当前位置:文档之家› 铝合金焊接接头产生裂纹特征及产生机理分析

铝合金焊接接头产生裂纹特征及产生机理分析

铝合金焊接接头产生裂纹特征及产生机理分析
铝合金焊接接头产生裂纹特征及产生机理分析

虽然已经应用铝及其合金焊成许多重要产品,但实际焊接生产中并不是没有困难,主要的问题有:焊缝中的气孔、焊接热裂纹、接头“等强性”等。由于铝及其合金的化学活泼性很强,表面极易形成氧化膜,且多具有难熔性质(如Al

2

O3的熔点为2050℃,MgO熔点为2500℃),加之铝及其合金导热性强,焊接时容易造成不熔合现象。由于氧化膜密度同铝的密度极其接近,所以也容易成为焊缝金属中夹杂物。同时,氧化膜(特别是有MgO存在的,不很致密的氧化膜)可以吸收较多水分而常常成为焊缝气孔的重要原因之一。此外,铝及其合金的线胀系数大,导热性又强,焊接时容易产生翘曲变形。这些也都是焊接生产中颇感困难的问题。下面,对在试验过程中产生比较严重的裂纹进行深入的分析。

1铝合金焊接接头中的裂纹及其特征

在铝合金焊接过程中,由于材料的种类、性质和焊接结构的不同,焊接接头中可以出现各种裂纹,裂纹的形态和分布特征都很复杂,根据其产生的部位可分为以下两种裂纹形式:(1)焊缝金属中的裂纹:纵向裂纹、横向裂纹、弧坑裂纹、发状或弧状裂纹、焊根裂纹和显微裂纹(尤其在多层焊时)。

(2)热影响区的裂纹:焊趾裂纹、层状裂纹和熔合线附近的显微热裂纹。按裂纹产生的温度区间分为热裂纹和冷裂纹,热裂纹是在焊接时高温下产生的,它主要是由晶界上的合金元素偏析或低熔点物质的存在所引起的。根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也各有不同,热裂纹又可分为结晶裂纹、液化裂纹和多边化裂纹3类。热裂纹中主要产生结晶裂纹,它是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足不能及时填充,在凝固收缩应力或外力的作用下发生沿晶开裂,这种裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝和某些铝合金;液化裂纹是在热影响区中被加热到高温的晶界凝固时的收缩应力作用下产生的。

在试验过程中发现,当填充材料表面清理不够充分时,焊接后焊缝中仍存在较多的夹杂和少量的气孔。在三组号试验中,由于焊接填充材料为铸造组织,其中夹杂为高熔点物质,焊接后在焊缝中仍将存在;又,铸造组织比较稀疏,孔洞较多,易于吸附含结晶水的成分和油质,它们将成为焊接过程中产生气孔的因素。当焊缝在拉伸应力作用下时,这些夹杂和气孔往往成为诱发微裂纹的关键部位。通过显微镜进一步观察发现,这些夹杂和气孔诱发的微观裂纹之间有明显的相互交汇的趋势。然而,对于夹杂物在此的有害作用究竟是主要表现为应力集中源从而诱发裂纹,还是主要表现为脆性相从而诱发裂纹,尚难以判断。此外,一般认为,铝镁合金焊缝中的气孔不会对焊缝金属的拉伸强度产生重大影响,而本研究试验中却发现焊缝拉伸试样中同时存在着由夹杂和气孔诱发微裂纹的现象。气孔诱发微裂纹的现象是否只是一种居次要地位的伴生现象,还是引起焊缝拉伸强度大幅度下降的主要因素之一,亦还有待进一步的研究。

2热裂纹产生的过程

目前关于焊接热裂纹理论,国内外认为较完善的是普洛霍洛夫理论。概括地讲,该理论认为结晶裂纹的产生与否主要取决于以下3方面:脆性温度区间的大小;在此温度区间内合金所具有的延性以及在脆性温度区间金属的变形率大小。

通常人们将脆性温度区间的大小及在此温度区间内具有的延性值称为产生焊接热裂纹的冶金因素,而把脆性温度区内金属的变形率大小称为力学因素。焊接过程是一系列不平衡的工艺过程的综合,这种特征从本质上与焊接接头金属断裂的冶金因素和力学因素发生重要的联系,如焊接工艺过程与冶金过程的产物即物理的、化学的与组织上的不均匀性、熔渣与夹杂物、气体元素与处于过饱和浓度的空位等。所有这些,都是与裂纹的萌生与发展有密切联系的冶金因素。从力学因素方面看,焊接热循环特定的温度梯度与冷却速度,在一定的拘束条件下,将使焊接接头处于复杂的应力-应变状态,从而为裂纹的萌生与发展提供必要的条件。

在焊接过程中,冶金因素和力学因素的综合作用将归结为两个方面,即是强化金属联系还是弱化金属联系。如果在冷却时,焊接接头金属中正在建立强度联系,在一定刚性拘束条件下能够顺从地应变,焊缝与近缝区金属能够承受外加拘束应力与内在残余应力的作用时,裂纹就不容易产生,焊接接头的金属裂纹敏感性低,反之,当承受不住应力作用时,金属中强度联

铝合金焊接接头产生裂纹特征及产生机理分析

谢辉

(广东省第二农机厂,广东广州512219)

摘要:近40年来,由于焊接技术的进步,高效率和高性能的焊接方法得到了推广,铝及铝合金在车辆、船舶、建筑、桥梁、化工机械、低温工程和宇航工业等各种结构方面的应用在不断扩大,但国产化的铝合金和铝合金焊接材料均还存在着一定的差距。对铝合金焊接接头产生裂纹的特征及产生机理进行了分析,提出了几点防范措施。

关键词:铝合金;焊接接头;裂纹;机理

—116—

系容易中断,就会产生裂纹。在这种情况下,焊接接头金属的裂纹敏感性较高。焊接接头金属从结晶凝固的温度开始,以一定的速度冷却到室温,其裂纹敏感性决定于变形能力和外加应变的对比以及变形抗力与外加应力的对比。然而在冷却过程中,在不同的温度阶段,由于晶间强度与晶粒强度增长的情况不同、变形在晶粒间和晶粒内部的情况分布不同、由应变所诱导的扩散行为不同、应力集中的条件以及导致金属脆化的因素不同,焊接接头具体的薄弱环节以及它弱化的因素和程度也是不同的。

导致焊接接头金属产生裂纹的冶金因素和力学因素有着较为密切的联系,力学因素中的应力梯度和热循环特征所确定的温度梯度有关,而后者与金属的导热性密切相关,如金属的热塑性变化特征、热膨胀性以及组织转变等构成的冶金因素,在很大程度上对焊接接头金属所处的应力-应变状态起到重要作用,此外,随着温度的降低与冷却速度的变化,冶金因素和力学因素也都是在变化着的,在不同的温度区间对焊接接头金属的强度联系作用各不相同,如结晶温度区间大,固相线温度低,在晶粒间残存的低熔液态金属处,更容易引起应力集中,导致固相金属产生裂纹;同样,随着温度降低,如果收缩量较大,特别是在快速冷却条件下,当收缩应变速率高,应力-应变状态比较苛刻时也容易产生裂纹等等。

在铝合金焊接时焊缝金属凝固结晶的后期,低熔共晶体被排挤在晶体交遇的中心部位,形成一种所谓的“液态薄膜”,此时由于在冷却时收缩量较大而得不到自由收缩产生较大的拉伸应力,这时候液态薄膜就形成了较为薄弱的环节,在拉伸应力的作用下就可能在薄弱地带开裂而形成裂纹。

3热裂纹产生的机理

为了研究铝合金焊接时那个时候最容易产生热裂纹,把铝合金焊接时焊接熔池的结晶分为3个阶段。

第一个阶段是液固阶段,焊接熔池从高温冷却开始结晶时,只有很少数量的晶核存在。随着温度的降低和冷却时间的延长,晶核逐渐长大,并且出现新的晶核,但是在这个过程中液相始终占有较多的数量,相邻晶粒之间不发生接触,对还未凝固的液态铝合金的自由流动不形成阻碍。在这种情况下,即使有拉伸应力存在,但被拉开的缝隙能及时地被流动着的铝合金液态金属所填满,因此在液固阶段产生裂纹的可能性很小。

第二阶段是固液阶段,在焊接熔池结晶继续进行时,熔池中固相不断增多,同时先前结晶的晶核不断长大,当温度降低到某一数值时,已经凝固的铝合金金属晶体相互彼此发生接触,并且不断倾轧在一起,这时候液态铝合金的流动受到阻碍,也就是说熔池结晶进入了固液阶段。在这种情况下,由于液态铝合金金属较少,晶体本身的变形可以强烈发展,晶体间残存的液相则不容易流动,在拉伸应力作用下产生的微小缝隙都无法填充,只要稍有拉伸应力的存在就有产生裂纹的可能性。因此,这个阶段叫做“脆性温度区”。

第三阶段是完全凝固阶段,熔池金属完全凝固之后所形成的焊缝,受到拉应力时,就会表现出较好的强度和塑性,在这一阶段产生裂纹的可能性相对来说较小。因此,当温度高于或者低于a-b之间的脆性温度区时,焊缝金属都有较大的抵抗结晶裂纹的能力,具有较小的裂纹倾向。在一般情况下,杂质较少的金属(包括母材和焊接材料),由于脆性温度区间较窄,拉应力在这个区间作用的时间比较短,使得焊缝的总应变量比较小,因此焊接时产生的裂纹倾向较小。如果焊缝中杂质比较多,则脆性温度区间范围比较宽,拉伸应力在这个区间的作用

时间比较长,产生裂纹的倾向较大。

4铝合金焊接裂纹的防止措施

根据铝合金焊接时产生热裂纹的机理,可以从冶金因素和

工艺因素两个方面进行改进,降低铝合金焊接热裂纹产生的机率。

在冶金因素方面,为了防止焊接时产生晶间热裂纹,主要

通过调整焊缝合金系统或向填加金属中添加变质剂。调整焊

缝合金系统的着眼点,从抗裂角度考虑,在于控制适量的易熔

共晶并缩小结晶温度区间。由于铝合金属于典型的共晶型合金,最大裂纹倾向正好同合金的“最大”凝固温度区间相对应,少量易熔共晶的存在总是增大凝固裂纹倾向,所以,一般都是

使主要合金元素含量超过裂纹倾向最大时的合金组元,以便能

产生“愈合”作用。而作为变质剂向填加金属中加入Ti、Zr、V

和B等微量元素,企图通过细化晶粒来改善塑性、韧性,并达到

防止焊接热裂纹的目的尝试,在很早以前就开始了,并且取得

了效果。图3给出刚性搭接角焊缝的条件下Al-4.5%Mg焊丝

中加入变质剂的抗裂试验结果。试验中加入的Zr为0.15%,Ti+B为0.1%。可见,同时加入Ti和B可以显著提高抗裂性能。Ti、Zr、V、B及Ta等元素的共同特点,是都能同铝形成一

系列包晶反应生成难熔金属化合物(Al

3

Ti、Al3Zr、Al7V、AlB2、Al3Ta等)。这种细小的难熔质点,可成为液体金属凝固时的非

自发凝固的晶核,从而可以产生细化晶粒作用。

在工艺因素上,主要是焊接规范、预热、接头形式和焊接顺序,这些方法都是从焊接应力上着手来解决焊接裂纹。焊接工

艺参数影响凝固过程的不平衡性和凝固的组织状态,也影响凝

固过程中的应变增长速度,因而影响裂纹的产生。热能集中的

焊接方法,有利于快速进行焊接过程,可防止形成方向性强的

粗大柱状晶,因而可以改善抗裂性。采用小的焊接电流,减慢

焊接速度,可减少熔池过热,也有利于改善抗裂性。而焊接速

度的提高,促使增大焊接接头的应变速度,而增大热裂的倾向。可见,增大焊接速度和焊接电流,都促使增大裂纹倾向。在铝

结构装配、施焊时不使焊缝承受很大的钢性,在工艺上可采取

分段焊、预热或适当降低焊接速度等措施。通过预热,可以使

得试件相对膨胀量较小,产生焊接应力相应降低,减小了在脆

性温度区间的应力;尽量采用开坡口和留小间隙的对接焊,并

避免采用十字形接头及不适当的定位、焊接顺序;焊接结束或

中断时,应及时填满弧坑,然后再移去热源,否则易引起弧坑裂纹。对于5000系合金多层焊的焊接接头,往往由于晶间局部

熔化而产生显微裂纹,因此必须控制后一层焊道焊接热输入量。

而根据本文试验所证明,对于铝合金的焊接,母材和填充

材料的表面清理工作也相当重要。材料的夹杂在焊缝中将成

为裂纹产生的源头,并成为引起焊缝性能下降的最主要原因。参考文献

[1]阿荣.铝合金的搅拌摩擦焊接工艺研究[A].兰州理工大学硕士论

文.2004

[2]付志红,黄明辉,周鹏展等.搅拌摩擦焊及其研究现状[J].焊接,

2002,(11):6~7

—117—

焊缝裂纹的原因

有时候我发现焊道会有裂纹,这是怎么产生的, 如何解决这问题? 裂纹焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。 A、.裂纹的分类 根据裂纹尺寸大小,分为三类:(1)宏观裂纹:肉眼可见的裂纹。(2)微观裂纹:在显微镜下才能发现。(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。 从产生温度上看,裂纹分为两类: (1)热裂纹:产生于Ac3线附近的裂纹。一般是焊接完毕即出现,又称结晶裂纹。这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。 (2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。 按裂纹产生的原因分,又可把裂纹分为: (1)再热裂纹:接头冷却后再加热至500~700℃时产生的裂纹。再热裂纹产生于沉淀强化的材料(如含Cr、Mo、V、Ti、Nb的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。 (2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MnS)、硅酸盐类等杂质夹在其中,形成各向异性。在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。 (3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。 B、.裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。 C、.热裂纹(结晶裂纹) (1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓"液态薄膜",在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹,有时也发生在焊缝内部两个柱状晶之间,为横向裂纹。弧坑裂纹是另一种形态的,常见的热裂纹。 3 焊接缺陷及对策 热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料气焊缝中 (2)影响结晶裂纹的因素 a合金元素和杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区,使结晶裂纹的产生机会增多。 b.冷却速度的影响冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会; c.结晶应力与拘束应力的影响在脆性温度区内,金属的强度极低,焊接应力又使这飞部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。

裂缝产生原因

浅谈复合剪力墙裂缝成因及治理措施 提要:复合剪力墙中因钢筋密集、混凝土截面很小,不能采用普通混凝土进行浇注,也不准采用振捣器进行插入式振捣。因此,采用设计强度等级的自密实高性能混凝土,该自密实混凝土应达到以下工作性能: 一、复合剪力墙混凝土现场施工工法及混凝土要求 复合剪力墙中因钢筋密集、混凝土截面很小,不能采用普通混凝土进行浇注,也不准采用振捣器进行插入式振捣。因此,采用设计强度等级的自密实高性能混凝土,该自密实混凝土应达到以下工作性能:塌落度:260~280mm;扩展度:600~750mm;和易性良好,无目视泌水、离析现象。 1、自密性混凝土材料要求无论采用商品混凝土还是现场搅拌混凝土,其材料应满足以下要求:胶结材料:水泥采用42.5的硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥。水泥的质量应符合现行的水泥国家标准。粗骨料:石子宜采用粒径为5~10mm,连续级配的卵石或碎石,并符合《普通混凝土用卵石或碎石质量标准及检验方法》(JGJ53—79)的标准。细骨料:砂子由于砂浆中砂子体积较大,宜选用细度模数较大的中砂(细度模数≥2.6),且符合《混凝土用砂质量标准及检验方法》(JGJ52¬—79)。水:采用洁净的引用水掺合料:自密性混凝土中应掺加Ⅰ、Ⅱ粉煤灰或磨细矿渣及少量膨胀剂等掺合料。掺合料使用前应做好适配,尽量使用需水比小的粉煤灰。外加剂:通常的减水剂达不到高性能混凝土要求的减水

程度及提高的工作性,一般需要加超塑化剂(或叫高效减水剂)。现在各生产厂家的产品性能差异性较大,因此用量也各不相同,但有研究表明,将不同厂家的产品(萘系高效减水剂)按比例混合使用,掺合后的产品各组分间的作用相互调节,发挥其各自的优势,可取到“超叠加效应”。除减水剂外,尚应根据工程实际情况适量掺加引气剂,早强剂(或缓凝剂),泵送剂。 2、混凝土浇筑复合剪力墙中的自密性混凝土宜按顺序浇筑。自密性混凝土适合于泵送(如用吊斗浇筑时,应使用料口和模板入口距离尽量小,必要时可加串筒或溜槽),及采用大开口漏斗浇筑以免较薄一侧产生混凝土不饱满状况。浇筑时,应及时观测两侧混凝土浆面高差,混凝土较薄的一侧应高于后侧上升,应控制在300mm以,防止保温层外侧移位。 3、混凝土的辅助振捣浇筑自密性混凝土起作用是不需要振捣因其钢筋密且有拉筋,为了达到墙体混凝土密实与表面光洁的目的,可以实行模板外的辅助振动。一般采用皮锤、小型平板震动器或振捣棒随着混凝土的浇筑从下往上震动。在钢筋构造复杂的暗柱或复合剪力墙中部,可在浇筑时采用螺纹钢筋进行适量插捣,插捣时不得触及拉筋,不准采用振捣棒入模振捣混凝土。 4、混凝土的养护复合剪力墙中的混凝土截面较薄,通常室外侧只有50mm。为了防止产生干缩裂缝,应在模板拆除后立即涂刷养护剂或覆盖浇水进行养护,且养护时间应比普通混凝土延长24小时以上。

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。这一种裂纹的防治措施与结晶裂纹基本上是一致的。特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。(3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。2.再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。防治再热裂纹从选材方面,可以选用细晶粒钢。在工艺方面,选用较小的线能量,选用较高的预热温度并配合以后热措施,选用低匹配的焊接材料,避免应力集中。3.冷裂纹主要发生在高、中碳钢、低、中合金钢的焊接热影响区,但有些金属,如某些超高强钢、钛及钛合金等有时冷裂纹也发生在焊缝中。一般情况下,钢种的淬硬倾向、焊接接头含氢量及分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。焊后形成的马氏体组织在氢元素的作用下,配合以拉应力,便形成了冷裂纹。他的形成一般是穿晶或沿晶的。冷裂纹一般分

裂缝产生的原因防治措施

一、外保温产生裂缝的原因及治理 1、现象:苯板面层出现可见的裂缝,形状不规则,互不连通,裂缝宽度在0.5mm以下,多出现在施工2个月以后,经过一年后裂缝宽度会超过1mm。 2、原因分析: 1)材料方面: ①材料密度低,易变形,抗拉性能差,使保温层开裂; ②材料陈化时间不够,在苯板粘贴完成后仍在变形; ③抹面砂浆与聚苯板的导热系数相差较大,面层变形出现的量差较大,引起开裂; ④底胶粘结性能不满足要求,苯板固定不牢,引起开裂; ⑤抗裂砂浆内聚合物柔韧性能低; ⑥使用了不合格的玻璃纤维网格布,易断裂,不能有效的分散应力; ⑦涂料饰面层使用了刚性腻子,柔韧性能不够,引起开裂。 2)施工措施方面: ①基层不平整、不清洁; ②胀丝深度不足,数量不够; ③粘结面积小; ④网格布搭接长度不足; ⑤门窗洞口四角处附加网格布未设置; ⑥高温气候下施工,面层失水过快,引起开裂。

3、防治措施: 1)材料方面:苯板密度控制在18-22kg,抗拉强度要大于0.1MPa,陈化时间在自然条件下陈化42天或在60℃蒸汽中陈化5天,玻璃纤维抗拉强度值不得小于750N/50mm,底胶拉伸强度不得小于0.6MPa,浸水48小时后不得小于0.4MPa。 2)施工工艺方面: ①基层处理应到位; ②苯板粘贴采用点粘或框粘时实际粘结面积不得小于40%,竖缝应逐行错开,门窗洞口四角处必须采用“刀把”形做法,墙角处应交错互锁; ③面胶施工前应检查苯板是否粘贴牢固,一般在贴后24h方可进行抹面,面胶应随拌随用,且必须在1.5h内用完,抹面层应二次抹成,一层,压网,二层,网格布在规定的部位必须进行翻包,网格布搭接长度均不得小于100mm,严禁出现网格布松弛不紧,褶皱。 二、混凝土产生裂缝的原因及治理 原因分析:工程实践应用表明,裂缝形成的主要原因来自3个方面,变形、荷载以及材料性质。一般由温度、收缩、不均匀沉降引起的变形而造成裂缝产生占总量的80%,荷载等原因造成的裂缝约占20%,根据这些主要因素,一般习惯把混凝土裂缝总结归纳为:收缩裂缝、温度裂缝、沉降裂缝、徐变裂缝、应力裂缝以及施工裂缝几类。裂缝一旦出现后将会随着时间的变化而变化,其宽度、深度、形状可能会

延迟裂纹机理

1、什么是延迟裂纹 延迟裂纹是冷裂纹的一种,是由于塑性储备、应力状态以及焊缝金属中氢含量等综合作用而产生的焊接裂纹。延迟裂纹不是在焊接过程中产生的,而是在焊后延续一段时间产生的。延迟裂纹主要发生在低合金高强钢中,主要与焊缝含扩散氢、接头所承受的拉应力以及由材料淬硬倾向决定的金属塑性储备有关,是三个因素中的某一因素与相互作用的结果。焊接后经过一段时间才产生的裂纹为延迟裂纹。延迟裂纹是冷裂纹的一种常见缺陷,它不在焊后立即产生,而在焊后延迟几小时、几天或更长时间才出现。 所谓“有延迟裂纹倾向的材料”,就是焊后容易出现焊接冷裂纹的材料,也即是可以焊接的低合金高强度钢。用低合金换取高强度,当然好;但随着合金元素增加,强度的升高,也带来了延迟裂纹倾向问题,增加了焊接难度,拖延了无损检测时间。所谓“增加了焊接难度”,用老的焊接术语说,这些材料的可焊性较差或差;用今天的术语来说,这些材料属于焊接难度较难或难的等级。 2、延迟裂纹的产生机理 对于确定成分的母材和焊缝金属,塑性储备一定,产生延迟裂纹的孕育期长短,取决于焊缝金属中的扩散氢及接头所处的应力状态。同理相应于某一应力状态,焊缝含氢量高,裂纹孕育期短,裂纹倾向大。当应力状态恶劣,即使含氢量低,在很短孕育期内会产生裂纹。但是决定延迟裂纹产生与否,存在一个临界含氢量与临界应力值。若氢低于临界含氢量,拉应力低于强度极限,则孕育期将无限长,实际上不产生延迟裂纹。 现代的延迟裂纹理论认为,焊缝金属中的含氢量、接头承受的应力水平以及接头金属的塑性储备,三者对延迟裂纹产生的作用是相互联系的。焊缝高含氢量在低应力下就会诱发出裂纹,而低含氢量需要高应力下才达到诱发裂纹状态。含氢量及应力都低时,在长时间才能达到裂纹产生条件。材料的塑性储备起到调节作用,当材料的变形能力高,缺口敏感性低时,只有在更高应力更多含氢量下才能产生延迟裂纹。 在焊接接头中,由于焊缝一般含碳量低,缺口敏感性小,而近缝区由于晶粒粗大,过饱和空位浓度高,应力集中程度高等不利条件,使近缝区易于产生延迟裂纹。 3、怎样判断哪些材料是“有延迟裂纹倾向的材料”? 目前流行的,有两种方法: 1)合金元素的碳当量法

材料疲劳裂纹扩展设计研究综述

材料疲劳裂纹扩展研究综述 摘要:疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了“塑性钝化模型”和“裂纹闭合效应”与实际观察结果存在的矛盾温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标。指出了常用理论的不足,对新的研究方法进行了论述。 关键词: 温度; 载荷频率; 应力比; 理论; 方法; 疲劳裂纹扩展 1 前言 19世纪40年代随着断裂力学的兴起,人们对于材料疲劳寿命的研究重点逐渐由不考虑裂纹的传统疲劳转向了主要考察裂纹扩展的断裂疲劳。尽量准确地估算构件的剩余疲劳寿命是人们研究材料疲劳扩展行为的一个重要目的。然而,材料的疲劳裂纹扩展研究涉及了力学、材料、机械设计与加工工艺等诸多学科,材料、载荷条件、使用环境等诸多因素都对疲劳破坏有着显著的影响,这给研究工作带来了极大困难。正因为此,虽然对于疲劳的研究取得了大量有意义的研究成果,但仍有很多问题存在着争议,很多学者还在不断的研究和探讨,力求得到更加准确的解决疲劳裂纹扩展问题的方法和理论。 经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。如Rice的疲劳裂纹扩展力学分析(1967年) ,Elber的裂纹闭合理论(1971年) ,Wheeler 等的超载迟滞模

型(1970年) ,Hudak等关于裂纹扩展速率标准的测试方法,Sadananda和Vasudevan ( 1998年)的两参数理论等都取得了一定成果。本文将对其研究中存在问题、常用方法和理论模型、以及温度、载荷频率和应力比对疲劳裂纹扩展影响的研究成果和新近发展起来的相关理论进行介绍。 2 疲劳裂纹扩展研究现存问题 如今,人们在分析材料裂纹扩展问题时最常用到的是“塑性钝化模型”和裂纹尖端因“反向塑性区”等原因导致的“裂纹闭合效应”理论。而它们是否正确,却一直在人们的验证和争论之中。 根据现有的研究结果,有学者提出,若按照“塑性钝化模型”理论,强度高的材料应具有较低的裂纹扩展速率,但实验结果却不能证实这一预测。另外,该“模型”认为的“裂纹尖端的钝化是在拉应力达到最大值时完成的”这一观点在理论上不妥,也与实测结果不符。观察结果表明,裂纹尖端钝化是一个渐进的过程,钝化半径与外载荷大小成正比。 而疲劳裂纹在扩展过程中的“裂纹闭合效应”在什么情况下存在,能否对材料的裂纹扩展速率产生重要影响,考虑“裂纹闭合”的实验室数据能否用于工程中等问题也一直在人们的争论之中。由于“裂纹闭合效应”理论推出的结论是:“对载荷比的依赖性不是材料的内在行为,而是源于裂纹表面提前闭合后应力强度因子幅(△K) 的变化”,所以早在1984年S.Suresh等人就指出[1],“裂纹闭合”不是一个力学参数,它受构件形状、载荷、环境和裂纹长度等因素的影响。因此,除非在实际使用过程中测量构件的裂纹闭合情况,否则在实验室里做出来的试验结果不能用来预测构件中的裂纹扩展速率。1970年,Ritchie研究钢中裂纹扩展的近门槛值时发现:在真空环境下,应力比R对门槛值几乎没有影响,首度质疑了裂纹闭合的存在性和所起的作用。在前人研究的基础上,美国海军实验室的

焊接横向裂纹产生的原因及控制

焊接横向裂纹产生的原因及控制 焊接横向裂纹产生原因主要有以下几个方面: 1、应力作用。即钢管成型后的残余应力和焊接应力。 2、焊接工艺不合理。如焊缝成形系数过小、预热温度不够或未进行焊前预热、焊接线能量过大、焊接后热处理不当、保温时间太短等。 3、由于氢的存在。如焊剂烘干不够,预热温度不充分或未进行焊前预热、以及多层焊的层间温度不够。 4、冶金因素。焊接过程中有低熔点杂质进入,如铜及铜合金。铜的来源主要有焊丝表面所镀的用于防止焊丝锈蚀的铜,或者导电嘴、铜合金导电杆内壁被磨损产生的铜。这些铜屑从导电嘴内孔进入焊剂,在焊接过程中接触焊接熔池导致横向裂纹。 控制措施: 1、焊管成型。为了合理控制残余应力,不仅需要采用针对性的设备和工艺,还需要在钢管成型前进行必要的成型工艺评定,对成型的设备、材料、产品的规格、预弯的程度、成型的速度、成型的压力、参数等进行试验和评定,合格后方进行焊管成型。 2、焊前预热。要根据具体的材质、具体的工作环境确定预热及层间温度。 3、焊接工艺。 1)埋弧焊时,为了减少焊接热输入,不建议采用多丝焊,建议尽量采用单丝多道焊,焊道平行排列,且每条焊道的宽度控制在15min以内;层间温度控制在110-250℃。 2)严格控制焊道宽度 焊道越宽,产生横裂的可能性越大。焊接时,要尽量地采用窄焊道,多分道,减少焊道宽度,减少热输入。 4、焊接材料 1)焊丝。选择低强度的焊丝,这样可以适当降低焊缝的碳当量,提高焊缝的塑性,有助于减少焊接裂纹的产生。同时注意使用不镀铜的焊丝,防止铜或铜合金进入焊缝熔池。另外需要注意防潮和防生锈。 2)焊剂。焊剂在使用前必须按照焊剂厂家推荐的烘干工艺烘干,烘干后在烘箱内进行保温,不可烘干后就倒出来,防止受潮。及时对使用中的焊剂进行磁选,磁选后放进保温桶中储存,防止在空气中受潮。及时更换焊剂,防止流落到焊剂内的铜及铜合金交换污染。 3)焊后保温、缓冷。春秋两季,焊接好后可以在室温下直接暴露在空气中缓冷。春冬两季,焊接好以后可以在室温下用保温棉把焊缝两面覆盖,在空气中缓冷。 4) 消氢处理。具体做法:焊接完成后立即用陶瓷电热毯对焊缝及其附近区域加热至200℃,保温2h后关电缓冷。

梁产生裂缝的原因及处理方法

钢筋混凝土梁裂缝? ? 钢筋混凝土梁是目前多种形式的工业与民用建筑中最常用的构件,在实际施工及使用中出现裂缝的形式也最多最常见,现对实际工程中所涉及的裂缝及其原因进行简要分析。? ? 一、裂缝成因? 钢筋砼梁出现裂缝的原因很复杂,主要有材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等,通常可归纳为以下几种:? 1.混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小。? 2.温变裂缝。水泥在硬化期间,砼表面与内部温差较大,导致砼表面急剧的温度变化而产生较大的降温收缩,受到内部砼的约束,而出现裂缝。? 3.设计欠周全。如钢筋砼梁的截面不够、梁的跨度过大、高度偏小,或者由于

计算错误,受力钢筋截面偏小、配筋位置不当、节点不合理等,都会导致砼梁出现结构裂缝。? 4.施工质量造成的裂缝。由于砼标号偏低、受力钢筋截面偏小、截面尺寸不符合设计等而导致砼梁出现裂缝;由于施工不当、模板支撑下沉,或过早拆除底模和支撑等形成的裂缝;施工控制不严,在梁上超载堆荷,而导致出现裂缝。? 5.预制钢砼梁在运输、吊装过程中,由于支撑不合理、吊点位置不符以及较大的振动或冲击荷载,也会导致钢砼梁出现裂缝。? 6.在使用过程中,改变原来使用功能,将办公室改为仓库、屋面加层、使用不当、增大梁上荷载等均会出现裂缝。? ? 二、裂缝的处理? 根据裂缝的成因情况,可将裂缝分为两种类型:一类是由于材料、气候等造成的一般塑性收缩裂缝、干缩裂缝等。这类裂缝一般对承载力影响较小,可作一般处理或不处理;另一类裂缝明显影响了梁的承载能力,随着裂缝的扩展和延伸,钢筋达到屈服强度,受压区砼应变量增大,梁刚度大大降低,构件趋向破坏。此类

温度裂缝产生机理及特征

温度裂缝产生机理及特征 混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,使得混凝土结构内外出现较大的温差,这些温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生裂缝,这种裂缝通常只在混凝土表面较浅的范围内产生。 温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接近平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝的粗细变化不太明显。此种裂缝的出现会引起钢筋的锈蚀,混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等。 2.影响因素和防治措施 混凝土内部的温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,

水泥用量越大,水化热越高的水泥,其内部温度越高,形成温度应力越大,产生裂缝的可能性越大。 对于大体积混凝土,其形成的温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。因此防止大体积混凝土出现裂缝最根本的措施就是控制混凝土内部和表面的温度差。 2.1 混凝土原材料及配合比的选用 (1) 尽量选用低热或中热水泥,减少水泥用量。大体积钢筋混凝土引起裂缝的主要原因是水泥水化热的大量积聚,使混凝土出现早期升温和后期降温,产生内部和表面的温差。减少温差的措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。 (2) 掺加掺合料大量试验研究和工程实践表明,混凝土中掺入一定数量优质的粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到润滑作用,可改善混凝土拌合物的流动性、粘聚性和保水性,从而改善了可泵性。特别重要的效果是掺加原状或磨

焊接的六大缺陷,产生原因、危害

焊接的六大缺陷,产生原因、危害、预防措施都在这了 一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。C、凹坑

凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。 防治措施:选用较小电流并配合合适的焊接速度,减小装配间隙,在焊缝背面加设垫板或药垫,使用脉冲焊,能有效地防止烧穿。 F、其他表面缺陷 (1)成形不良指焊缝的外观几何尺寸不符合要求。有焊缝超高,表面不光滑,以及焊缝过宽,焊缝向母材过渡不圆滑等。 (2)错边指两个工件在厚度方向上错开一定位置,它既可视作焊缝表面缺陷,又可视作装配成形缺陷。 (3)塌陷单面焊时由于输入热量过大,熔化金属过多而使液态金属向焊缝背面塌落, 成形后焊缝背面突起,正面下塌。 (4)表面气孔及弧坑缩孔。 (5)各种焊接变形如角变形、扭曲、波浪变形等都属于焊接缺陷O角变形也属于装配成形缺陷。 二、气孔和夹渣

主体结构产生裂缝的原因

主体结构裂缝产生的原因分析 一、原因分析: 1、原材料原因:①混凝土原材料砂石级配不合理,使用粉砂过多或含泥量大;②、使用过期水泥或水泥安定性不稳定,含有生石灰或氧化镁;③、混凝土和易性、粘聚性、保水性、流动性差,产生离析; 2、基层处理不到位:①基层太干燥,浇筑前未洒水湿润,砼失水过快;②、模板拼接处缝隙大、漏浆。 3、模板架体刚度不足:①、立杆间距过大,未验算架体刚度、强度、整体稳定性;②、立杆下端未设置垫板或垫板强度不足;③、扫地杆、拦腰杆、扫天杆、剪刀撑未严格按照审批过的方案布置;④、顶丝强度不足或滑丝;⑤、方木间距大、排布稀疏、悬挑端过长。 4、后浇带:①后浇带支撑体系未独立设置,随顶板同步拆除,而悬挑部位仍承受上部施工荷载;虽有回顶措施,但后浇带悬挑部位已受扰动,造成不可修复损伤。②后浇带接茬处理不到位,未剔凿松散混凝土及涂刷界面剂;③、后浇带混凝土未按设计施工,未使用微膨胀混凝土或提高一个标高。 5、楼板厚度不符合图纸设计要求:①、支模顶板标高比设计高,造成截面减小;②、顶板控制标高错误,比设计标高低;③、混凝土浇筑时线绳未绷紧,线绳中间段下躺。 6、线管排布密集或保护层不足:①、管线布局不合理,局部集中布置密集;②、板内预埋线管未居中放置,超出板中1/3范围,过与贴近模板或砼上表面;③、线管上部无负筋时未按要求布置钢筋网片。 7、钢筋移位、钢筋保护层过大或过小:①、钢筋垫块少或施工中垫块脱落;②、施工中钢筋受扰动未及时恢复到位。 8、砼塌落度过大或浇筑过程中加水:①、砼配制不合理,浆多料少,水灰比大、塌落度大;②、砼罐车等待时间过长或混凝土塌落度小,浇灌中私自加水稀释;③、收面不及时,表面已干硬,私自洒水。 9、振捣不到位:①、过度振捣使粗骨料下沉,表面形成砂浆层;②、振捣不密实或漏振。 10、收面工艺不规范:①、未原浆收面,私自洒水泥收面;②、表面过度抹压,面层浮浆大。 11、养护不到位:①、砼收面完成后未及时覆膜;②、养护不及时,表面失水过快。 12、模板架体拆除过早:①、未严格执行拆模报验手续,同样试块未达到规范要求强度,私自拆除架体; ②、墙柱侧模拆除时,私自拆除扫地杆或拦腰杆,使架体整体稳定性受扰动; 13、上荷载过早:①、新浇混凝土未达到终凝期就开始上人施工作业;②、重型材料未分散放置;③、材料吊运未避开客厅等大开间区域。 14、基础不均匀沉降:①、架体支撑底端回填土未夯实或受水浸泡下沉;②、架体支撑基础不均匀沉降。 15、温差因素:①、构件内外温差大,保温措施不到位;②、大体积混凝土温控措施及原材料控制不到位。

浅析混凝土裂缝产生机理及防治措施

浅析混凝土裂缝产生机理及防治措施 发表时间:2019-06-18T10:16:03.460Z 来源:《建筑细部》2018年第23期作者:钱涛 [导读] 运用混凝土裂缝产生机理等相关理论进行阐述、分析,为工程实例提供参考。 武汉市汉阳市政建设集团公司湖北武汉 430000 摘要:本文以混凝土裂缝的产生原因为基础,运用混凝土裂缝产生机理等相关理论进行阐述、分析,为工程实例提供参考。 关键词:裂缝产生机理;温度裂缝;收缩裂缝;防治措施 前言 目前,中国正处于城市化加速和工业化时期,建筑业将在较长时期内保持快速发展。混凝土作为建筑材料的一种,具备原材料来源广泛、抗压强度较高、耐久性良好、可塑性及浇筑性好等优势,广泛运用于土木、水利、桥梁、隧道工程中。但是,作为影响混凝土结构的适用性、安全性和耐久性的重要因素之一——混凝土裂缝,当裂缝数量和尺寸达到一定程度时,其性能指标都会相应的降低,从而影响混凝土的安全和使用,所以混凝土材料防裂问题需要加强足够的重视。 针对混凝土裂缝的研究,也有不少研究成果:许多科研人员已经对混凝土裂缝分类、产生的机理及成因有了完善系统的总结[1-4],同时,对于裂缝发展的稳定性及建筑物结构安全影响、查找裂缝的方法、预防及处理裂缝的措施等方面研究较为深入[5-7]。大量工程实践表明,混凝土材料的裂缝主要由温度、干缩及不均沉降所引起的变形引起的,以下将从这几方面对混凝土变形裂缝的产生机理进行探讨,并提出相应的防治措施,提高混凝土施工的质量。 1.混凝土裂缝分类 (1)按裂缝形成形状划分 纵向裂缝、横向裂缝、斜裂缝、网状裂缝以及不规则裂缝等。 (2)按裂缝形成深度划分 表面裂缝、深层裂缝和贯通裂缝。表面裂缝是指混凝土表面形成较浅且细微的裂缝,这类裂缝对结构的承载力影响不大,但影响其外观质量;深层裂缝是指混凝土表层形成深而长的裂缝,并易扩展为贯穿裂缝;贯通裂缝是指裂缝穿透了整个结构断面,结构整体性收到破坏,后两类裂缝严重影响到混凝土结构的安全及使用性能。 (3)按裂缝表现形式划分 静止裂缝、发展中裂缝和活动裂缝,静止裂缝是指对于其尺寸大小、形态和数量的发展趋势保持不变,发展中裂缝是指其形态、尺寸和数量还在发展,活动裂缝是指其形态、尺寸和数量易受到荷载和非荷载因素影响,而始终不能达到稳定状态。 (4)按裂缝形成原因划分 荷载裂缝和变形裂缝,荷载裂缝是指由于混凝土材料的非均质性,在荷载作用下,在某些部位产生大于材料所能承受的拉应力并逐渐有裂缝的产生。直接应力裂缝和次应力裂缝作为两种主要的荷载裂缝形式。同时,由于施加在混凝土的荷载可形成直接和次生应力,在此两种应力作用下所产生的裂缝分别称为直接应力裂缝和次应力裂缝。变形裂缝的种类有自身变形裂缝和结构变形裂缝,变形裂缝是由于温度变化、收缩变形、不均匀沉降等引起的裂缝。 2.混凝土裂缝的产生机理 在实际工程中,变形裂缝是混凝土裂缝中较为常见的一类裂缝,变形裂缝的形成机率相对于荷载裂缝更高,为了更好地采取适宜的预防措施,下文将对温度、干缩、不均匀沉降三种变形裂缝的产生机理进行分析。 2.1温度引起的变形裂缝分析 温度引起的变形裂缝是由于混凝土随着温度的变化而产生的膨胀或收缩,并受到自身或者外部约束,当混凝土的抗拉强度低于其内部产生的温度应力时,便有温度裂缝的形成。水泥的水化热、比热容、导温系数、导热系数等热性能参数,和环境介质的温度可决定混凝土的温度变化情况。作为引起大体积混凝土结构温度改变的重要因素——水泥水化热,由于混凝土材料在凝结硬化过程中,伴随着水化反应所产生的大量水化热量快速提高混凝土内部的温度。由于材料本身较低的导热系数及体积较大,水化热量短时间内无法全部释放,因此混凝土内外温度差异变得较大,形成温度应力和温度变形裂缝。 2.2收缩引起的变形裂缝分析 混凝土的收缩主要由干缩和凝缩两部分组成。凝缩是指混凝土在初凝前,其表面水分蒸发导致内部水分由内向外逐渐转移,形成体积收缩变形,该变形发生在混凝土的塑形阶段,因此称作塑形收缩。在高温度及低湿度的施工条件下,内部向外转移的水分不足以抵抗外界的蒸发,混凝土表面就会因失水干缩形成收缩裂缝。干燥收缩是指水泥水化产生具有大量的微细孔隙的硅酸钙胶体,混凝土内部孔隙水消耗时引起的毛细管引力,毛细孔内由于外部水供给不到位形成负压现象,受压缩的孔隙使混凝土的干燥收缩加重,形成干燥裂缝。 2.3不均匀沉降引起的变形裂缝分析 当地基基础承载力不均匀或混凝土结构在不同部位的荷载悬殊时,就会导致混凝土结构不均匀沉降,从而引起其约束变形,一旦内部拉应力超过允许抗拉应力时,就会形成不均匀沉降裂缝。不均匀沉降裂缝多为深层或贯穿裂缝,呈现宽度大、数量少的形态。 3.混凝土裂缝的预防和治理措施 3.1混凝土裂缝的预防 (1)合理选择混凝土原材料。依据设计要求,尽可能选择高标号水泥,减少水泥用量,选取中热、低热水泥,达到减少干燥收缩和降低水化热效果;按需选择适当减水剂、膨胀剂等外加剂,减少水泥用量和用水量;选择粉煤灰、矿渣等掺合料取代部分水泥用量,从而降低水泥用量,减少水化热。 (2)优化混凝土材料的配合比设计。骨料(粗、细)及砂率的选择要合理;由于混凝土的干燥收缩在相同的水泥用量下正比于水的用量,因此在施工中,混凝土用水量要降低。

热裂纹和冷裂纹产生的原因

热裂纹和冷裂纹产生的原因 一、热裂纹的特征 热裂纹常发生在焊缝区,在焊缝结晶过程中产生的叫结晶裂纹,也有发生在热影响区中,在加热到过热温度时,晶间低熔点杂质发生熔化,产生裂纹,叫液化裂纹。 特征:沿晶界开裂(故又称晶间裂纹),断口表面有氧化色。 (2)热裂纹产生原因: ①晶间存在液态间层 焊缝:存在低熔点杂质偏析} 形成液态间层 热影响区:过热区晶界存在低熔点杂质 ②存在焊接拉应力 (3)热裂纹的防止措施: ①限制钢材和焊材的低熔点杂质,如S、P含量。 ②控制焊接规范,适当提高焊缝成形系数(即焊道的宽度与计算厚度之比)枣焊缝成形系数太小,易形成中心线偏析,易产生热裂纹。 ③调整焊缝化学成分,避免低熔点共晶物;缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性,减少偏析。 ④减少焊接拉应力 ⑤操作上填满弧坑

二、冷裂纹的形态和特征 焊缝区和热影响区都可能产生冷裂纹,常见冷裂纹形态有三种 冷裂纹形态{ 焊道下裂纹:在焊道下的热影响区内形成的焊接冷裂纹,常平行于熔合线发展 焊指裂纹:沿应力集中的焊址处形成的冷裂纹,在热影响内扩展 焊根裂纹:沿应力集中的焊缝根部所形成的冷裂纹,向焊缝或热影响发展 a-焊道下裂纹;b-焊趾裂纹;c-焊根裂纹 特征:无分支、穿晶开裂、断口表面无氧化色。 最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹------- 因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。(2)延迟裂纹的产生原因 ①焊接接头存在淬硬组织,性能脆化。 ②扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹) ③存在较大的焊接拉应力 (3)防止延迟裂纹的措施 ①选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性 ②减少氢来源枣焊材要烘干,接头要清洁(无油、无锈、无水) ③避免产生淬硬组织枣焊前预热、焊后缓冷(可以降低焊后冷却速度) ④降低焊接应力枣采用合理的工艺规范,焊后热处理等 ⑤焊后立即进行消氢处理(即加热到250℃,保温2~6左右,使焊缝金属中的扩散氢逸出金属表面)。

铝合金焊接接头产生裂纹特征及产生机理分析

虽然已经应用铝及其合金焊成许多重要产品,但实际焊接生产中并不是没有困难,主要的问题有:焊缝中的气孔、焊接热裂纹、接头“等强性”等。由于铝及其合金的化学活泼性很强,表面极易形成氧化膜,且多具有难熔性质(如Al 2 O3的熔点为2050℃,MgO熔点为2500℃),加之铝及其合金导热性强,焊接时容易造成不熔合现象。由于氧化膜密度同铝的密度极其接近,所以也容易成为焊缝金属中夹杂物。同时,氧化膜(特别是有MgO存在的,不很致密的氧化膜)可以吸收较多水分而常常成为焊缝气孔的重要原因之一。此外,铝及其合金的线胀系数大,导热性又强,焊接时容易产生翘曲变形。这些也都是焊接生产中颇感困难的问题。下面,对在试验过程中产生比较严重的裂纹进行深入的分析。 1铝合金焊接接头中的裂纹及其特征 在铝合金焊接过程中,由于材料的种类、性质和焊接结构的不同,焊接接头中可以出现各种裂纹,裂纹的形态和分布特征都很复杂,根据其产生的部位可分为以下两种裂纹形式:(1)焊缝金属中的裂纹:纵向裂纹、横向裂纹、弧坑裂纹、发状或弧状裂纹、焊根裂纹和显微裂纹(尤其在多层焊时)。 (2)热影响区的裂纹:焊趾裂纹、层状裂纹和熔合线附近的显微热裂纹。按裂纹产生的温度区间分为热裂纹和冷裂纹,热裂纹是在焊接时高温下产生的,它主要是由晶界上的合金元素偏析或低熔点物质的存在所引起的。根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也各有不同,热裂纹又可分为结晶裂纹、液化裂纹和多边化裂纹3类。热裂纹中主要产生结晶裂纹,它是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足不能及时填充,在凝固收缩应力或外力的作用下发生沿晶开裂,这种裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝和某些铝合金;液化裂纹是在热影响区中被加热到高温的晶界凝固时的收缩应力作用下产生的。 在试验过程中发现,当填充材料表面清理不够充分时,焊接后焊缝中仍存在较多的夹杂和少量的气孔。在三组号试验中,由于焊接填充材料为铸造组织,其中夹杂为高熔点物质,焊接后在焊缝中仍将存在;又,铸造组织比较稀疏,孔洞较多,易于吸附含结晶水的成分和油质,它们将成为焊接过程中产生气孔的因素。当焊缝在拉伸应力作用下时,这些夹杂和气孔往往成为诱发微裂纹的关键部位。通过显微镜进一步观察发现,这些夹杂和气孔诱发的微观裂纹之间有明显的相互交汇的趋势。然而,对于夹杂物在此的有害作用究竟是主要表现为应力集中源从而诱发裂纹,还是主要表现为脆性相从而诱发裂纹,尚难以判断。此外,一般认为,铝镁合金焊缝中的气孔不会对焊缝金属的拉伸强度产生重大影响,而本研究试验中却发现焊缝拉伸试样中同时存在着由夹杂和气孔诱发微裂纹的现象。气孔诱发微裂纹的现象是否只是一种居次要地位的伴生现象,还是引起焊缝拉伸强度大幅度下降的主要因素之一,亦还有待进一步的研究。 2热裂纹产生的过程 目前关于焊接热裂纹理论,国内外认为较完善的是普洛霍洛夫理论。概括地讲,该理论认为结晶裂纹的产生与否主要取决于以下3方面:脆性温度区间的大小;在此温度区间内合金所具有的延性以及在脆性温度区间金属的变形率大小。 通常人们将脆性温度区间的大小及在此温度区间内具有的延性值称为产生焊接热裂纹的冶金因素,而把脆性温度区内金属的变形率大小称为力学因素。焊接过程是一系列不平衡的工艺过程的综合,这种特征从本质上与焊接接头金属断裂的冶金因素和力学因素发生重要的联系,如焊接工艺过程与冶金过程的产物即物理的、化学的与组织上的不均匀性、熔渣与夹杂物、气体元素与处于过饱和浓度的空位等。所有这些,都是与裂纹的萌生与发展有密切联系的冶金因素。从力学因素方面看,焊接热循环特定的温度梯度与冷却速度,在一定的拘束条件下,将使焊接接头处于复杂的应力-应变状态,从而为裂纹的萌生与发展提供必要的条件。 在焊接过程中,冶金因素和力学因素的综合作用将归结为两个方面,即是强化金属联系还是弱化金属联系。如果在冷却时,焊接接头金属中正在建立强度联系,在一定刚性拘束条件下能够顺从地应变,焊缝与近缝区金属能够承受外加拘束应力与内在残余应力的作用时,裂纹就不容易产生,焊接接头的金属裂纹敏感性低,反之,当承受不住应力作用时,金属中强度联 铝合金焊接接头产生裂纹特征及产生机理分析 谢辉 (广东省第二农机厂,广东广州512219) 摘要:近40年来,由于焊接技术的进步,高效率和高性能的焊接方法得到了推广,铝及铝合金在车辆、船舶、建筑、桥梁、化工机械、低温工程和宇航工业等各种结构方面的应用在不断扩大,但国产化的铝合金和铝合金焊接材料均还存在着一定的差距。对铝合金焊接接头产生裂纹的特征及产生机理进行了分析,提出了几点防范措施。 关键词:铝合金;焊接接头;裂纹;机理 —116—

材料的疲劳性能

材料的疲劳性能一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随 1 /2; min) 2 应力; ②不对称循环:σm≠0,-1σm>0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力;

④波动循环:σm>σa,0

②疲劳破坏属于低应力循环延时断裂,对于疲劳寿命的预测显得十分重要和必要; ③疲劳对缺陷(缺口、裂纹及组织)十分敏感,即对缺陷具有高度的选择性。因为缺口或裂纹会引起应力集中,加大对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等)将降低材料的局部强度。二者综合更加速疲劳破坏 出现两个疲劳源。 (2)疲劳裂纹扩展区(亚临界扩展区)? 疲劳裂纹扩展区特征为断口较光滑并分布有贝纹线或裂纹扩展台阶。贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向。近疲劳源区贝纹线较细密(裂纹扩展较慢),远

对铆接疲劳裂纹产生机理的探讨

对铆接疲劳裂纹产生机理的探讨 【摘要】自冲铆接的微裂纹会在铆接孔中产生,这主要是由于材料内部组织的不均匀性及铆接模具的结构、形状造成的。本文对接疲劳裂纹产生机理进行了探讨研究。 【关键词】自冲铆接;微裂纹;裂纹扩展;疲劳强度 0.引言 自冲铆接技术是采用一个铆钉连接两个或更多部件的方法,它实行冲铆一次完成。半空心铆钉自冲铆接工艺的铆接过程铆钉在冲头的作用下,穿透上层板料,在凹模和铆钉外形共同作用下空心铆钉尾部在下层金属中张开形成喇叭口形状。自冲铆接除了可连接上述点焊所难于连接的材料外,自冲铆接和点焊相比还具有许多点焊所不具备的优点:能连接不同材料,能和粘接复合连接,无发光,发热少,疲劳强度较高,快捷等。 1.自冲铆接疲劳破坏方式 自冲铆接的疲劳扩展最易在铆接孔处扩展,且在宏观上裂纹扩展方向垂直于载荷方向,且裂纹宏观方向通过铆接孔中心,在裂纹扩展末期的瞬断时形成剪切唇,剪切唇与载荷成大约45o,这其实是由于强度不足所致。 有的时候自冲铆接疲劳裂纹不在铆接孔发生,而有可能在铆接孔附近靠近铆钉头部的地方萌生和扩展,这主要由于铆钉在受载时会对板料有一个弯曲作用。在有的时候,比如自冲铆接和粘接复合连接时,或材料缺陷情况下,疲劳萌生和扩展还可能发生在板料的其他部位。 2.自冲铆接微裂纹的产生 铆钉可用钢材或硬铝等制作,一般经热处理来适当提高其韧、硬度,这主要取决于被铆接材料特性如强度、硬度、厚度等。被铆接的材料常有钢板、铝板或铝合金、塑料、铜或铜合金、高分子材料及复合材料等,一般其硬度不能太高,否则铆钉将难刺穿上板料,若采用更高硬度的铆钉,但这样铆钉在刺入板料和张开时易开裂,且增大了刺入力。 由于铆钉刺进板料时,板料内部强度、硬度、结构、相分布、原子结合力不均,晶粒、晶界性状不一等原因导致板料的铆钉孔孔壁有毛刺、微裂纹,这些将是导致自冲铆接失效的重要扩展源。 下面阐述裂纹不在铆接孔中产生的情况。金属中常见的有面心立方晶格、体心立方晶格、密排六方晶格等多种结构,它们具有多种滑移系和滑移方向,晶体是各向异性的。在其受力时可沿着受载最大或最弱的、抗力最小的晶面和晶向滑

相关主题
文本预览
相关文档 最新文档