当前位置:文档之家› 新课标版备战2018高考数学二轮复习难点2.10解析几何中的定值定点和定线问题测试卷文

新课标版备战2018高考数学二轮复习难点2.10解析几何中的定值定点和定线问题测试卷文

新课标版备战2018高考数学二轮复习难点2.10解析几何中的定值定点和定线问题测试卷文
新课标版备战2018高考数学二轮复习难点2.10解析几何中的定值定点和定线问题测试卷文

解析几何中的定值、定点和定线问题

(一)选择题(12*5=60分)

1.已知双曲线2

2

12

x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )

A .

12 B .1

2

- C .2 D .-2 【答案】

A

2.如图,12 A A ,为椭圆22

195

x y +=的长轴的左、

右端点,O 为坐标原点, S Q T ,,为椭圆上不同于12 A A ,的三点,直线12 QA QA OS ,

,,OT 围成一个平行四边形OPQR ,则2

2

OS OT +=( )

A .5 B

.3.14 【答案】D

【解析】设1122 (x,y) (,) (x ,y )Q T x y S ,

,,12 QA QA ,斜率为12,k k ,则,OT OS 斜率为12,k k ,且 212253399

y y y k k x x x =?==-+--,所以22222221111112145(1)59k OT x y x k x k +=+=+=+,同理2

2

22

245(1)59k OS k +=+,因此22

OS OT +=22

2222121111122

2

222

12111121

25

45(1)45(1)45(1)45(1)

8145(1)812512670

+++142559595959595959k k k k k k k k k k k k k k +

++++++====+++++++,选D.

3.已知椭圆

2222135x y m n +=和双曲线2222123x y m n -=有公共焦点,则2

2m n

=( ) A .8 B .2 C .18 D .2

5

【答案】A

【解析】由椭圆2222135x y m n +=和双曲线2222123x y m n -=有公共焦点,得22223253n m n m +=-, 即2

2

8n m =,则822

=n

m ,故选A.

4.已知双曲线2

2

13

y x -=的左、右焦点分别为12,F F ,双曲线的离心率为e ,若双曲线上一点P 使21

12

sin sin PF F e PF F ∠=∠,则221F P F F 的值为( )

A .3

B .2

C .3-

D .2- 【答案】

B

5.若m ,n 满足210m n +-=,则直线30mx y n ++=过定点( )

A .11,26?? ???

B .11,26??- ???

C .11,62??- ???

D .11,62??- ???

【答案】B

【解析】210,21m n m n +-=∴+=,30,()30mx y n mx n y ++=∴++=,当12x =

时,11

22

m n +=, 113,26y y ∴=-∴=-,故直线过定点11

(,)26

-.故选B.

6.已知P 是双曲线13

22

=-y x 上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为B A ,,则?的值是( )

A .83-

B .163

C .8

3- D .不能确定 【答案】A

7.以抛物线2

8y x =上的任意一点为圆心作圆与直线20x +=相切,这些圆必过一定点,则这一定点的坐标是

A. ()0,2

B. (2,0)

C. (4,0)

D. ()0,4 【答案】B

【解析】∵抛物线y 2

=8x 的准线方程为x=-2,∴由题可知动圆的圆心在y 2

=8x 上,且恒与抛物线的准线相切,由定义可知,动圆恒过抛物线的焦点(2,0),故选B .

8.【浙江省台州中学2018届第三次统练】已知圆C : 2

2

4x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )

A. 48,99??

??? B. 24,99??

???

C. ()2,0 D . ()9,0 【答案】A

【解析】设()92,P m m - ,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则,OA PA OB PB ⊥⊥ , AB 是以OP 为直径的圆D 与圆C 的公共弦,求得圆D 的方程为

()2

22

2

9292224

m m m m x y -+-????-+-=

? ?????

①,又知圆C 的方程为22

4x y += ②,②-①可得公

共弦AB 所在直线的方程为()()2490m x y x -+-= ,令20{ 490

x y x -=-= 可得4

9

{

89

x y =

=

,所以直线AB 经过定点48,99??

???

,故选A. 9.已知直线1

2y x =与双曲线22194

x y -=交于A ,B 两点,P 为双曲线上不同于A ,B 的点,当直线PA ,

PB 的斜率PA k ,PB k 存在时,PA PB k k ?= .

【答案】

9

4

10.【江苏省如皋市2018届教学质调(三)】在平面直角坐标系xOy 中,已知圆221:9O x y +=,圆

()2

22:616O x y +-=,在圆2O 内存在一定点M ,过M 的直线l 被圆1O ,圆2O 截得的弦分别为AB ,

CD ,且

3

4

AB CD =,则定点M 的坐标为_______. 【答案】1807?? ???

【解析】

34AB CD =总成立,且知,过两圆的圆心直线截两圆弦长比是63

,84

=∴点M 在两圆心连线上,因为圆心连线方程为0x =,可设()00,M y ,设直线l 的方程为0y kx y =+,因为

3

4

AB CD =,所以

916

16=-,解得0187y =或018y =-(此时点M 在圆2O 外,舍去)

,故答案为1807?? ???,. 11.【江苏省泰州中学2018届12月月考】已知点()30A -,和圆O : 229x y +=, AB 是圆O 的直径,

M 和N 是线段AB 的三等分点, P (异于A , B )是圆O 上的动点, PD AB ⊥于D , PE ED

λ=(0λ>),直线PA 与BE 交于C ,则当λ=__________时, CM CN +为定值. 【答案】

18

12.已知圆222

:(0)O x y r r +=>与直线34150x y -+=相切. (1)若直线225l y x =-+与圆O 交于,M N 两点,求MN ;

(2)设圆O 与x 轴的负半轴的交点为A ,过点A 作两条斜率分别为12,k k 的直线交圆O 于,B C 两点,且

12,-3k k =,试证明直线BC 恒过一定点,并求出该定点的坐标.

【解析】(1)由题意知,圆心O 到直线34150x y -+=

的距离3d r =

==,所以圆22

9O x y +=:.

又圆心O 到直线:25l y x =-+

的距离1d =

=

,所以4MN ==.

(2)易知()30A -,,设()()1122,,,B x y C x y ,则直线()1:3AB y k x =+,由()

222

3{

9

y k x x y =++=,得()2

2

221

1

1

16990k x k x k +++-=,所以211219931k x k --=+,即2112133

1k x k -+=+,所以2112211336,11k k B k k ??- ?++??

.由

123k k =-得213k k =-,将1

3

k -代替上面的1k ,同理可得211221132718,99k k C k k ??-- ?++??

,所以

11

111

22211122

1161819433327319

BC

k k k k k k k k k k k +

++==----++,从而直线21112221116433:131k k k BC y x k k k ??--=- ?+-+??

.即

()

22

1112

22111433933121

k k k y x k k k ??-- ?=-+ ?-++??

,化简得1214332k y x k ??=+ ?-??.所以直线BC 恒过一定点,该定点为3,02

-().

13.已知椭圆2222:1(0)x y C a b a b +=>>

M

40y ++=的距离为3.

(1)求椭圆C 的方程;

(2)设直线l 过点()4,2-且与椭圆C 相交于,A B 两点, l 不经过点M ,证明:直线MA 的斜率与直线MB 的斜率之和为定值

.

()()12122

2

1621641,1414k k k k x x x x k

k

+++=

=

++,因为

()()1221121212

444422MA MB kx k x kx k x y y k k x x x x --+----+=

+=

,所以()12

12244MA MB x x k k k k x x ++=-+ ()

()()

()16212412211641k k k k k k k k +=-+=-+=-+(为定值).

14.如图所示,已知圆A 的圆心在直线2y x =-上,且该圆存在两点关于直线10x y +-=对称,又圆A 与直线1l :270x y ++=相切,过点(2,0)B -的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与1l 相交于点P .

(1)求圆A 的方程;

(2

)当||MN =l 的方程;

(3)()BM BN BP +?是否为定值?如果是,求出其定值;如果不是,请说明理由.

(2)y k x =+,即20kx y k -+=,连接AQ ,则AQ MN ⊥,

∵||2MN =,

∴||1AQ ==.由

||AQ =

1=,得3

4

k =

,∴直线l 的方程为3460x y -+=,∴所求直线l 的方程为2x =-或3460x y -+=.

(3)∵AQ BP ⊥,∴0AQ BQ ?=,∴()2BM BN BP BQ BP +?=?2()BA AQ BP =+?2BA BP =?, 当直线l 与x 轴垂直时,得5

(2,)2P --,则5(0,)2

BP =-,又(1,2)BA =,∴

()2BM BN BP BQ BP +?=?210BA BP =?=-,当直线l 的斜率存在时,设直线l 的方程为(2)y k x =+,

由(2),

270y k x x y =+??++=?,解得475(,)1212k k P k k ---++,∴55(,)1212k BP k k --=++,∴()2BM BN BP BQ BP +?=? 2BA BP =?5102(

)101212k k k

-=-=-++,综上所述,()BM BN BP +?为定值10-. 15.【2018届年12月期末联考】已知椭圆22

22:1x y C a b += (0)a b >>的长轴长是短轴长的2

倍,且过点

12???. ⑴求椭圆C 的方程;

⑵若在椭圆上有相异的两点,A B (,,A O B 三点不共线),O 为坐标原点,且直线AB ,直线OA ,直线OB 的斜率满足2?(0)AB OA OB AB k k k k =>. (ⅰ)求证: 2

2

OA OB +是定值;

(ⅱ)设AOB ?的面积为S ,当S 取得最大值时,求直线AB 的方程.

∴()()122

121212

kx m kx m y y k x x x x ++==

,化简得: ()2

120km x x m ++=,∵A 、O 、B 三点不共线 ∴0m ≠ 则()120k x x m ++= ①

由22

{

44

y kx m x y =++=可得: ()()222

148410k x kmx m +++-=, 由韦达定理可得()

122

2

122

814{

4114km x x k m x x k +=-

+-=

+ ② 且()2216140k m ?=+-> ③

将②代入①式得: ()280014km k m k k ??

-+=> ?+??,解得12k =,则()12212

2{ 21x x m x x m +=-=- ④ (ⅰ) 2

2

OA OB +=22221122x y x y +++=

()2

22121212333222444x x x x x x ??++=+-+?

?,将④代入得

22

OA OB +=()

223422124m m ???-?-+?

?=5 ,

(ⅱ) AOB S

=

1212AB d x ?=-=

,由 ③ ④

可得:

()(m ∈?,则A OB

S

1,当且仅当1m =±时,直线方

程为1

12

y x =

±. 16.【吉林省榆树市2018届第三次模拟】已知椭圆2222:1(0)x y C a b a b +=>>

过点1(20C 2A ,),(两点.

(Ⅰ)求椭圆C 的方程及离心率;

(Ⅱ)设P 为第三象限内一点且在椭圆C 上,椭圆C 与y 轴正半轴交于B 点,直线PA 与y 轴交于点M ,直线PB 与x

轴交于点N ,求证:四边形ABNM 的面积为定值.

(Ⅱ)设()00,x y P (00x <, 00y <),则22

0044x y +=.又∵()2,0A , ()0,1B ,∴直线PA 的方程为

()0022y y x x =

--.令0x =,得0022y y x M =--,从而0

02112

y y x M

BM =-=+-.直线PB 的方程为

0011y y x x -=

+.令0y =,得001

x x y N =--,从而00221x

x y N AN =-=+-. ∴四边形ABNM 的面积12S =AN ?BM 00002121212x y y x ????=++ ???

--????

()22

000000000044484

222x y x y x y x y x y ++--+=--+ 000000002244

22

x y x y x y x y --+=

--+ 2=.∴四边形ABNM 的面积为定值.

17. 【江苏省丹阳2018届期中】如图,在平面直角坐标系xOy 中,过椭圆C : 2

214

x y +=的左顶点A 作

直线l ,与椭圆C

和y 轴正半轴分别交于点P , Q .

(1)若AP PQ =,求直线l 的斜率;

(2)过原点O 作直线l 的平行线,与椭圆C 交于点M N ,,求证:

2

AP AQ

MN

?为定值.

(2)设点N 的横坐标为N x .结合(1)知,直线MN 的方程为y kx =.③

由②③得, 2

2414N

x k =+. 从而()()2

2222p N x AP AQ MN x +?= 22282214142414k k k

??-+ ?+??==?+,即证. 18.【黑龙江省齐齐哈尔市2018届第二次模拟】已知抛物线()2

:20C y px p =>的焦点为F ,倾斜角为45?的直线l 过点F 与拋物线C 交于,A B 两点, O 为坐标原点, OAB ?

的面积为(1)求p ;

(2)设点E 为直线2

p

x =

与拋物线C 在第一象限的交点,过点E 作C 的斜率分别为12,k k 的两条弦,EM EN ,如果121k k +=-,证明直线MN 过定点,并求出定点坐标

.

123412124444k k y y k k k k +-+=?-=-,()12341212122464141k k y y k k k k k k ??+??=-+=+?? ?????

.令

121

t k k =,则

()343444,461y y t y y t +=--=+,代入MN 的方程得16111

t y x t t +=-

-++,整理得()()610t y x y ++++=,若上式对任意变化的t 恒成立,则10{

60x y y ++=+=,解得5,

{ 6.

x y ==- 故直线MN

经过定点()5,6-.

19.设椭圆2222:1(0)x y C a b a b

+=>>的离心率12e =,圆22

127x y +=与直线1x y a b +=相切,O 为坐标

原点.

(1)求椭圆C 的方程;

(2)过点(4,0)Q -任作一直线l 交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使得

MR RN λ=-,试判断当直线l 运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方程;

若不是,请说明理由.

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

2018年高考全国卷1理科数学(含答案)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)(2018?新课标Ⅰ)设z=+2i,则|z|=() A.0 B.C.1 D. 2.(5分)(2018?新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则?R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2} 3.(5分)(2018?新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018?新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=() A.﹣12 B.﹣10 C.10 D.12 5.(5分)(2018?新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()

A.y=﹣2x B.y=﹣x C.y=2x D.y=x 6.(5分)(2018?新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=() A.﹣B.﹣C.+D.+ 7.(5分)(2018?新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为() A.2B.2 C.3 D.2 8.(5分)(2018?新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则?=() A.5 B.6 C.7 D.8 9.(5分)(2018?新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若 g(x)存在2个零点,则a的取值范围是() A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞) 10.(5分)(2018?新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()

全国高考数学试题汇编——解析几何

7. 2004年全国高考数学试题汇编一一解析几何(一) 1. [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第7题,文科数学第7题] 2 椭圆—? y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交 4 点为P ,则| PF 2 | = ,3 A . 2 2. [2004年全国高考(山东山西河南河北江西安徽) I 的斜率的取值范围是 的轨迹方程为 [2004年全国高考(四川云南吉林黑龙江)? 已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5 别是O '和A ',则O A "=囂£,其中?= B . .3 ?理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点 Q 的直线I 与抛物线有公共点,则直线 3. 1 1 A . [ — 2, 2] B . [—2, 2] C . [-1, 1] D . [ — 4, 4] [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB , 切点分别为A 、 B ,Z APB=60 ° , 则动点 4. [2004年全国高考(四川云南吉林黑龙江)? 理科数学第4题, 文科数学第 已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为 A . (x 1)2 y 2 =1 B . x 2 - y 2 =1 2 2 C . x (y 1) =1 2亠/ 八2 D . x (y -1) =1 5. 文科数学第8题] 6. [2004年全国高考(四川云南吉林黑龙江)?理科数学第8题] 在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条 [2004年全国高考 的直线共有 ( D . 4条 已知平面上直线 B . 2条 C . 3条 (四川云南吉林黑龙江)?理科数学第9题] 4 3 l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分 5 5

2018年高考全国1卷理科数学(word版)

2018年普通高等学校招生全国统一考试 全国Ⅰ卷 理科数学 一、 选择题:本题共12小题,每小题5分,共60分。在每个小题给出得四个选项中, 只有一项就是符合题目要求得。 1、设,则 A 、0 B 、 C 、1 D 、 2、已知集合则 A 、 B 、 C 、 D 、 3、某地区经过一年得新农村建设,农村得经济收入增加了一倍,实现翻番、为更好地了解该地区农村得经济收入变化情况,统计了该地区新农村建设前后农村得经济收入构成比例,得到如下饼图: 则下面结论不正确得就是 A 、新农村建设后,种植收入减少 B 、新农村建设后,其她收入增加了一倍以上 C 、新农村建设后,养殖收入增加了一倍 D 、新农村建设后,养殖收入与第三产业收入得总与超过了经济收入得一半 4、记为等差数列得前项与、若则 A 、-12 B 、-10 C 、10 D 、12 5、设函数若为奇函数,则曲线在点处得切线方程为 A 、 B 、 C 、 D 、 6、在中,AD 为BC 边上得中线,E 为AD 得中点,则 A 、 B 、 C 、 D 、 7、某圆柱得高为2,底面周长为16,其三视图如右图、 圆柱表面上得点M 在正视图上得对应点为A,圆柱表 面上得点N 在左视图上得对应点为B,则在此圆柱侧 面上,从M 到N 得路径中,最短路径得长度为 A 、 B 、 C 、3 D 、2 8、设抛物线C:得焦点为F,过点且斜率为得直线与C 交于M,N 两点,则 A 、5 B 、6 C 、7 D 、8 9.已知函数若存在2个零点,则得取值范围就是 A 、 B 、 C 、 D 、 10、下图来自古希腊数学家希波克拉底所研究得几何图形,此图由三个半圆构成,三个半圆得直径分别为直角三角形ABC 得斜边BC,直角边AB,AC 、 得三边所围成得区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ、在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ得概率分别记为则 60% 30% 6% 4% 种植收入 第三产业收入 其她收入 养殖收入 建设前经济收入构成比例 37% 30% 28% 5% 种植收入 养殖收入 其她收入 第三产业收入 建设后经济收入构成比例 A B

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

高考数学分类汇编 解析几何

2011高考数学分类汇编-解析几何 1、(湖北文)将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则( ) A. 0=n B. 1=n C. 2=n D. 3≥n 2、(江西理) 若曲线1C :0222=-+x y x 与曲线2C :0)(=--m mx y y 有4个不同的交点,则实数m 的取值范围是( ) A. )3 3 ,33(- B. )33,0()0,33(Y - C. ]33,33[- D. ),3 3()33,(+∞--∞Y 3、(江西理)若椭圆12222=+b y a x 的焦点在x 轴上,过点)21 ,1(作圆122=+y x 的 切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭 圆方程是 . 4、(湖南文)在直角坐标系xOy 中,曲线1C 的参数方程为 2cos (x y α αα =??? =??为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为 (cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 . 5、(湖南理)在直角坐标系xoy 中,曲线C 1的参数方程为cos ,1sin x y αα=??=+?(α为参 数)在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 。 6、(湖南文)已知圆22:12,C x y +=直线:4325.l x y += (1)圆C 的圆心到直线l 的距离为 . (2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 . 7、(江苏)设集合},,)2(2 |),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠?B A 则实数m 的取值范围___.

2018年高考数学试题

2018年普通高等学校招生全国统一考试 (全国卷Ⅱ)理科试卷 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1、答题前,考试现将自己的姓名,准考证号填写清楚,将条形 码准确粘贴在条形码区域内 2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。 3、请按照题号顺序在答题卡 各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4、作图可先试用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、 选择题:本题共12小题,每小题5分,共60分。 在每小题给出的四个选项中,只有一项是符合题目要求的。 1、1212i i +=- A 、4355i -- B 、4355i -+ C 、3455i -- D 3455 i -+ 2、已知集合(){}22,|3,,,A x y x y x Z y Z =+≤∈∈则A 中元素的个数为() A 、9 B 、8 C 、5 D4 3、函数 ()2x x e e f x x --=的图象大致是() x x

4、已知向量() ,1,1,2a b a a b a a b =?=--=满足则() A 、4 B 、3 C 、2 D 、0 5、双曲线()222210,0x y a b a b -=>> 则其渐近线方程为() A 、 y = B 、 y = C 、2 y x =± D y x = 6、在△ABC 中,cos 2C = ,BC=1,AC=5,则AB=( ) A 、 B C D 7、为计算11111123499100S =-+-+ +-,设计了右侧的程序框图,则空白框中应填入 A 、i=i+1 B 、i=i+2 C 、i=i+3 D 、i=i+4

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

2020高考数学(理)专项复习《解析几何》含答案解析

解析几何 平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题. 在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题. §8-1 直角坐标系 【知识要点】 1.数轴上的基本公式 设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是 d (A ,B )=|AB |=|x 2-x 1|. 2.平面直角坐标系中的基本公式 设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-== A , B 两点的中点M (x ,y )的坐标公式是?+=+=2 ,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是 .)()()(||),(212212212z z y y x x AB B A d -+-+-== 【复习要求】 1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题. 2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】 例1 解下列方程或不等式: (1)|x -3|=1;(2)|x -3|≤4;(3)1<|x -3|≤4. 略解:(1)设直线坐标系上点A ,B 的坐标分别为x ,3, 则|x -3|=1表示点A 到点B 的距离等于1,如图8-1-1所示, 图8-1-1 所以,原方程的解为x =4或x =2. (2)与(1)类似,如图8-1-2,

2018年高考理科数学全国卷1-答案

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学答案解析 一、选择题 1.【答案】C 【解析】()()() 2 1i 2i 2i 2i i 1i 1i 2z --=+=+=+-,则1z =,选C . 2.【答案】B 【解析】2{|20}R C A x x x =--≤={|12}x x -≤≤,故选B . 3.【答案】A 【解析】经过一年的新农村建设,农村的经济收入增加了一倍,所以建设前与建设后在比例相同的情况下,建设后的经济收入是原来的2倍,所以建设后种植收入为37%相当于建设前的74%,故选A . 4.【答案】B 【解析】令{}n a 的公差为d ,由3243S S S =+,12a =得113(33)67a d a d +=+3d ?=-,则51410a a d =+=-,故选B . 5.【答案】D 【解析】x R ∈,3232()()(1)(1)f x f x x a x ax x a x ax -+=-+--++-+2 2(1)a x =-0=,则1a =,则3()f x x x =+,2()31f x x '=+,所以(0)1f '=,在点(0,0)处的切线方程为 y x =,故选D . 6.【答案】A 【解析】1111113()()()2222444BE BA BD BA BC BA AC AB AC AB =+=+=+-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 则3144 EB AB AC =-u u u r u u u r u u u r ,故选A . 7.【答案】B 【解析】将三视图还原成直观图,并沿点A 所在的母线把圆柱侧面展开成如图所示的矩形,从点M 到点N 的运动轨迹在矩形中为直线段时路径最短,长度为 故选B .

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

专题09 解析几何 第二十四讲 抛物线 2019年 1.(2019全国II 文9)若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019浙江21)如图,已知点(10)F ,为抛物线2 2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求 1 2 S S 的最小值及此时点G 的坐标. 3.(2019全国III 文21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条 切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 2015-2018年 一、选择题 1.(2017新课标Ⅱ)过抛物线C :2 4y x =的焦点F ,3的直线交C 于点M (M

在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为 A B . C . D .2.(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y = k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = A . 12 B .1 C .3 2 D .2 3.(2015陕西)已知抛物线2 2y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐 标为 A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 4.(2015四川)设直线l 与抛物线2 4y x =相交于,A B 两点,与圆2 2 2 (5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24, 二、填空题 5.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线2 4y ax =截得的线段长为 4,则抛物线的焦点坐标为_________. 6.(2015陕西)若抛物线2 2(0)y px p =>的准线经过双曲线2 2 1x y -=的一个焦点,则p = 三、解答题 7.(2018全国卷Ⅱ)设抛物线2 4=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与 C 交于A ,B 两点,||8=AB . (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. 8.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2 4y x =上存在 不同的两点A ,B 满足PA ,PB 的中点均在C 上.

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

相关主题
相关文档 最新文档