当前位置:文档之家› Deform使用简明步骤

Deform使用简明步骤

Deform使用简明步骤
Deform使用简明步骤

Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。

以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。

一、模拟准备

模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。

实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。二、前处理

前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。

首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform模拟文件的文件夹→下步的problem name可任意填写。注意:所有路径不能含有中文字符。

之后会打开新的界面,点击模拟控制(simulation controls)→改变单位(units)为SI,接受

弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。

导入坯料、模具并设置参数:

导入毛坯:

1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为

刚性(rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意);材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。

2、geometry:import geometry from a file:从保存的STL格式文件中找到坯料,导入

后会在左侧窗口显示出预览,然后点击check GEO检查模型,务必保证出现下图椭圆中数值。

3、网格(mesh):合理划分网格对有限元模拟至关重要。网格划分方法分为相对和绝对,

相对(relative)划分时指定网格数量和尺寸比率,网格的大小则由系统自动计算;绝对(absolute)划分时指定最大最小网格尺寸,而网格数量则由系统自动计算。相对法划分网格的步骤通常是,在detailed settings----general中将尺寸比率(size ratio)设置为1→指定网格数量→选中精细内部网格(finer internal mesh)→点击预览表面网格(surface mesh)→查看最小单元尺寸(min element size),通常应使最小网格尺寸小于该次模拟成形工件最小尺寸的1/2,若不满足可适当增加网格数量→点击solid mesh生成内部网格→网格生成完成后再将size ratio改为2或其它。这样划分可保证在模拟开始时网格是均匀的,从而一定程度上提高精度。需要注意的是网格数量要同时

考虑到计算精度和个人计算机的计算能力,另外对变形大的区域可考虑进行局部网格细化。网格划分的更多细节应查阅其他更多资料。

4、movement:为简单起见选择类型(type)为speed;方向(direction)应根据成形要

求确定;速度(constant value):一定设置为0。

5、边界条件(Bdry. Cnd.):若对毛坯进行了剖分则应添加边界。点击对称面(symmetry

plane)→在左侧预览图中选中对称面→点击添加,依次添加完成全部边界面的设定;点击heat exchange with environment→选择毛坯与环境的接触面→。

6、Properties:deformation-----target volume-----选中active in FEM + meshing→

点击接受系统的补偿量;

导入模具:

点击→添加上模;

1、general:定义为刚性(rigid);温度:温热成形时一定注意;刚性模型的材料不需指定。

2、geometry: import导入STL格式的上模→check出现上图椭圆中数值

3、网格(mesh):刚性模型不需划分网格

4、movement:type----speed;direction:按照成形时上模运动方向(不能选错)指定;速度:constant value填入设备速度。

5、点击,依次完成下模及其它成形部件的导入,并设定参数。

注意:只有运动的模具才设定速度,不动的模具速度设定为0;一次模拟中只能有一个运动的模具作为主模(primary die),系统将根据主模的移动距离确定模拟是否终止,因此应正确设置主运动模具对象。

定义对象间内部接触条件:

点击inter-object,进入进行设置。

1、定义主从关系:将刚性模型(通常为模具)定义为主(master),塑性模型(通常为毛坯)

定义为仆(slave);

2、编辑(edit):deformation:摩擦类型(friction type)通常定义为剪切摩擦(shear)

→value----constant根据成形条件选择摩擦系数(冷、温、热成形及是否有润滑时摩擦系数不同);thermal:定义热传导系数(heat transfer coefficient)→constant 根据成形条件选择→close→应用到其他(apply to other relations);

3、点击接受系统的计算值,完成定义接触容差→生成所有(General all),完成模具与坯

料接触关系的设定,左侧会显示出接触节点→OK

4、workpiece----Bdry. Cnd. 查看contact中坯料与模具的接触是否成功添加,再查看对

称边界以及坯料与环境热交换边界是否已存在。

注意:可通过适当调整坯料、模具的位置,但最好在对实体造型进行装配时就确定好各对象位置。

模拟终止条件的设定:

点击进入模拟控制,有两种方式可实现模拟终止,一种是设定总步数、另一种是设定主模位移,通常采用后者能较准确的控制模具移动距离。Step:general-----选中with die displacement----constant定义每步的移动距离,需要查看毛坯的最小网格尺寸,步长的设定应小于最小网格尺寸的1/3(注意查看primary die是否正确)→step increment to save

设定每隔多少步进行保存→填入根据设计的成形结束时模具的移动距离除以步长得到的模拟总步数(number of simulation steps );stop :process parameters-----general-----primary die displacement 填入主模在坐标方向的位移(正值)。

注意:为保证通过主模位移终止模拟,应使step 中模拟总步数与步长的乘积大于stop 中设置的主模位移,即需要适当增加总步数。

网格重划准则(remesh critertia ):网格重划触发(remeshing triggers )通过相对和绝对穿透深度(interference depth )设定,通常采用系统默认(相对),也可根据实际模拟需要进行调整。

生成数据库:

检查确定所有参数设置无误后点击→check →generate 可生成数据库;file →save as 保存key 文件。

三、求解器

从第一次打开的界面(deform-3D main )浏览到含有以上所生成的数据库文件和key 文件的文件夹,点击simulation----run (options )→选中multiple processor →setup →在host name 下填入自己电脑主机名,No. of processor 设置参与运算的多核处理器的核心数→OK →close →run ,等待直到模拟结束,等待时间视计算机配置水平和坯料变形程度而不同,模拟过程中可点击simulation graphics 查看已保存的最近一步模拟结果。模拟时可通过点stop 暂停,点击continue 继续。

四、后处理

模拟完成后,点击deform-3D post 进入后处理界面。

可查看连续或每步的成形状态;

可更改模型显示状态;

查看载荷,可查看模具或工件在某一方向随时间(time )或每步(step )的受力曲线; 切片工具,可对模型进行剖切;

镜像工具,如果是剖分后进行的模拟,可通过镜像工具选择对称面后添加(add )直到出现一个整体;

控制显示工件与模具接触点从而查看模具型腔是否填充满;

使选中对象透明;

控制选中的对象是否显示;

测量工具,在模型上通过两点粗略测量距离;在左侧模拟状态显示窗口点右键→show dimensions 可查看系统选择的测量距离;

可查看各种成形数据;

详细设置标题、坐标系、背景亮度等的显示效果。

以上简要介绍了Deform-3D 的使用步骤,它的强大功能需要在掌握一定的理论基础后不断深入探索相关参数的设置并与实际生产相联系才能发挥出来,在此希望与大家互相学习、共同进步。 损伤; 等效应变; 等效应变速率; 等效应力;

最大主应力;

全局速度;

温度;

更多…

DEFORM材料中文帮助

材料的属性窗口可以通过按材料属性图标(参见图2.2.1)材料的属性对话框显示在图第2.2.2。为了模拟获得高精确度,其非常重要的是需要理解DEFORM中指定材料的性能。用户在模拟中需要知道指定材料种类的作用。本节描述材料数据,可以指定为一个变形模拟。不同的数据集是: 弹性数据 热数据 塑性数据 扩散数据 再结晶晶粒再生长 硬度估计数据 折断数据 本节讨论的方式来定义每个这些数据集的,哪些类型的模拟每种所需。 图第2.2.2:定义阶段和混合物DEFORM-3D内。 2.2.1阶段和混合物 材料组织可以分为两大类,有规律的和混合。对于大多数应用程序的形成需要低于转换温度变形,属性定义了常规材料或单阶段材料。然而当操作在高温条件下,材料经历相变的地方是重要模型转换,并为每个阶段涉及到定义属性和组这些阶段混合气的材料。例如一个通用的钢存在的奥氏体、贝氏体,马氏体,等等。在热处理上面的每个阶段可以转换到另一个阶段。所以任何材料集团,可以转换到另一个阶段应该被分类为一个阶段材料。混合材料的所有阶段的合金系统和一个对象可以被指定这种混合材料如果体积分数计算数据。

图2.2.3:定义数据弹性材料。 2.2.2弹性数据 弹性数据是弹性材料和弹塑材料的变形分析所必要的。这三个变量用来描述属性的弹性变形是杨氏模量、泊松比和热膨胀。 杨氏模量 杨氏模量用于弹性材料和弹塑性材料屈服点以下。它可以被定义为一个常数或作为温度的函数,密度(用于粉末金属),占主导地位的atom内容(例如,碳含量),或温度的函数和atom内容。泊松比 泊松比之间的比率是轴向和横向疲劳。它是需要弹性和弹塑性材料。它可以被定义为一个常数或作为温度的函数,密度(用于粉末金属),占主导地位的atom内容(例如,碳含量),或温度的函数和atom内容。 热膨胀系数 热膨胀系数定义体积应变变化引起的温度。它可以被定义为一个常数或作为温度的函数。弹性的身体温度变化是定义为节点温度之间的区别和指定的参考温度(REFTMP): εth = α(T - T0) α是热膨胀系数,T0的参考温度和T是物料温度。对弹塑性体热膨胀阻输入在预处理程序是值的平均值热膨胀和有限元计算的瞬时(切)值的平均值。 ?εth = α*?T α*是正切的热膨胀系数,T是物料温度 实验数据的热膨胀和转换工具可用 用户界面现在可以直接进入切线热膨胀系数作为温度的函数,或者用户也可以导入瞬时值可以从实验数据(参见图2.2.4)。在导入该瞬时值,用户需要表明如果这些录音是基于加热或冷却测试和参考温度。这个瞬时热膨胀数据转换为可以平均数据。(也称为割线的,这些数据在要

DEFORM-3D基本操作技巧入门基础

DEFORM-3D基本操作入门 QianRF 前言 有限元法是根据变分原理求解数学物理问题的一种数值计算方法。由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。 现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。 有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。 一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+Δun(3)

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

DEFORM

DEFORM-3D塑性成形CAE应用教程 第一章塑性成形CAE技术 本章学习目标:了解塑性成形CAE技术及国内外现状;了解塑性成形技术的特点;了解DEFORM-3D软件的发展、特点及功能。 本章教学要点: 知识要点能力要求相关知识 塑性成形CAE技术现状了解塑性成形CAE技术及国内外现状CAE技术及塑性成形 CAE的定义、优点及 常见技术 塑性成形技术的特点了解塑性成形技术的特点各种类型的常见塑性 成形技术原理及变形 特点 DEFORM-3D软件了解DEFORM-3D软件的发展、特点及功能了解有限元法及 刚黏塑性有限元法导入案例: 随着计算科学的快速发展和有限元技术应用的日益成熟,CAE技术模拟分析金属在塑性变形过程中的流动规律在现实生产中得到愈来愈广泛的应用。 CAE技术的成功运用,缩短了模具和新产品的开发周期,降低了生产成本,提高企业的市场竞争能力。 锻件预成形后的坯料应力分布 塑性成形CAE技术 塑性成形CAE的特点是以工程和科学问题为背景,建立计算模型并进行计算机仿真分析。一方面,CAE技术的应用,使许多过去受条件限制无法分析的复杂问题,通过计算机数值模拟得到满意的解答;另一方面,计算机辅助分析使大量繁杂的工程分析问题简单化,使复杂的过程层次化,节省了大量的时间,避免了低水平重复的工作。 国外现状 金属塑性成形技术 金属塑性成形技术是现代制造业中金属加工的重要方法之一,它是金属坯料在模具的外力作用下发生塑性变形,并被加工成棒材、板材、管材以及各种机器零件、构建或日用器具等技术。 金属塑性成形加工的作用如下: (1)塑性成形可将金属坯料内的疏松和空洞性缺陷压实,提高其性能和质量。 (2)塑性成形引起再结晶,从而改变金属坯料铸态偏析,改善金属坏料组织结构。

Deform-3d热处理模拟操作全解

Deform-3d热处理模拟操作 热处理工艺在机械制造中占有十分重要的地位。随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。减少批量报废的质量事故发生。 热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。 但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。 本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。 1 、问题设置 点击“文档”(File)或“新问题”(New problem),创建新问题。在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。 图1 设置新问题 2、初始化设置 完成问题设置后,进入前处理设置界面。首先修改公英制,将默认的英制

Magma铸造CAE模拟

Magma操作 STL导入 点击“preprocessor”进入“MAGMApre”界面,依次导入相应的构件,保存。

Mesh划分网格 如上图所示,Magma共提供以上四种划分网格方法:自动划分、标准划分、高级、高级2。其中,自动划分是指用户自己制定划分的总的网格数,Magma自动进行适当的调整划分实体,标准划分是指铸型等不需要很高精度的部分进行的一种比较粗略的划分,如果需要对某一部分进行更细的划分,那么用户可以在“高级”中进行制定网格大小,甚至可以在“高级2”中对更进一步的某些部分进行更细的网格划分。 自动划分是用户可以制定计算部分的大约网格数、是否生成壳、是否核心划分、是否针对解法5进行划分。 Solver5是一种针对复杂结构铸件的网格划分方法。 1.2.4 网格划分 1.根据网格总量划分 1)打开选择功能表enmeshment,则mesh generation的视窗就出现; 2)选择automatic ,输入网格总数量; 3)选择generate 划分。

按照网格总数划分 2.根据单元网格三维尺寸划分 标准高级更高级 1)操作步骤: (1)选择功能表enmeshment,则mesh generation的视窗即出现;

(2)选择standard模式定义标准的网格化参数(如图 1.2.4-2); (3)若standard模式不符划分需求,选择advanced和advanced2模式 ,来局部区域细分; 依据个人需求,改变预设的参数,参数说明后面3)中叙述。 (4)选择calculate,测试产生网格数; (5)假如接受测试结果,选择generate正式产生网格。 网格数量 2)划分准则 1、Wall thichness— 网格划分最小结构厚度。 2、Accuracy— 精度 3、Element size— 网格大小 4、Option。 其中Wall thichness和Element size一般设成一样大小。 3)参数说明 (1)wall thickness(壁厚) ─粗分网格; 几何中只要有壁厚小于设定值的地方就不会有网格产生,单位是mm 。

最新DEFORM软件汇总

D E F O R M软件

DEFORM软件 DEFORM简介 Deform软件是一个高度模块化、集成化的有限元模拟系统,它主要包括前处理器、模拟器、后处理器三大模块。 前处理器:主要包括三个子模块(1)数据输入模块,便于数据的交互式输入。如:初始速度场、温度场、边界条件、冲头行程及摩擦系数等初始条件;(2)网格的自动划分与自动再划分模块;(3)数据传递模块,当网格重划分后,能够在新旧网格之间实现应力、应变、速度场、边界条件等数据的传递,从而保证计算的连续性。 模拟器:真正的有限元分析过程是在模拟处理器中完成的,Deform运行时,首先通过有限元离散化将平衡方程、本构关系和边界条件转化为非线性方程组,然后通过直接迭代法和Newton-Raphson法进行求解,求解的结果以二进制的形式进行保存,用户可在后处理器中获取所需要的结果 后处理器:后处理器用于显示计算结果,结果可以是图形形式,也可以是数字、文字混编形式,获取的结果可为每一步的有限元网格;等效应力、等效应变;速度场、温度场及压力行程曲线等 DEFORM功能 1. 成形分析 冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品)。

丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品)。 用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品)。 提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息。 刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM所有产品)。 弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D)。 烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D)。 完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM所有产品)。 用户自定义子函数允许用户定义自己的材料模型、压力模型、破裂准则和其他函数(DEFORM-2D,3D)。 网格划线(DEFORM-2D,PC,Pro)和质点跟踪(DEFORM所有产品)可以分析材料内部的流动信息及各种场量分布、温度、应变、应力、损伤及其他场变量等值线的绘制使后处理简单明了(DEFORM所有产品)。 自我接触条件及完美的网格再划分使得在成形过程中即便形成了缺陷,模拟也可以进行到底(DEFORM-2D,Pro)。 多变形体模型允许分析多个成形工件或耦合分析模具应力(DEFORM-2D,Pro,3D)。

Deform二次开发步骤

Deform 3D二次开发步骤 为了在金属成形工艺模拟过程中进行微观组织演化的定量预测,所使用的模拟软件必须有包含微观组织变化的本构模型和专门的微观组织演化分析模块。当前国际上虽然有多个知名商业软件流行,但是它们都不具备微观组织演化的预测功能。庆幸的是多数商业软件都为二次开发设置了用户子程序功能,通过用户子程序,用户就能根据自己的需要增加自己的微观组织预测功能。 为了使DEFORM3D软件具有微观组织演化预测功能,本研究尝试将包含动态再结晶的热刚—粘塑性材料本构模型植入到DEFORM3D中,并在模拟结果中能够显示晶粒度等用户变量在变形体内的分布。在研究出具体开发步骤前,必须要对Defom中的程序有所深入了解。 一、DEFORM3D二次开发基础理论 1、用户子程序结构 本研究的DEFORM3D二次开发涉及到的子程序有:USRMSH、USRMTR、UFLOW、USRUPD(含USR和CHAZHI)。 (1)可以改变几乎所有变量的子程序(USRMSH)

子程序功能:该子程序包含了有限元计算中所有的全局变量,通过这个用户子程序,可以修改所有这些变量。但这些全局变量的改变将直接影响有限元的计算,处理不当就会使整个程序不能正常进行。 在DEFORM3D子程序功能中,所有的用户变量必须在USRUPD子程序中定义。本文的用户子程序中共定义了18个用户单元变量。各用户变量的含义如列表所示。 该子程序用于某些必要数据的获取和存储流程图如下图所示: (2)流动应力子程序(USRMTR、UFLOW) SUBROUTINE USRMTR(NPTRTN,YS,YPS,FIP,TEPS,EFEPS,TEMP)SUBROUTINE UFLOW(YS,YPS,FIP,TEPS,EFEPS,TEMP)子程序的变量含义:NPTRTN:应力模型编号;YS:流动应力;YPS:流动应力对等效应变的导数;FIP:流动应力对等效应变速率的导数;TEPS:等效应变;EFEPS:等效应变;TEMP:温度。 子程序USRMTR和UFLOW运行时需要输入:应力模型编号、等效应变、等效应变速率、温度。子程序执行完后将输出:流动应力值、流动应力对等效应变的导数,流动应力对等效应变速率的导数。这几个变量可以用用户定义变量来计算。

deform基础

一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式,其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+ Δu n(3) 将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。 二、Deform-3d基本模拟功能 切削machining(cutting) 成形forming 模具应力分析die stress analysis 滚轧shap and ring rolling 热处理heat treatment 三、Deform-3d基本结构与方法 包括前处理程序(Pre-processor)、模拟程序(simulator)和后处理程序(Post Processor)。首先要在CAD软件(如Pro/E、UG等)中进行实体造型,建立模具和坯料的实体信息并将其转换成相应的数据格式(STL);然后在软件中设定变形过程的相应环境信息,进行网格剖分;再在应用软件上进行数值模拟计算;最后在后处理单元中将计算结果按需要进行输出。 事实上,由于设置了冷成形、工件材料、模具等信息后,环境条件几乎全是默认的。因此只要熟悉了操作步骤,严格按要求操作可以顺利完成预设置工作(pre-processor);设置完成后,通过数据检查(check data)、创建数据库(generate data),将数据保存,然后关闭操作;开启模拟开关(switch simulation)、运行模拟程序(run simulation),进入模拟界面,模拟程序开始自动解算,在模拟解算过程中,可以打开模拟图表(simulation graphics)监视模拟解算进程,并进行图解分析,对变形过程、应力、应变、位移、速度等进行监视。 应用后处理器(post processor),分析演示变形过程,也可以打开动画控制开关(animation control),隐去工(模)具(single object mode),进行动画演示。并同时可以打开概要(summary)和图表(graph),对荷栽、应力、应变、位移和速度等进行详细分析。 四、软件安装 Deform-3d软件的安装,只要按提示操作,可以顺利完成安装。安装完成后,分别打开原始程序文件夹和已经安装好的程序文件夹,在原始文件夹中找到

Deform使用简明步骤

Deform-3D(version6.1)使用步骤 Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。 以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。 一、模拟准备 模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。 实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。 二、前处理 前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。 首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform 模拟文件的文件夹→下步的problem name可任意填写。注意:所有路径不能含有中文字符。 simulation controls)→改变单位(units)为SI,接受 弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。 导入坯料、模具并设置参数: 导入毛坯: 1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为刚性 (rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意); 材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。 2、geometry:importgeometry from a file:从保存的STL格式文件中找到坯料,导入后会在 左侧窗口显示出预览,然后点击check GEO检查模型,务必保证出现下图椭圆中数值。

铸造模拟

三个基本问题 1)什么是金属材料制备工艺? 通过一定的生产流程,获得可以作为工业或工程中使用的金属材料或者构件,这个过程称之为金属材料制备与加工。 2)什么是金属材料制备工艺的计算机模拟? 根据用户要求,基于一定的判据设计的制备与加工工艺过程,建立起数学物理模型,在计算机上进行造型、运算,并将得到的成千上万的数据综合在一起逼近研究对象的全貌,表达出成分工艺组织性能的演变规律,用形象的图形或者动画形式,显示出这些过程的直观画面称之为计算机模拟。 3)为什么进行金属材料制备工艺的计算机模拟? 基本的加工工艺 1)铸造,凝固成形,液固相变。 2)焊接,凝固成形,液固相变,热影响区晶粒长大。 3)压力加工,固态成形,固态相变。 4)热处理,固态相变。 5)冷成形模拟 模拟的框架1)前处理,造型,数据输入等 2)计算,算法的优化 3)后处理,模拟结果输出,判据函数 4)数据库 模拟具有实时性,模拟的准确性取决于模型的精度。 开展工艺模拟的目的 1)优化现有工艺 2)进行模具与新工艺设计 3)缩短设计、试制和生产周期,降低成本 4)工艺的可视化,工程师和模拟工作者之间能够共同分析出达到最佳工艺的判据标准 5)机理性分析 热加工过程的结果成型和改性:使材料的成分、组织、性能最后处于最佳状态 热加工工艺设计根据所要求的组织和性能,制定合理的热加工工艺,指导材料的热加工过程热加工工艺设计存在的问题 复杂的高温、动态、瞬时过程:难以直接观察,间接测试也十分困难 建立在“经验”、“技艺”基础上 解决方法 热加工工艺模拟技术:在材料热加工理论指导下,通过数值模拟和物理模拟,在实验室动态仿真材料的热加工过程,预测实际工艺条件下的材料的最后组织、性能和质量,进而实现热加工工艺的优化设计 热加工过程模拟的意义 认识过程或工艺的本质,预测并优化过程和工艺的结果(组织和性能) 与制造过程结合,实现快速设计和制造 热加工过程模拟的部分商业软件 铸造PROCAST, SIMULOR 锻压DEFORM, AUTOFORGE, SUPERFORGE 通用MARC, ABAQUS, ADINA, ANSYS 三种传热方式:热对流,热传导,热辐射。

DEFORM二次开发各模块介绍

材料本构模型是实现计算机数值模拟的前提条件之一,【关于计算机数值模拟技术的发展介绍】 本论文所采用的有限元模拟软件DEFORM-3D进行材料的微观组织模拟介绍,DEFORM-3D 有限元软件是集成了原材料、成形、热处理和机加工为一体的软件,可用于分析各种塑性体积成形过程中金属流动以及材料的应力、应变和温度等物理场量的分布变化情况,同时提供了材料的流动、模具间的填充、成型过程的载荷量、模具所受应力、材料的纤维流向、成型过程的坯料形成、材料的韧性断裂以及金属微观组织结构等信息。 为了实现在金属成形工艺模拟过程中进行微观组织演化的定量预测,所使用的模拟软件必须有包含微观组织变化的本构模型和专门的微观组织演化分析模块。当前国际上虽然有多个知名商业有限元软件流行,但是它们都不具备微观组织演化的预测功能;或者软件具有微观组织变化的本构模型,但仍需使用者输入材料的参数方可进行,而软件不提供材料的参数;故很多软件都淡化此微观组织演化分析模块。庆幸的是多数商业软件都为二次开发设置了用户子程序功能,通过编制用户子程序就能实现对微观组织演化的预测功能。 用户自定义本构模型的输入方法 在当今的科学研究方向中,新材料的开发占据了一个重要的角色。不同的材料工作者开发了不同的新材料,得到了不同的本构模型,需要对这种新材料进行模拟,为了满足这种需求,DEFORM提供了两种用户自定义本构模型的输入方法: (1)以函数形式输入本构模型。DEFORM提供了若干常用本构模型,如图4.6所示。若用户的本构模型与系统提供的本构模型一致,则可直接输入其相关系数即可;若用户的本构模型在系统中不存在,则可通过二次开发编程的方式将用户的本构模型加入到DEFORM中,然后在图4.6中选择“User routine”并输入所调用的本构模型子程序的编号。 (2)以数据形式输入本构模型。DEFORM还允许通过输入数据的方式来定义材料的塑性流动行为。具体方法是根据材料的真应力一真应变曲线,取若干个数据点,逐个输入该材料在某个温度、某个变形速率和某个真应变下的真应力。该方法的优点是既不用求取材料的本构模型,也不用进行二次开发编程,就可以定义材料的塑性流动行为,同时,若输入的数据点较多,得到的精度比输入函数形式的本构方程要精确得多。 本论文采用第一种方式,基于windows平台的DEFORM编程接口将求取的本构方程输入到DEFORM中。 文件配置 在windows操作系统中,在向DEFORM-3D/-2D中加入用户子程序之前,要对一些文件作相关配置,具体方法如下: 1) 先C:\DEFORM3D\V6_1\目录下的DEF_SIM.exe文件和C:\DEFORM3D\V6_1\UserRoutine\DEF_SIM\目录下的def_usr.f文件作一个备份;这两个文件是在安装完DEFORM-3D后就会自动生成的文件;因为本文的二次开发将会先对def_usr.f

铸造模拟软件讲解

PROCAST ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 procast 百科名片 ProCast软件界面 ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 目录 适用范围材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 适用范围 材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 ProCast应用(10张) 编辑本段适用范围 ProCAST适用于砂型铸造、消失模铸造、高压铸造、低压铸造、重力铸造、

软件操作界面 倾斜浇铸、熔模铸造、壳型铸造、挤压铸造、触变铸造、触变成形、流变铸造。由于采用了标准化、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCAST进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明,ProCAST可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 编辑本段材料数据库 ProCAST可以用来模拟任何合金,从钢和铁到铝基、钴基、铜基、镁基、镍基、钛基和锌基合金,以及非传统合金和聚合体。ESI旗下的热物理仿真研究开发队伍汇集了全球顶尖的五十多位冶金、铸造、物理、数学、计算力学、流体力学和计算机等多学科的专家,专业从事ProCAST和相关热物理模拟产品的开发。得益于长期的联合研究和工业验证,使得通过工业验证的材料数据库不断地扩充和更新,同时,用户本身也可以自行更新和扩展材料数据。除了基本的材料数据库外,ProCAST还拥有基本合金系统的热力学数据库。这个独特的数据库使得用户可以直接输入化学成分,从而自动产生诸如液相线温度、固相线温度、潜热、比热和固相率的变化等热力学参数。 编辑本段模拟分析能力 ProCAST可以分析缩孔、裂纹、裹气、冲砂、冷隔、浇不足、应力、变形、模具寿命、工艺开发及可重复性。ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使他们有机会看到型腔内所发生的一切,从而产生新的设计方案。其结果也可以在网络浏览器中显示,这样对比较复杂的铸造过程能够通过网际网络进行讨论和研究。 编辑本段分析模块 ProCAST是针对铸造过程进行流动一传热一应力耦合作出分析的系统。它主要由8个模块组成:有限元网格划分MeshCAST基本模块、传热分析及前后处理(Base License)、流动分析(Fluid flow)、应力分析(Stress)、热辐射分析(Radiation)、显微组织分析(Micromodel)、电磁感应分析(Electromagnetics)、反向求解(Inverse),这些模块既可以一起使用,也可以根据用户需要有选择地使用。对于普通用户,ProCAST应有基本模块、流动分析模块、应力分析模块和网格划分模块。 1)传热分析模块 本模块进行传热计算,并包括ProCAST的所有前后处理功能。传热包括

deform基本操作

DEFORM-3D基本操作入门QianRF 前言 有限元法是根据变分原理求解数学物理问题的一种数值计算方法。由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。 现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。 有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。 一、刚(粘)塑性有限元法基本原理 刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。 刚塑性有限元法的理论基础是Markov变分原理。根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式 其中罚函数法应用比较广泛。根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为: ∏≈∑π(m)=∏(1,2,…,m)(1) 对上式中的泛函求变分,得: ∑=0(2) 采用摄动法将式(2)进行线性化: =+ Δu n(3) 将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。 二、Deform-3d基本模拟功能 切削machining(cutting) 成形forming 模具应力分析die stress analysis 滚轧shap and ring rolling 热处理heat treatment 三、Deform-3d 基本结构与方法

基于虚拟现实的铸造工艺流程仿真

基于虚拟现实的铸造工艺流程仿真 大部分机械工程专业的学生并没有真正意义上的进行铸造工艺实验,多数是从书上获得理论知识,或者是在金工实习时,听或观察老师的操作,使得很多学生并不熟悉真正的铸造是如何进行的。针对这种情况,本文利用虚拟现实的技术仿真铸造工艺的流程,使得学生可以在没有现实设备的基础下,也能依靠自学或者书本的知识,自己进行虚拟的铸造实验。 铸造工艺有很多类型,本文选择了压力铸造工艺流程的仿真。压力铸造是一种精密的铸造技术,是一种不可或缺的铸造技术,也是机械工程专业的学生必须掌握的铸造技术。虚拟现实技术综合利用计算机仿真技术、计算机图形学等等多种技术,通过产生视觉、听觉等,使得用户产生一种身临其境的感觉。其中很多软件能实现这种技术,本文采用了容易掌握和理解的EON Studio来实现压铸工艺的仿真。 本文首先对压力铸造作了简介,对其四种类型:热室压力铸造、冷室卧式压力铸造、冷室立式压力铸造和冷室全立式压力铸造的工艺流程进行了详细的分析,并且选择了热室压力铸造和冷室卧式压力铸造进行工艺仿真。而后简单介绍了EON Studio的重要功能,采用多种节点的配合作用,实现了对压力铸造工艺流程的仿真。 I

第一章绪论 1.1 选题的背景及意义 机械工程是社会发展和国民经济建设的基础学科之一。机械类专业人才的培养在整个教育中是非常重要的一部分。但我国机械专业的教学长期以来沿用原苏联的教学模式。而这种教学模式存在着严重的弊端,例如专业口径较窄、专业划分过细、内容相对过深、体系过于陈旧。随着我国的新技术的迅速发展,使机械工程、机械制造比以前的时代发生了根本性变化。这种传统的机械类教学模式必须彻底改革,不然就不会有创新。 实验教学是一种将课本知识结合到实际的教学方式,实验教学不仅巩固了学生课本上的基础知识,而且还能够培养学生的实际操作能力和动脑能力。由于机械专业属于工科类教学,对学生的实践动手操作能力要求极高,所以实验教学是提高机械工程专业学生实践动手操作能力的一个重要教学环节。 但是由于各种条件的限制,比如操作实验设备难度大、缺乏实验设备、容易精密仪器损坏、实验时间和资源的消耗大等,学生缺乏大量去尝试的机会,也因此这的相当数量的实验创新教学不能正常开展,另外一些抽象性的实验在现实情景中很难实现,例如铸造等等,从而耽误了对学生动手实践能力的培养。将虚拟现实技术应用在实验教学中,可使虚拟出来的效果接近真实实验效果[1]。 铸造成型在现代加工中占有不可或缺的地位,是制造生产复杂零件最灵活的方法。铸造实习是金工实习重要的环节之一,通过铸造实习学生可以学习到常规的铸造工艺,同时也能够了解到基本先进的铸造技术。但是因为受到我国传统教育思想的影响,实验教学的模式一直有一下几个方面的问题: (1)教学方法基本上还是老师带学生的模式,老师做学生在一旁看和模仿,过多的约束使学生难以发挥自己的想象空间,形成了一种被动的模仿实习,而不是由学生自己摸索得到的知识。在过去的实习教学中,都是由指导老师示范砂型的制作过程,然后由学生进行模仿进行操作,然而大部分学生做出来的作品都是基本的形状; (2)后续的浇注过程没有得到很好的展开,学生很难对砂型铸造的后续金属浇注过程有一个直观的认识,例如不同金属熔炼所需要具备的条件、浇注前金属液体的微观状态、铸件的成型过程以及铸件可能产生的缺陷等。而且在这种情况下学生很容易失去对实习的兴趣以及实习的成就感,从而打击到了学生实习的积极性,并且影响到部分同学的学习热情; (3)学生在实际操作之前没有得到相关实习的理论教学。例如学生没有掌握砂型铸造的要点,有的学生不是十分了解基本操作步骤。 华南理工大学机械工程虚拟仿真实验教学中心是首批国家级虚拟仿真实验教学中

deform材料数据

DEFORM?

材料试验 流动应力Flow Stress Describes a material’s resistance to being deformed or having its shape changed. A measure of the force needed to make the material flow or deform 摩擦Friction 损伤Damage

材料数据与模拟结果 应力Stress z 直接影响成形力Directly affects die loads z 直接影响模具的应力分布Directly affects die stresses z 对流动应力影响不大Little effect on general flow stress 加工硬化Work hardening behavior z 影响金属流动Affects flow behavior z 影响载荷,应力等Also affects loads, stresses, etc.

材料数据与模拟结果 软化Thermal softening behavior z影响金属的流动 Affects flow behavior –特别在热成形中,低温和高温合金Particularly in hot forming, light or high temp alloys –可能对温成形也有影响May have an influence on warm forming z对载荷的影响同应力Same effects on loads as stress

Deform 二次开发步骤

微观组织模拟:模拟步骤 Deform 3D二次开发步骤 为了在金属成形工艺模拟过程中进行微观组织演化的定量预测,所使用的模拟软件必须有包含微观组织变化的本构模型和专门的微观组织演化分析模块。当前国际上虽然有多个知名商业软件流行,但是它们都不具备微观组织演化的预测功能。庆幸的是多数商业软件都为二次开发设置了用户子程序功能,通过用户子程序,用户就能根据自己的需要增加自己的微观组织预测功能。 为了使DEFORM3D软件具有微观组织演化预测功能,本研究尝试将包含动态再结晶的热刚—粘塑性材料本构模型植入到DEFORM3D中,并在模拟结果中能够显示晶粒度等用户变量在变形体内的分布。在研究出具体开发步骤前,必须要对Defom中的程序有所深入了解。 一、DEFORM3D二次开发基础理论 1、用户子程序结构 本研究的DEFORM3D二次开发涉及到的子程序有:USRMSH、USRMTR、UFLOW、USRUPD(含USR和CHAZHI)。 (1)可以改变几乎所有变量的子程序(USRMSH)

子程序功能:该子程序包含了有限元计算中所有的全局变量,通过这个用户子程序,可以修改所有这些变量。但这些全局变量的改变将直接影响有限元的计算,处理不当就会使整个程序不能正常进行。 在DEFORM3D子程序功能中,所有的用户变量必须在USRUPD子程序中定义。本文的用户子程序中共定义了18个用户单元变量。各用户变量的含义如列表所示。 该子程序用于某些必要数据的获取和存储流程图如下图所示: (2)流动应力子程序(USRMTR、UFLOW) SUBROUTINE USRMTR(NPTRTN,YS,YPS,FIP,TEPS,EFEPS,TEMP)SUBROUTINE UFLOW(YS,YPS,FIP,TEPS,EFEPS,TEMP) 子程序的变量含义:NPTRTN:应力模型编号;YS:流动应力;YPS:流动应力对等效应变的导数;FIP:流动应力对等效应变速率的导数;TEPS:等效应变;EFEPS:等效应变;TEMP:温度。 子程序USRMTR和UFLOW运行时需要输入:应力模型编号、等效应变、等效应变速率、温度。子程序执行完后将输出:流动应力值、流动应力对等效应变的导数,流动应力对等效应变速率的导数。这几个变量可以用用户定义变量来计

相关主题
文本预览
相关文档 最新文档