当前位置:文档之家› 材料力学课程设计--曲柄轴的强度设计及变形计算

材料力学课程设计--曲柄轴的强度设计及变形计算

材料力学课程设计--曲柄轴的强度设计及变形计算
材料力学课程设计--曲柄轴的强度设计及变形计算

材料力学课程设计--曲柄轴的强度设计及变形计算

(导师好,课程设计是我这两天赶工的,质量不怎么好,你帮我改改,其中1.2,4.2,4.3没有完成,不知道怎么写,您帮我看看想一下,3.1的第三强度公式我感觉有点不会,您也帮着看一下。。。幸好有您这个导师,嘻嘻,感谢呀。。。祝勇哥圣诞元旦双节快乐,新春快乐假期美好。。———学生:东禹

材料力学课程设计

题目:曲柄轴的强度设计及变形计算

单位:理学院

班级:力学 11-1

姓名:宫东禹

指导教师:宋志勇

目录

一、绪论

二、力学模型与内力分析

三、强度分析。

四、变形计算与刚度分析。

五、总结。

一、绪论

1.1、课程设计目的意义:

材料力学课程设计是材料力学课程的重要实践性环节。

通过结合工程实际,自行设计结构形式,并对杆件结构进行内力、应力变形位移计算等,校核杆件结构的强度和刚度、稳定性,并对结构进行改进。进一步巩固和加深材料力学课程中的基本理论知识,初步掌握对材料力学中分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力、通过自由设计结构、锻炼创新思维能力。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既是对以前所学知识的综合运用,又为后续课程的学习打下基础,并初步掌握工程设计思想和设计方法,使实际工作能力有所提高。具体有以下几方面:

1、对之前学过的相关力学知识的全面复习,使学生的力学知识系统化、完整化;

2、综合运用力学理论知识解决工程中的实际问题。

3、本课程设计是在系统学完材料力学课程之后,结合工程实际中的问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以

达到综合运用材料力学知识解决工程实际问题的目的。

4、由于选题力求结合专业实际,因而课程设计可以为学生后续的毕业设计打下基础,进行提前锻炼。

5、初步了解和掌握工程实践中的分析思想和计算方法。

1.2、结构的工程应用背景简介:

(简单的介绍你所设计的结构在工程的使用,比如哪些领域,有何作

用)

1.3、课程设计的主要任务内容:

参加设计者要系统复习材料力学课程的全部基本理论和方法,根据给出题目,搜集相关资料,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,并校核强度和刚度,对结构进行优化和改进分析并完成设计报告。

1、本次课程设计要求依据所学材料力学基本理论,分析内力和应力、变形,从强度、刚度的安全因素出发,设计相应几何尺寸、并进行计算分析。

2、原则上各班同学必须独立完成,每名同学所采用的原始数据不能重复。

3、本次课程设计要求最终上交一份课程设计报告。

4、要求每名同学完成题目的结构设计和力学分析,绘制必需的图、表,并最终撰写课程设计报告一份。

基本内容包括:

①了解结构工程背景或在工程中应用,确定材料参数

②作出结构杆件的内力分布图

③设计结构杆件的几何尺寸或结构杆件的截面

④进行应力状态分析

⑤利用强度理论进行校核

⑥变形计算

⑦结构杆件的优化和改进分析

二、力学模型、内力分析

2.1、力学模型简介

(介绍你所问题的几何结构,要求有结构图;约束情况;材料属性参数等)

7、题目:曲柄轴的强度设计及变形计算

1) 题目内容:

材料为球墨铸铁QT400-10,[]MPa 120=σ,曲柄臂抽象为矩形,如下图示。

D h 2.1=,32=h b ,e l 5.1=,l l 5.04=。

2)设计要求与技术指标:

安全系数n=2、需设计曲柄颈直径、主轴颈直径;校核强度;计算A 截面转角y θ,z ?。 设计参数 F/kN W/kN l 1 l 2 l 3 e/mm a (°) 第15组

20

8.2

400

240

130

100

12

2.2、载荷简化:

2.3、内力分析内力分布图:

内力分析:

①主轴颈FB 段左端1-1截面为危险截面。 ②曲柄颈CD 段中间2-2截面为危险截面。 ③曲柄臂以DF 段下端3-3截面为危险截面。

三、强度分析 3.1、强度理论简述

由零件图可知,键槽处有扭转切应力,无弯曲正应力。由于机器时开时停,可以视作脉动循环变化。因主轴颈处于两向弯曲于扭转的组合变形,可用第三强度理论计算 第三强度理论

对于象低碳钢这一类的塑性材料,在单向拉伸试验时材料就是沿斜截面发生滑移而出现明显的屈服现象的。这时试件在横截面上的正应力就是材料的屈服极限ss ,而在试件斜截面上的最大剪应力(即45°斜截面上的剪应力)等于横截面上正应力的一半。于是,对于这一类材料,就可以从单向拉伸试验中得到材料的极限值xy τ

xy

τ =ss /2

按此理论的观点,屈服破坏条件是

()max

2xy ss c τ

τ==÷

由公式(1-56)可知,在复杂应力状态下下一点处的最大剪应力为 ()

13max 2

s s τ-=

其中的1s 、3s 分别为该应力状态中的最大和最小主应力。故式(c)又可改写为

()131

32

2

s s ss s

s ss -=-=或

将上式右边的ss 除以安全系数及的材料的容许拉应力[]s ,故对危险点处于复杂应力状态的构件,按第三强度理论所建立的强度条件是: ()[]13s s s -≤

3.2、应力分析

曲柄臂的危险截面应力分布图:

根据应力分布图,可以判断出可能的危险点有D1、D2、D3。对D1点进行应力分析

由于D1点处于单向拉伸、所以正应力的代数叠加

()

[]

333333242236675.55N x x

x z

z N F M M A W W W l l l F e F bh b h bh MPa σσ=

+++-?=++=

所以D 1安全

对D 2点进行应力分析,由于D 2点有扭转切应力,查表得: 0.231α=

0.858

V =

()

32422

48.27y BZ M F l l MPa ab h

ab h

τ-=

=

= D 2点的正应力为轴力和绕z 轴的弯矩共同引起,即

()()

3242421313336.736

By N z N z W l l l F l l F M F b h

MPa A W bh

σ+---=+=+

=

由于D 2点处于二向应力状态,故选择第三强度理论计算

[]2234103.29r MPa

σστσ=+=

所以D 2点安全

对D 3点进行应力分析

[]

2

333332230.85848.2741.4139.056

491.56z N x N x r v MPa MPa

F e

F M F bh MPa A W bh MPa ττσσστσ'==?=?'=+=+=''=+=

所以D 3点安全

3.3、强度分析

由零件图可知,键槽处有扭转切应力,无弯曲正应力。由于机器时开时停,可以视作脉动循环变化。

131max

min max max min 38.0216

002

x

x p m a M M D MPa W πττττγτττ======∴==

由于切应力是脉动循环,因此用以下公式进行疲劳强度校核:

1

a m

n n

K ττ

ττττψτεβ

-=

≥+

其中1160MPa τ-= 0.05

τ

ψ

=

0.76

τε=

查表得

: 400b

MPa

σ

=

1.20

K τ=

0.95β=

1

4.92

a m

n n

K ττ

ττττψτεβ

-=

=+

主轴颈的疲劳强度符合要求

3.4、杆件截面尺寸设计

主轴颈D 和曲柄轴颈的直径d

因主轴颈处于两向弯曲于扭转的组合变形,可用第三强度理论计算

[][]

223

122

2

2231222222211111132222223

3

1113

32

4413232

32

20171218195612010

63.83=64y z x r P y z x y z x y z x M M M D W W M M W W M M M M M M W D D M M M D mm D mm

πσσσστσππσπ=+==

????

=-=+=+ ?

?????

=++=++≤≥

++=

++??≥解得:取

同理,曲柄颈的曲度计算也可以用第三强度理论

[][

]

22222222

32222223

222222

3

3

2226

132432

323221290624

12010:49.96501.223

1.264772

513

r y z x y z x y z x M M M M M M W D

d M M M d mm d mm h D

b h h mm mm b h mm σστσππσπ=+=

++=

++≤≥

++=

++??≥====?==

=解得取

四、变形计算与刚度分析、稳定性分析 4.1、变形计算理论方法

求y θ

在截面A 加以单位力偶矩y

M ,并作出单位力偶

矩作用下的弯矩图:

()()12

141401

1.5631.56310.4920.258B AZ BZ AZ E AZ F BZ M F N l l F F N

E M

F l l N m F M F l l N m

==

=+=-=-=--=-?=-=-?点弯矩为点的弯矩为

()()

4

412

9

4

112

93123

4h 2

0.196b 3

150? 0.27

641015*********.8264

64

150100.196775110118226.5121210.27p ci

c i i y i

E GPa D E

Pa m D d El El E Gl hb Pa m M M El βμππβμωωθ--=∴===??==??

=?=∴=?????=?==?+?+=+∑由图乘法:查表得:

杆件的抗弯刚度为El 杆件的刚扭刚度为

由公式

()()()212 0.355110.51

20.40.0919560.50.220.0912180.210232310.50.3550.50.3550.3550.210.09201719560.3550.0919560.0912182322 10.2i

y p

y M N m

Gl l El l El θ=??-???=

-??++-??? ???????

-++??

??-?++??+?? ???+

+?∑

()()30.3550.2109201712180.3553 19560.120.512180.120.21 4.67710p

l

Gl rad

????????-?

??-?+?? ?

????+

??+??=? 求z

θ

在截面A 加一个单位力偶矩z

M 并作出单位力偶矩作用下的弯矩图z

M

()()12

y 14

140 1.5631.56310.4920.258B Ay By Ay E A F By M l

F N l l F F N

E M

F l l N m F M F l l N m

==

=+=-=-=?--=?=?-=-?点弯矩为点弯矩为

()()()()4

129682

22129

4

31123469.8215010775110 5.8911077511015010127676.61212

1110.50.21120.40.093220.56240.220.090.220.0912906240.2123323z El El Pa m EA Ehb Pa m hb El E Pa m El θ==?==????=????==??=??-??

=?-??++?-?+?-?-?? ???由公式()()()2310.50.3550.50.3550.0912906240.3550.09624232110.3550.210.3550.210.0912906240.3550.0912*******

3220.120.56240.120.2120170.12 1.6138980El El EA

??????-+???

??-?++?? ???????+

??-+?

?+??-?-+???? ?

????+

??+??+??-?()3.12 1.6133.01610rad

-?=?

4.2、刚度分析

4.3、稳定性分析

五、总结

5.1、结构优化设计

根据疲劳破坏的分析,裂纹源通常是在有应力集中的部位产生,而且构件持久极限的降低,很大程度是由于各种影响素带来的应力集中影响。因此设法避免或减弱应力集中,可以有效提高构件的疲劳强度。可以从以下方面提高构件的疲劳强度:

1、一般来说,构件表层的应力都很大,例如在承受弯曲和扭转的构件中,其

最大应力均发生在构件的表层。同时由于加工的原因,构件表层的刀痕或损伤处,又将引起应力集中。因此,对疲劳强度要求高的构件,应采用经加工方法,以获得较高的表面质量。

2、增加表层强度:常用的方法有表面热处理和表面机械强化两种方法。可采用

高频淬火等热处理,渗碳,氮化等化学处理和机械方法强化表层,以提高疲劳强度。

5.2、总结

在设计过程中,我深深地体会到理论学习于实践之间的巨大差距,仅仅掌握书本上的知识是远远不够的,应付考试所完成的知识是不够完成这次设计的。这次课程设计让我深深的感受到理论知识于实践相结合的重要性,同时我学会了自己查找相关数据,了解了工程中一般设计的过程。

此次课程设计让我受益匪浅,尽管设计中我还有很多的缺陷和不足,但我从中获得了大量的宝贵经验,为日后的学习打下了基础。

材料力学强度理论

9 强度理论 1、 脆性断裂和塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 0 1εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值, 即: 0 max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即: u u0 d d = 强度准则的统一形式[]σ σ≤ * 其相当应力: r11 σ=σ r2123 () σ=σ-μσ+σ r313 σ=σ-σ 222 r4122331 1 ()()() 2 ?? σ=σ-σ+σ-σ+σ-σ ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9.1图9.1所示的两个单元体,已知正应力σ=165MPa,切应力τ=110MPa。试求两个单元体的第三、第四强度理论表达式。 图9.1 [解](1)图9.1(a)所示单元体的为空间应力状态。注意到外法线为y及-y的两个界面上没有切应力,因而y方向是一个主方向,σ是主应力。显然,主应力σ对与y轴平行的斜截面上的应力没有影响,因此在xoz坐标平面内可以按照平面应力状态问题对待。外法线为x、z轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a)所示单元体的三个主应力为: τ σ τ σ σ σ- = = = 3 2 1 、 、 , 第三强度理论的相当应力为 解题范例r4σ=

材料力学课程设计 单缸柴油机曲轴

材料力学课程设计 班级: 作者: 题目:单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核 指导老师: 2007.11.05

班级 姓名 一、 课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合应用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1)使所学的材料力学知识系统化,完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 3)使我们初步了解和掌握工程实践中的设计思想和设计方法,为后续课程的学习打下基础。 二、 课程设计的任务和要求 要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 三、 设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450-5)弹性常数为E 、μ,许用应力为[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且r F = 2t F 。曲柄臂简化为矩形截面,1.4≤h D ≤1.6,2.5≤h b ≤4, 3l =1.2r,已知数据如下表:

材料力学课程设计-车床主轴

教学号:答辩成绩: 设计成绩: 材料力学课程设计 设计计算说明书 设计题目:车床主轴设计 题号: 7—8—Ⅰ—12 教学号: 姓名: 指导教师: 完成时间:

目录 一、材料力学课程设计的目的 --------------------------------------------------3 二、材料力学课程设计的任务和要求 --------------------------------------------------3 三、设计题目 --------------------------------------------------3 四、对主轴静定情况校核 --------------------------------------------------5 1.根据第三强度理论校核 ---- ----------------------------------------7 2.根据刚度进行校核 ---------------------------------------------8 3.疲劳强度校核 ------------------------------------------- 12 五、对主轴超静定情况校核 -------------------------------------------------13 1.根据第三强度理论校核 ---------------------------------------------15 2.根据刚度进行校核 ---------------------------------------------16 3.疲劳强度校核 ----------------------------------------------19 六、循环计算程序 ---------------------------------------------------19 七、课程设计总结 ----------------------------------------------------26

材料力学B试题7应力状态_强度理论.docx

40 MPa .word 可编辑 . 应力状态强度理论 1. 图示单元体,试求60100 MPa (1)指定斜截面上的应力; (2)主应力大小及主平面位置,并将主平面标在单元体上。 解: (1) x y x y cos 2x sin 276.6 MPa 22 x y sin 2x cos232.7 MPa 2 3 1 (2)max xy( x y) 2xy281.98MPa39.35 min22121.98 181.98MPa,2 ,3121.98MPa 12 xy1200 0arctan()arctan39.35 2x y240 200 6060 2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x 由 120xy sin 2xy cos20 得 y 2 所以m ax x y ( xy ) 2xy 2 m in 22 129.9 MPa 2525 (MPa) 125MPa 50752( 129.9)250 150100 MPa 200 1 100 MPa,20 ,3200MPa 3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。 解:y150 MPa,x120 MPa

.word 可编辑 . 由得45x y sin 2xy cos 2x 15080 22 x10 MPa 所以max xy(x y) 22 22xy min y x 45 45 45 214.22 MPa 74.22 1214.22 MPa,20 , 45 374.22 MPa 4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。 0.19210 3 解: xπ(0.104 40.14)0.05 5.75MPa t 32 x y pd MPa 50 4t pd MPa 100 2t M e p M e max x y(x y ) 2 xy2 min22100.7 MPa 49.35 1100.7 MPa,249.35 MPa,3 4 MPa 5.受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使 x 100 MPa,x 20MPa40 MPa100 MPa xy x y 12020 MPa 22cos2x sin 2

材料力学课程设计

目录 一、 关于材料力学课程设计 (2) 二、 设计题目 (2) 三、 设计内容 (3) 3.1 柴油机曲轴的受力分析 (3) 3.2 设计曲轴颈直径d ,主轴颈直径D (6) 3.3 设计h 和b,校核曲柄臂强度 (6) 3. 4 校核主轴颈H —H 截面处的疲劳强度,取疲劳安全系数n=2。键 槽为端铣加工,主轴颈表面为车削加工 (6) 3.5 用能量法计算A —A 截面的转角y θ,x θ (7) 3.6对计算过程的几点必要说明 (9) 3.7 改进方案 (10) 四、 计算机程序设计 (10) 4.1程序框图 (10) 4.2计算机程序 (11) 4.3输出结果 (12) 五、 设计体会 (12) 六、 参考书目 (12) 一、 关于材料力学课程设计 1.材料力学课程设计的目的 本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体,既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既把以前所学的知识(高等数学、工程图学、理论力

学、算法语言、计算机和材料力学等)综合运用,又为后继课程(机械设计、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。具体的有以下六项: (1)使学生的材料力学知识系统化、完整化; (2)在系统全面复习的基础上.运用材料力学知识解决工程中的实际问题; (3)由于选题力求结合专业实际.因而课程设计可以把材料力学知识和专业需要结 合起来; (4)综合运用了以前所学的多门课程的知识(高数、制图、理力、算法语言、计算 机等等)使相关学科的知识有机地联系起来; (5)初步了解和掌握工程实践中的设计思想和设计方法; (6)为后继课程的教学打下基础 2.材料力学课程设计的任务和要求 参加设计者要系统地复习材料力学的全部基本理论和方法.独立分析、判断、设计题目的已知条件和所求问题.画出受力分析计算简图和内力图.列出理论依据和导出计算公式.独立编制计算程序.通过计算机给出计算结果.并完成设计计算说明书. 3.材料力学课程设计的一般过程 材料力学课程设计与工程中的一般设计过程相似.从分析设计方案开始到进行必要的计算并对结构的合理性进行分析.最后得出结论.材料力学设计过程可大致分为以下几个阶段: (1)设计准备阶段:认真阅读材料力学课程设计指导书.明确设计要求.结合设计题目复习材料力学课程设计的有关理论知识.制定设计步骤、方法以及时间分配方案等; (2)从外力变形分析入手,分析及算内力、应力及变形,绘制各种内力图及位移、转角曲线; (3)建立强度和刚度条件.并进行相应的设计计算及必要的公式推导; (4)编制计算机程序并调试; (5)上机计算,记录计算结果; (6)整理数据,按照要求制作出设计计算说明书; (7)分析讨论设计及计算的合理性和优缺点,以及相应的改进意见和措施; 二、设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450—5),弹性常数为E 、μ,许用应力[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且2t r F F = 。曲柄臂简化为矩形截面,1.4≤h D ≤1.6,2.5≤h b ≤4,3l =1.2r ,有关数据如下表:

材料力学四个强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

材料力学课程设计--曲柄轴的强度设计及变形计算

材料力学课程设计--曲柄轴的强度设计及变形计算

(导师好,课程设计是我这两天赶工的,质量不怎么好,你帮我改改,其中1.2,4.2,4.3没有完成,不知道怎么写,您帮我看看想一下,3.1的第三强度公式我感觉有点不会,您也帮着看一下。。。幸好有您这个导师,嘻嘻,感谢呀。。。祝勇哥圣诞元旦双节快乐,新春快乐假期美好。。———学生:东禹 材料力学课程设计 题目:曲柄轴的强度设计及变形计算 单位:理学院

班级:力学 11-1 姓名:宫东禹 指导教师:宋志勇 目录 一、绪论 二、力学模型与内力分析 三、强度分析。 四、变形计算与刚度分析。 五、总结。

一、绪论 1.1、课程设计目的意义: 材料力学课程设计是材料力学课程的重要实践性环节。 通过结合工程实际,自行设计结构形式,并对杆件结构进行内力、应力变形位移计算等,校核杆件结构的强度和刚度、稳定性,并对结构进行改进。进一步巩固和加深材料力学课程中的基本理论知识,初步掌握对材料力学中分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力、通过自由设计结构、锻炼创新思维能力。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既是对以前所学知识的综合运用,又为后续课程的学习打下基础,并初步掌握工程设计思想和设计方法,使实际工作能力有所提高。具体有以下几方面: 1、对之前学过的相关力学知识的全面复习,使学生的力学知识系统化、完整化; 2、综合运用力学理论知识解决工程中的实际问题。 3、本课程设计是在系统学完材料力学课程之后,结合工程实际中的问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以 达到综合运用材料力学知识解决工程实际问题的目的。 4、由于选题力求结合专业实际,因而课程设计可以为学生后续的毕业设计打下基础,进行提前锻炼。 5、初步了解和掌握工程实践中的分析思想和计算方法。 1.2、结构的工程应用背景简介: (简单的介绍你所设计的结构在工程的使用,比如哪些领域,有何作

材料力学课程设计

材料力学课程设计指导书 聂毓琴修订 吉林大学 2005年6月

前言 材料力学是工科院校一门重要的学科基础课,高等学校中使用的各种材料力学教材,往往将杆件的变形分成几种基本形式。并针对这几种基本变形形式在各自的范围内分别独立地给予解答。我们在教学中体会到这种做法的优越性。但同时也感到这种孤立地研究某一问题的方式也有其自身的弱点。其中最为突出的,就是学生很难从整体上把握材料力学的全貌,更难于利用材料力学的知识去解决工程实际问题。为此,我们试图针对学生的专业特点和不同专业的要求,从强度、刚度、稳定性的观点出发,在工程实际中选取一些较为复杂的构件,要求学生从全面的、整体的角度予以解答,这样就既可以深化课堂上的知识,使知识系统话,同时也培养了学生解决实际问题的能力,既把所学过的基础课(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)系统应用。又为后继课程的学习打下基础,使各教学环节和教学内容有机地联系起来。对学生来说,通过材料力学课程设计可初步了解工程中的设计思想和设计方法,也激发了学习积极性和创造精神。对教师来说,在拓宽知识面,改进教学方法、教学态度,提高教学水平上都有一定的益处。在总体上可以使教学质量有所提高。作为教学改革的内容之一,我们的工作还只是探索性。我们的目的不仅于课程设计本身,更着眼于材料力学课程本身的建设和改革。 材料力学课程设计这一崭新的教学环节是我校于1987年率先开始试点,并在以后的几年中进行了集中安排一周另四天分散和分散五周安排等方式的实践,取得了宝贵的经验,并在全校产品类专业中逐步推广成为材料力学课程建设的主要内容之一。材料力学课程设计做为教改研究项目已于1991年4月通过校级鉴定。得到校内、外专家的充分肯定与赞扬,1993年3月,获校优秀教学成果奖;也得到国家教委理工科院校材料力学课程指导小组组长、副组长的高度评价。并于1993年5月获吉林省优秀教学成果一等奖。“材料力学课程设计”作为附加项目及创新点,使材料力学课程的教学改革与实践在2001年获吉林大学教学成果二等奖;以此为特色,2002年材料力学课程被评为吉林大学精品课程;材料力学课程的教学改革与创新于2005年获吉林大学教学成果一等奖;获吉林省教学成果二等奖。 本次修订引入了部分工程实际构件的零件图,抽象的力学简图全部由CAD绘制,采用了最新国家标准规定的物理量的名称和符号,常用金属材料的牌号也采用了最新标准。 本书的前期工作有初日德、聂毓琴、刘寒冰、魏媛、卢衍榕、郭学东等老师参加,特别是已退休的初日德及卢衍榕教授对“材料力学课程设计”这一教改课题做了大量的工作,对此表示忠心感谢。 修订者:聂毓琴 2005年6月

材料力学带答疑

第七章应力和应变分析强度理论 1.单元体最大剪应力作用面上必无正应力 答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。) 2. 单向应力状态有一个主平面,二向应力状态有两个主平面 答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零) 3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态 答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零 答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零) 5.应力超过材料的比例极限后,广义虎克定律不再成立 答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。) 6. 材料的破坏形式由材料的种类而定 答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同

答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。) 二、选择 1.滚珠轴承中,滚珠与外圆接触点为应力状态。 A:二向; B:单向C:三向D:纯剪切 答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。) 2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。 A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间 答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。) 3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面 中。 A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面; 答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力 状态为二向不等值拉伸,其σ x =pD/4t、σ y =pD/2t。单元体上无剪应力的作用, 固纵、横截面均为主平面。) 4.广义虎克定律ε i =(σ i -u(σ j +σ k )/E 适用于。

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

材料力学课程设计--五种传动轴的静强度、变形及疲劳强度的计算

材料力学课程设计设计题目五种传动轴的静强度、变形及疲劳强度的计算

1.课程设计的目的 本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合运用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1.使所学的材料力学知识系统化、完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2.综合运用了以前所学的各门课程的知识(高数、制图、理力、算法语言、计算机等)使相关学科的知识有机地联系起来。 3.使我们初步了解和掌握工程实践中的设计思想和设计方法,为后继课程的教学打下基础。 2.课程设计的任务和要求 要求参加设计者,要系统地复习材料力学的全部基本理论和方法,独立分析、判断、设计题目的已知条件和所求问题。画出受力分析计算简图和内力图,列出理论依据和导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 3.课程设计的题目 传动轴的强度、变形及疲劳强度计算 6-1 设计题目 传动轴的材料为优质碳素结构钢(牌号45),许用应力[σ]=80MPa,经高频淬火处理,其σb=650MPa,σ-1=300MPa,τ-1=155MPa,磨削轴的表面,键槽均为端铣加工,阶梯轴过渡圆弧r均为2,疲劳安全系数n=2,要求: 1)绘出传动轴的受力简图; 2)作扭矩图及弯矩图; 3)根据强度条件设计等直轴的直径; 4)计算齿轮处轴的挠度;(按直径Φ1的等直杆计算) 5)对阶梯传动轴进行疲劳强度计算;(若不满足,采取改进措施使其满足疲劳强度); 6)对所取数据的理论根据作必要的说明。 说明: a) 坐标的选取均按下图6—1所示; b) 齿轮上的力F与节圆相切; c) 数据表中P为直径D的皮带轮传递的功率, P为直径为D1的皮带轮传递的功率。 1

材料力学课程设计

材料力学课程设计 说明书

目录 一、课程设计目的---------------03 二、课程设计任务和要求---------------03 三、课程设计题目---------------04 四、课程设计计算过程 1.画出力学简图,求出外力 ---------------05 强度计算 ---------------07刚度计算 ---------------08 B截面的实际位移 ---------------16 2.疲劳强度校核 ---------------19 3.超静定校核设计 超静定校核设计 ---------------20校核疲劳强度 ---------------22 五、循环计算程序---------------24 六、课程设计总结---------------30 七、参考文献---------------30

材料力学课程设计的目的是在于系统的学习材料力学之后,能结合工程中的实际问题,运用材料力学设计的基本原理和计算方法,独立计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题的目的。同时,可以使我们将材料力学的理论和现代的计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既是对以前学到的知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)的综合运用,又为以后学习的课程(机械设计、专业课等)打下了基础,并初步掌握了工程中的设计思想和设计方法,对实际工作能力有所提高。具体有以下六项: 1.使我们的材料力学知识系统化,完整化。 2.在系统的全面的复习的基础上,运用材料力学的知识解决工程中的实际问题。 3.由于选题力求结合专业实际,因而课程设计可以把材料力学的知识和专业需要结合起来。 4.综合运用以前所学的各门课程知识(高等数学、工程图学、理论力学、算法语言、计算机等),是相关学科知识有机的联系起来。 5.初步了解和掌握工程实践中的设计思想和设计方法。 6.为以后课程的学习打下基础。 二、课程设计任务和要求 参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。

吉林大学材料力学课程设计76_(b)__第二组数据轴设计说明

设计题目 传动轴的材料均为优质碳素结构钢(牌号45),许用应力[σ]=80MPa ,经高频淬火处理, 650b MPa σ=,1300MPa σ-=,1155MPa τ-=。磨削轴的表面,键槽均为端铣加工,阶梯轴 过渡圆弧r 均为2mm ,疲劳安全系数n=2。 要求: 1. 绘出传动轴的受力简图。 2. 做扭矩图及弯矩图。 3. 根据强度条件设计等直轴的直径。 4. 计算齿轮处轴的挠度(均按直径1φ的等直杆计算)。 5. 对阶梯传动轴进行疲劳强度计算。(若不满足,采取改进措施使其满足疲劳强度要求)。 6. 对所取数据的理论根据做必要的说明。 说明: (1) 坐标的选取均按图所示。 (2) 齿轮上的力F 与节圆相切。 (3) 表中P 为直径为D 的带轮传递的功率,1P 为直径为1D 的带轮传递的功率。1G 为小 带轮的重量,2G 为大带轮的重量。 (4) 1φ为静强度条件所确定的轴径,以mm 为单位,并取偶数。 设 312 243 1.1φφφφφφ=== 设计计算数据

传动轴零件图 设计计算数据表 设计过程 1.传动轴受力简图 首先对传动轴进行受力分析,轴共受 7 个力作用,分别为皮带轮 D 对传动轴的力2和,皮带轮1对传动轴的力1和 21,齿轮2对传动轴的力 F,还有皮带轮 D 的 重力2和皮带轮1的重力G 1,且M1与M2方向相反, P/kW 1P/kW n/(r/min ) D/mm 1 D/mm 2 D/mm 2 G/N 1 G/N a/mm a(o ) 6.6 2.9 150 700 350 100 800 400 500 30

受力简图如下图所示 列公式求得: M 1=184.61NM M 2=420.16NM M= M 2- M 1=235.55NM 2.弯矩图及扭矩图 1)在 XOY 面上传动轴受力简图如下: 2)在 XOZ 面上传动轴受力简图如下: F AY

材料力学课程设计的大致步骤

一、材料力学课程设计的目的 本课程设计的目的是在于系统学完材料力学之后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)综合运用,又为后继课程(机械设计、专业课等)打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。具体的有以下六项: 1.使学生的材料力学知识系统化、完整化; 2.在系统全面复习的基础上,运用材料力学知识解决工程中的实际问题; 3.由于选题力求结合专业实际,因而课程设计可以把材料力学知识和专业需要结 合起来; 4.综合运用了以前所学的个门课程的知识(高数、制图、理力、算法语言、计算机等等)使相关学科的知识有机地联系起来; 5.初步了解和掌握工程实践中的设计思想和设计方法; 6.为后继课程的教学打下基础。 二、材料力学课程设计的任务和要求 要求参加设计者,要系统地复习材料力学的全部基本理论和方法,独立分析、判断、设计题目的已知条件和所求问题。画出受力分析计算简图和内力图,列出理论依据和导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 1.设计计算说明书的要求 设计计算说明书是该题目设计思想、设计方法和设计结果的说明。要求书写工整,语言简练,条理清晰、明确,表达完整。具体内容应包括: (1) 设计题目的已知条件、所求及零件图; (2) 画出构件的受力分析计算简图,按比例标明尺寸,载荷及支座等; (3) 静不定结构要画出所选择的基本静定系统及与之相应的全部求解过程; (4) 画出全部内力图,并标明可能的各危险截面; (5) 危险截面上各种应力的分布规律图及由此判定各危险点处的应力状态图; (6) 各危险点的主应力大小及主平面位置; (7) 选择强度理论并建立强度条件; (8) 列出全部计算过程的理论根据、公式推导过程以及必要的说明; (9) 对变形及刚度分析要写明所用的能量法计算过程及必要的内力图和单位力图; (10) 疲劳强度计算部分要说明循环特征,a m r σσσσ,,,,min max 的计算,所查βσ,,k 各系 数的依据,并绘出构件的持久极限曲线,疲劳强度校核过程及结果。 2.分析讨论及说明部分的要求 (1) 分析计算结果是否合理,并分析其原因,改进措施; (2) 提出改进设计的初步方案及设想; (3) 提高强度、刚度及稳定性的措施及建议。 3.材料力学课程设计中的体会和收获、希望、要求、建议等。 4.程序计算部分的要求: (1) 程序框图;

材料力学课程设计 单缸柴油机曲轴

材料力学课程设计 班级:441006班 作者:刘百川44100608 题目:单缸柴油机曲轴的强度设计 及刚度计算、疲劳强度校核题号:4 数据号:24 指导老师:李锋

课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学课程之后,结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题的目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既是对以前所学的知识的综合应用,又为后续课程的学习打下基础,并初步掌握工程设计思想和设计方法,对实际工作能力有所提高。具体有以下六项: 1.使所学的材料力学知识系统化,完整化。 2.在系统全面复习的基础上,运用材料力学知识解决工程实际中的问题。 3.由于选题力求结合专业实际,因而课程设计可以把材料力学知识与专业需要结合起来。 4.综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 5.使我们初步了解和掌握工程实践中的设计思想和设计方法。 6.为后续课程的学习打下基础。 课程设计的任务和要求 参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。

设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450-5)弹性常数为,E μ,许用应力为[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且2t r F F = 。曲柄臂简化为矩形截面,1.4 1.6h D ≤≤,2.54h b ≤≤, 3 1.2l r =。

材料力学强度理论

9强度理论 1、脆性断裂与塑性屈服 脆性断裂:材料无明显得塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力得截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著得塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂得主要因素就是最大拉应力达到极限值,即: (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都就是由于最大拉应变(线变形)达到极限值导致得,即: (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于最大切应力达到了某一极限值, 即: (4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于单元体得最大形状改变比能达到一个极限值,即: 强度准则得统一形式 其相当应力:

3、摩尔强度理论得概念与应用; 4、双剪强度理论概念与应用. 9、1图9、1所示得两个单元体,已知正应力σ =165MPa ,切应力=110MPa.试求两个单元体得第三、第四强度理论表达式。 图9、1 [解] (1)图9、1(a )所示单元体得为空间应力状态。注意到外法线为y及-y 得两个界面上没有切应力,因而y方向就是一个主方向,s就是主应力。显然,主应力σ 对与y 轴平行得斜截面上得应力没有影响,因此在x oz 坐标平面内可以按照平面应力状态问题对待。外法线为x、z 轴两对平面上只有切应力t,为纯剪切状态,可知其最大与最小正应力绝对值均为t,则图9、1(a)所示单元体得三个主应力为: , 第三强度理论得相当应力为 MPa 第四强度理论得相当应力为: MPa (2)图9、1(b)所示单元体,其主应力为 第三强度理论得相当应力为: MPa 第四强度理论得相当应力为: MPa 9、2一岩石试件得抗压强度为14OMPa ,E=55GPa, μ=0、25, 承受三向压缩.己知试件破坏时得两个主应力分别为=—1、4MP a 与 —2、8MPa,试根据第四强度理论推算这时得另一个方向得主应力为多少? [解] 设另一个方向得主应力为,则根据第四强度理论可得 123220.011165, 55.022 σσσσ??=±=±==??-解题范例

材料力学课程设计

材料力学课程设计 汽车工程学院420505班 一材料力学课程设计的目的 1.使学生的材料力学知识系统化,完整化。 2.在系统复习的基础上,运用材料力学的知识解决工程中的实际问题。 3.由于选题力求结合专业实际,因而课程设计可以把材料力学的知识和专业需要结合起来。 4.综合了以前所学的各门课程的知识,是相关学科的知识有机的结合起来。 5.初步了解和掌握工程实际中的设计思想和设计方法。 6.为后续课程的教学打下基础。 二材料力学课程设计的要求 1.设计计算说明书的要求 设计说明书是该题目的设计思想,设计方法和设计结果的说明,要求书写工整,语言简练,条理清晰,明确,表达完整。 具体内容如下: 〈1〉设计题目的已知条件,所求及零件图。 〈2〉画出构件的受力简图,按比例标明尺寸,载荷及支座等。 〈3〉静不定要画出所选择的基本静定系统及与之相关的全部求解过程。 〈4〉画出全部内力图,并标明可能的各危险截面。 〈5〉危险截面上各种应力的分布规律图及由此而判定各危险点处的应力状态图。 〈6〉各危险点的主应力大小及主平面位置。 〈7〉选择强度理论并建立强度条件。 〈8〉列出全部计算过程的理论根据,公式的推导过程以及必要的说明。 〈9〉对变形及刚度分析要写明所用的能量法计算过程及必要的内力图和单位力图。 〈10〉疲劳强度计算部分要说明循环特征。 2.分析讨论及说明部分的要求: 〈1〉分析计算结果是否合理,并分析其原因,改进措施。 〈2〉提高改进设计的初步方案及设想。 〈3〉提高强度,刚度及稳定性的措施及建议。 3.程序计算部分的要求: 〈1〉程序图框。 〈2〉计算机程序(含必要的语言说明及标识符说明)。 〈3〉打印结果(结果数据要填写到设计计算说明书上)。 设计题目 传动轴的材料均为优质碳素结构钢(牌号45),许用应力[ ]=80MPa,经高频淬火处理,

材料力学强度理论

9 强度理论 1、 脆性断裂与塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素就是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都就是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于最大切应力达到了某一极限 值, 即: 0max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于单元体的最大形状改变比能达到一个极限值,即:u u 0d d = 强度准则的统一形式 [] σσ≤* 其相当应力: r11σ=σ r2123()σ=σ-μσ+σ r313σ=σ-σ 2 22r41223311()()()2 ??σ=σ-σ+σ-σ+σ-σ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9、1图9、1所示的两个单元体,已知正应力σ =165MPa,切应力τ=110MPa 。试求两个单元体的第三、第四强度理论表达式。 图9、1 [解] (1)图9、1(a)所示单元体的为空间应力状态。注意到外法线为y 及-y 的两个界面上没有切应力,因而 y 方向就是一个主方向,σ就是主应力。显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大与最小正应力绝对值均为τ,则图9、1(a)所示单元体的三个主应力为: τστσσσ-===321、、, 第三强度理论的相当应力为 解题范例 r4σ=

四种强度理论(1)

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。 1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达

到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。 脆断破坏条件:ε1=εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) =σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3)

相关主题
文本预览
相关文档 最新文档