何意义可知1

20

14

x dx π

-=

?, 故

21

1

1

2

24444

11x x dx dx x

π

π-+=-?

=-+-?

?.

例14 计算

220

()x

d tf x t dt dx -?,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.

解 由于

220

()x

tf x t dt -?

=

222

1()2x f x t dt

-?. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以

220

()x tf x t dt -?=201()()2x f u du -?=20

1()2x f u du ?, 故

220()x d tf x t dt dx -?=201[()]2x d f u du dx ?=2

1()22

f x x

?=2()xf x .

错误解答

220

()x d tf x t dt dx -?22

()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式

()()()x

a

d x f t dt f x dx 'Φ==?

中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.

例15 计算30

sin x xdx π

?.

分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.

30

s i n x x d x π

?

30

(c o s )x d x π

=-?33

[(c o s )](c o s )

x x x d x π

π

=?---? 30

cos 6

xdx π

π

=-+?326

π

=

-. 例16 计算1

2

0ln(1)

(3)x dx x +-?

分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.

解 120ln(1)(3)x dx x +-?=101ln(1)()3x d x +-?=11

00111[ln(1)]3(3)(1)x dx x x x +-?--+? =101111ln 2()2413dx x x

-++-?

11

ln 2ln324

=-. 例17 计算20

sin x e xdx π

?.

分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.

解 由于2

sin x

e xdx π

?20

sin x

xde π

=?220

[sin ]cos x

x e x e xdx π

π

=-?

2

20

cos x e e xdx π

π

=-?, (1)

20

cos x

e xdx π

?

20

cos x

xde π

=?220

[cos ](sin )x

x e x e x dx π

π

=-?-?

20

sin 1x e xdx π

=-?, (2)

将(2)式代入(1)式可得

20

sin x

e xdx π

?

220

[sin 1]x e e xdx π

π

=--?,

20sin x

e xdx π

?21

(1)2e π=+.

例18 计算1

arcsin x xdx ?.

分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.

解 1

0arcsin x xdx ?21

0arcsin ()2x xd =?2211

00[arcsin ](arcsin )2

2x x x d x =?-?

2

102

1421x dx x π

=--?

. (1) 令sin x t =,则

21

2

1x dx x

-?

22

2sin sin 1sin t

d t t

π

=-?2

20sin cos cos t

tdt t π

=??220sin tdt π=?

20

1cos22t dt π-==?2

0sin 2[]24t t π-4

π=. (2)

将(2)式代入(1)式中得

1

arcsin x xdx =

?

8

π. 例19设()f x [0,]π上具有二阶连续导数,()3f π'=且0

[()()]cos 2f x f x xdx π''+=?,求(0)f '.

分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0

[()()]cos f x f x xdx π''+?00

()sin cos ()f x d x xdf x ππ

'=+??

[]000

{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππ

π

π'''=-++??

()(0)2f f π''=--=.

故 (0)f '=2()235f π'--=--=-. 例20 计算2

43

dx

x x +∞++?

. 分析 该积分是无穷限的的反常积分,用定义来计算. 解

20

43dx x x +∞

++?

=2

0lim 43t t dx x x →+∞++?=0111lim ()213

t t dx x x →+∞-++? =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233

t t t →+∞+-+ =

ln 3

2

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

定积分典型例题11254

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分典型例题56177

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘入和式中各 项.于是将所求极限转化为求定积分.即 3321lim )n n n →∞+=3 1lim )n n n n →∞+=03 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π. 例18 计算 2 1 ||x dx -? . 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1 ||x dx -? =02 1 ()x dx xdx --+?? =220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算 2 20 max{,}x x dx ? . 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717 max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且1 ()3()f x x f t dt =+? ,则()________f x =. 分析 本题只需要注意到定积分 ()b a f x dx ? 是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而 1 ()f t dt ? 是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且1 1 (3)()x a dx f t dt a +==??. 所以

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

不定积分例题及答案

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34 134( -+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134( -+-)2 ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ?? ★★ (9) 思路 =? 看到1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? 3x x e dx ?

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

定积分典型例题精讲

定积分典型例题 例1 求 332 1lim )n n n →∞ ++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把 2111 n n n =?的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即 332 1lim )n n n →∞+=3 1lim )n n n n →∞+=3 4 =?. 例2 0 ?=_________. 解法 1 由定积分的几何意义知,0 ?等于上半圆周 22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t ππ -≤≤ ), 则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较12x e dx ?,2 12x e dx ?,1 2(1)x dx +?.

分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当 0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2] 上,有1x e x >+.又 1 22 1()()f x dx f x dx =-? ?,从而有2 111 222 (1)x x x dx e dx e dx +>>???. 解法 2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得 1x e x >+.注意到12 2 1 ()()f x dx f x dx =-??.因此 2 1 11 2 22 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2 ()x x f x e -=, 因为 2 ()(21) x x f x e x -'=-, 令()0f x '=,求得驻点 12 x = , 而 (0)1f e ==, 2 (2)f e =, 141 ()2 f e -=, 故 124 (),[0,2]e f x e x -≤≤∈,

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

(完整版)不定积分习题与答案

不定积分 (A) 1、求下列不定积分 1)?2 x dx 2) ? x x dx 2 3) dx x ?-2)2 ( 4) dx x x ? +2 2 1 5)??- ? dx x x x 3 2 5 3 2 6) dx x x x ?2 2sin cos 2 cos 7) dx x e x) 3 2(?+ 8) dx x x x ) 1 1( 2 ?- 2、求下列不定积分(第一换元法) 1) dx x ?-3)2 3( 2) ? - 33 2x dx 3) dt t t ?sin 4) ? ) ln(ln ln x x x dx 5)? x x dx sin cos6) ?- +x x e e dx 7) dx x x) cos(2 ? 8) dx x x ? -4 3 1 3 9) dx x x ?3 cos sin 10) dx x x ? - - 2 4 9 1 11)? -1 22x dx 12) dx x ?3 cos 13)?xdx x3 cos 2 sin 14) ?xdx x sec tan3 15) dx x x ? +2 3 916) dx x x ? +2 2sin 4 cos 3 1 17) dx x x ? -2 arccos 2 1 10 18) dx x x x ? +) 1( arctan

3、求下列不定积分(第二换元法) 1) dx x x ? +2 1 1 2) dx x ?sin 3) dx x x ?-4 2 4) ?> - )0 (, 2 2 2 a dx x a x 5)? +3 2)1 (x dx 6) ? +x dx 2 1 7)? - +2 1x x dx 8) ? - +2 1 1x dx 4、求下列不定积分(分部积分法) 1) inxdx xs ? 2) ?xdx arcsin 3)?xdx x ln 2 4) dx x e x ?- 2 sin 2 5)?xdx x arctan 2 6) ?xdx x cos 2 7)?xdx 2 ln 8) dx x x 2 cos2 2 ? 5、求下列不定积分(有理函数积分) 1) dx x x ? +3 3 2)? - + + dx x x x 10 3 3 2 2 3)? +)1 (2x x dx (B) 1、一曲线通过点 )3, (2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的 方程。 2、已知一个函数 ) (x F的导函数为2 1 1 x -,且当1 = x时函数值为 π 2 3 ,试求此函数。

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

不定积分_定积分复习题与答案

上海第二工业大学 不定积分、定积分 测验试卷 姓名: 学号: 班级: 成绩: 一、选择题:(每小格3分,共30分) 1、设 sin x x 为()f x 的一个原函数,且0a ≠,则()f ax dx a ?应等于( ) (A )3sin ax C a x +; (B )2sin ax C a x +; (C )sin ax C ax +; (D )sin ax C x + 2、若x e 在(,)-∞+∞上不定积分是()F x C +,则()F x =( ) (A )12,0(),0x x e c x F x e c x -?+≥=?-+?? ===??-<>。令1()b a s f x dx =?,2()()s f b b a =- 31 [()()]()2 s f a f b b a =+-,则( ) (A )123s s s <<; (B )213s s s <<; (C )312s s s <<; (D )231s s s <<

相关主题
文本预览
相关文档 最新文档