当前位置:文档之家› 结构形式的合理优化方法

结构形式的合理优化方法

结构形式的合理优化方法
结构形式的合理优化方法

结构形式的合理优化方法

1、推敲地下室布置

地下室结构在结构成本中所占的比重很大,而且地下室的结构离散性比较大,对其他部分的影响和关联不明显,做好地下室结构的优化设计对于控制整个结构成本至关重要。

首先,要注意公共大地下室的面积的充分利用,做好单层地下室和多层地下室的方案比较。其次,要把握好支护成本的降低,尽量抬高整个±0.000的标高,因为这不仅降低了支护的成本还节约了土方的开挖和外运,减少了地下水丰富区域的水压力的影响,对地下室的底板和抗拔桩的设计都起到了有利影响。对地下室的结构成本控制还要把握好地下室顶部覆土厚度的控制和顶部活荷载的控制,地下室顶部覆土的厚度一般与景观布置和地下管线的埋设要求有关系,这就要求在设计管理过程中把景观设计和管网设计提前介入,做好精细化设计和专业配合工作,严格控制好地下室顶部覆土的厚度。最后,要把握好地下室顶板和底板的布置方案,对这些结构布置方案要做好多方案成本比较,要全方位的把握方案的可行性,对方案的取舍要慎之又慎。

2、控制层高

在满足建筑立面和使用净高的前提下,减少层高不仅可以减少竖向构件的长度和体积,同时还可以减少基础等土建成本和外装、设备及运营成本。对于一般中档房屋来讲,层高每减少100mm,成本可减少30~40元/㎡,地下室还会更高些。减少层高可以通过结构专业控制梁高、设备专业每层综合布线来实现。某些部位还可以采用变截面梁或在梁中预埋套管等措施来保证楼层净高的要求。

3、控制宽高比(即结构高度和结构有效宽度的比值)

建筑高宽比越大,主体结构抗倾覆力矩也越大,安全所需抗侧力构件(剪力墙)便越长,由此便会增加结构成本。控制高宽比成为了结构优化设计的显著环节。

4、优化剪力墙设置

底部商业、底层复式住宅或架空层层高一般较高,为满足规范要求,剪力墙墙厚必须增加较多,同时因变成了短肢剪力墙,配筋也将进一步增加,此时可以通过验算超限墙体的稳定性来减小墙厚,由此一来,墙厚变小,成本也将大大降低。

剪力墙长度和数量主要以位移指标来控制,规范规定纯剪力墙结构的层间位移比限值为1/1000,为充分发挥剪力墙的最大作用,设计时可以以1/1050~1/2000

作为层间位移比的目标限值,在保证建筑物安全富余的前提下减少不必要的剪力墙体,从而从整体上节约造价。

5、优化梁的配置及配筋方式

楼盖造价占结构总造价的9%~13%,其重量占整个房屋重量的22%左右。梁属于楼盖的一部分,其布置直接影响着板的受力情况和配筋,合理布置梁也成为了控制造价的关键。对于常见的8.1mx8.1m~9.0mx9.0m柱网,标准层等承受荷载较小的楼板优先考虑平行梁或十字梁,其大概综合成本(计算钢筋的数量、混凝土的数量和模板的数量)会比井字梁低10%左右,而对于地下室顶板等承受荷载较大的楼板应选用井字梁,以满足协调受力、保证净高的要求。同时,可以取消那些小跨度楼板下部为支撑上部较短填充墙而设置的小梁(如厨房、卫生间等),因为楼板本身足以承载那些填充墙,不需要单独设梁,这样梁减少,成本降低,空间也变好。在大跨度框架梁配筋方面,应避免上部粗大钢筋全梁贯通,尽量采用较小直径钢筋配置,这样可以有效节省框架梁的钢筋用量。

6、控制楼板厚度

楼板厚度直接影响着结构荷载,20mm厚楼板自重约占标准层总荷载3.3%,厚度增加,荷载加大,梁、墙、基础均会加大,成本也随之增加。同时,对于标准层较小楼板来讲,配筋均按最小配筋率来要求,楼板厚度增加反而配筋增大,所以实际工程设计时楼板厚度也是一个降低成本的控制要素。

7、混凝土标号的合理采用

混凝土标号每增加一级,单价提高约5~8%;对柱及剪力墙轴压比的影响很明显,应优先选用高标号混凝土;对梁来说,标号高低对梁的承载力变化不大,应选用低标号混凝土;对板来说,虽然提高标号对承载力有提高,但标号提高后最小配筋率相应增大,楼板开裂的几率也增大,所以也应选用低标号的混凝土。工程设计时通常将墙柱混凝土标号高于梁板混凝土标号一~二个等级,将混凝土承载能力最大化。

8、钢筋材料的合理选择

HRB400级钢筋无论从强度、延性还是性价比上都是其他钢材无法比拟的。HRB335级钢筋比HRB235级钢筋贵约4%,强度提高43%;HRB400级钢筋比HRB335级钢筋贵约2.9%,强度提高20%。因此,设计中使用HRB400级钢筋代替传统的HRB235级钢筋和HRB335级钢筋作为受力钢筋(吊钩出外)可有效降低工程的钢筋用量。

每一个工程建筑都需要汇集参建各方的智慧和辛勤工作。前期阶段,应进行多方案的对比分析,找到其中安全、经济、美观的平衡点。在优化过程中,采取办法减小构件截面,减薄板厚,采用较矮的梁高,合理地增大楼层净高,减少剪力墙等,这些做法不仅能减少混凝土用量,减轻结构自重,而且减低了结构刚度,减

小了地震力。结构优化的目的就是在保证工程质量的同时去除无效的结构成本,达到最小的投入产出比,最终实现建筑安全、经济和美观的完好统一。

数据库优化服务(外文翻译)

吉林化工学院理学院 毕业论文外文翻译 阿德里恩.甘卡,伊莫.盖格尔罗马尼亚布加勒斯特迪杜奥列斯库大学德国派尔博登施泰特威廉学校 数据库优化服务Database Optimizing Services 学生学号:******** 学生姓名:*** 专业班级:信息与计算科学0801 指导教师:*** 职称:教授 起止日期:2012.2.27~2012.3.14 吉林化工学院 Jilin Institute of Chemical Technology

数据库优化服务 摘要 几乎每一个组织都存在它的中心数据库。数据库为不同的活动提供支持,无论是生产,销售和市场营销或内部运作。为了获得战略决策的帮助,一个数据库每天都在被访问。要满足这种需求,因此需要与高品质的安全性和可用性。 为实现一些需求所使用的DBMS(数据库管理系统),事实上,是一个数据库软件。从技术上讲,它是软件,它采用了标准的编目,恢复和运行不同的数据查询方法。DBMS 管理输入数据,组织安排这些数据,并提供它的用户或其他程序修改或提取数据的方法。数据库管理就是一种需要定期更新,优化和监测的操作。 关键词 数据库,数据库管理系统(DBMS),索引,优化,成本,优化数据库。

1 引言 该文件的目的是介绍有关数据库的基本优化代表的观念,在不同类型的查询中使用数学估计成本,可以达到性能水平的审查,以及分析在特定查询的例子中不同的物理访问结构的影响。目标群体应该熟悉SQL在关系数据库的基本概念。 通过这种方式,可以执行复杂的查询策略,允许以较低的成本获得信息的使用知识。一个数据库经过一系列转换,直到其最终用途,以数据建模,数据库设计和开发为开始,以维护和优化为结束。 2 数据库建模 2.1 数据建模 数据模型更侧重于数据是必要的,而做出数据的方式应该是一种有组织的和少操作的方式。数据建模阶段涉及结构的完整性,操作和查询。这有多个这方面的事项,如:1。数据定义方式应该是有组织的(分层网络,关系和重点对象)。这需要提供一个规则,来约束实例的定义结构的允许/限制。 2。提供了数据更新协议。 3。提供了数据查询的方法。 一个结构简单的数据通信,能够使得最终用户很容易的理解,是数据建模想要的的实际结果。 2.2 自定义数据库/数据库发展 数据库的开发和自定义答复了顾客的需求。自定义数据库的重要性主要体现在通过它,使向目标客户直接提供服务的产品的商业化成为可能。一个数据库的质量通过定期更新来维护。 2.3 数据库设计 如果数据库有以下任何问题,如故障,不安全或不准确的数据或数据库退化,失去了其灵活性,那么是时候换新数据库了。因此,必须定义具体的数据类型和存储机制以便通过规则和正确地运用操作机制,确保数据的完整性。所有数据库应构建一个客户方面的规范,包括它的用户界面和功能。通过这些可以使运用数据进入一个网站成为可能。

最优化理论与方法

课程报告题目最优化理论与方法 学生姓名 学号 院系 专业 二O一二年十一月十日

最优化理论与方法综述 最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。这就是我理解的整个课程的流程。在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。 20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。因此最优化理论和算法迅速发展起来,形成一个新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。 最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。 最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。这类问题普遍存在。例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。 一、最优化学习的必要性 最优化,在热工控制系统中应用非常广泛。为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大,或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。

大型ORACLE数据库优化设计方案

大型ORACLE数据库优化设计方案 本文主要从大型数据库ORACLE环境四个不同级别的调整分析入手,分析ORACLE的系统结构和工作机理,从九个不同方面较全面地总结了ORACLE数据库的优化调整方案。 对于ORACLE数据库的数据存取,主要有四个不同的调整级别,第一级调整是操作系统级 包括硬件平台,第二级调整是ORACLE RDBMS级的调整,第三级是数据库设计级的调整,最后一个调整级是SQL级。通常依此四级调整级别对数据库进行调整、优化,数据库的整体性能会得到很大的改善。下面从九个不 同方面介绍ORACLE数据库优化设计方案。 一.数据库优化自由结构OFA(Optimal flexible Architecture) 数据库的逻辑配置对数据库性能有很大的影响,为此,ORACLE公司对表空间设计提出了一种优化结构OFA。使用这种结构进行设计会大大简化物理设计中的数据管理。优化自由结构OFA,简单地讲就是在数据库中可以高效自由地分布逻辑数据对象,因此首先要对数据库中的逻辑对象根据他们的使用方式和物理结构对数据库的影响来进行分类,这种分类包括将系统数据和用户数据分开、一般数据和索引数据分开、低活动表和高活动表分开等等。数据库逻辑设计的结果应当符合下面的准则:(1)把以同样方式使用的段类型存储在一起; (2)按照标准使用来设计系统;(3)存在用于例外的分离区域;(4)最小化表空间冲突;(5)将数 据字典分离。 二、充分利用系统全局区域SGA(SYSTEM GLOBAL AREA) SGA是oracle数据库的心脏。用户的进程对这个内存区发送事务,并且以这里作为高速缓存读取命中的数据,以实现加速的目的。正确的SGA大小对数据库的性能至关重要。SGA 包括以下几个部分: 1、数据块缓冲区(data block buffer cache)是SGA中的一块高速缓存,占整个数据库大小 的1%-2%,用来存储从数据库重读取的数据块(表、索引、簇等),因此采用least recently used (LRU,最近最少使用)的方法进行空间管理。 2、字典缓冲区。该缓冲区内的信息包括用户账号数据、数据文件名、段名、盘区位置、表 说明和权限,它也采用LRU方式管理。 3、重做日志缓冲区。该缓冲区保存为数据库恢复过程中用于前滚操作。 4、SQL共享池。保存执行计划和运行数据库的SQL语句的语法分析树。也采用LRU算法 管理。如果设置过小,语句将被连续不断地再装入到库缓存,影响系统性能。 另外,SGA还包括大池、JAVA池、多缓冲池。但是主要是由上面4种缓冲区构成。对这

OLTP数据库优化方案

OLTP数据库优化方案及案例
ORACLE数据库SQL优化方案、案例
Edgar Liu
? 2015 Huatek CO., LTD. All Rights Reserved.
2015.3.17

目录
1. 优化方案与基础知识
1.1 问题SQL来源(现象) 1.2 数据库性能优化方案及期待效果 1.3 优化方法论及优化分析树 1.4 数据库体系结构 1.5 逻辑读 逻辑写
4.索引设计与查询条件
4.1 4.2 4.3 4.4 索引介绍 索引设计步骤 索引创建原则 索引失效与不足
2. 执行计划分析
2.1 执行计划查看方法 2.2 执行计划示例 2.3 执行计划三部分 2.4 硬解析和软解析
5. 高效SQL
5.1 5.2 5.3 5.4 优化规则30条 关于Hit提示优化 DML语句优化 批量读取游标数据优化
3.最佳表连接方式
3.1 3.2 3.3 3.4 ORACLE表介绍 RDBMS表连接方式介绍 执行计划中表连接方式介绍 执行计划中表连接方式比较
6. 数据模型与SQL
6.1 数据逻辑模型设计 6.2 数据库物理设计 6.3 书集推荐
2/40

1.0 OLTP 与OLAP区别
?对于Oracle数据库的数据存取,主要有四个不同的调整级别, ?第一级调整是操作系统级包括硬件平台, ?第三级是Oracle数据库设计级的调整, 第二级调整是Oracle RDBMS级的调整, 第四级调整级是SQL级。通常依此四级调整级别对数据库进行调
整、优化,数据库的整体性能会得到很大的改善。
3/40

MySQL数据库性能(SQL)优化方案-期末论文

高级数据库技术——期末论文 基于SQL查询的MySQL数据库性能优化研究 :XX 学号:2014XXXXX 学院:计算机学院

摘要: 查询是数据库系统中最基本也是最常用的一种操作,是否具有较快的执行速度,已成为数据库用户和设计者极其关心的问题。在研究开源数据库管理系统MySQL 查询优化技术的基础上,主要结合传统SQL操作优化、深度分析 MySQL 源代码、现代数据库发展几方面进行诸如参数调优,MySQL关联查询,重写相关规则等容展开优化分析研究。 关键词:查询优化,查询重用,查询重写,计划优化

一、传统SQL查询优化操作 1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。 另外一个提高效率的方法是在可能的情况下,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。 对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。 2.使用连接(JOIN)来代替子查询(Sub-Queries) MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询,如下所示: DELETE FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo ) 使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,

大数据库优化(SQLServer)

SQL SERVER性能优化综述 近期因工作需要,希望比较全面的总结下SQL SERVER数据库性能优化相关的注意事项,在 网上搜索了一下,发现很多文章,有的都列出了上百条,但是仔细看发现,有很多似是而非或 者过时(可能对SQL SERVER6.5以前的版本或者ORACLE是适用的)的信息,只好自己根据以 前的经验和测试结果进行总结了。 我始终认为,一个系统的性能的提高,不单单是试运行或者维护阶段的性能调优的任务,也不单单是开发阶段的事情,而是在整个软件生命周期都需要注意,进行有效工作才能达到的。所以我希望按照软件生命周期的不同阶段来总结数据库性能优化相关的注意事项。 一、分析阶段 一般来说,在系统分析阶段往往有太多需要关注的地方,系统各种功能性、可用性、可靠性、安全性需求往往吸引了我们大部分的注意力,但是,我们必须注意,性能是很重要的非功能 性需求,必须根据系统的特点确定其实时性需求、响应时间的需求、硬件的配置等。最好能 有各种需求的量化的指标。 另一方面,在分析阶段应该根据各种需求区分出系统的类型,大的方面,区分是OLTP(联机事务处理系统)和OLAP(联机分析处理系统)。 二、设计阶段 设计阶段可以说是以后系统性能的关键阶段,在这个阶段,有一个关系到以后几乎所有性能 调优的过程—数据库设计。 在数据库设计完成后,可以进行初步的索引设计,好的索引设计可以指导编码阶段写出高效 率的代码,为整个系统的性能打下良好的基础。 以下是性能要求设计阶段需要注意的: 1、数据库逻辑设计的规范化 数据库逻辑设计的规范化就是我们一般所说的范式,我们可以这样来简单理解范式: 第1规范:没有重复的组或多值的列,这是数据库设计的最低要求。 第2规范: 每个非关键字段必须依赖于主关键字,不能依赖于一个组合式主关键字的某些组 成部分。消除部分依赖,大部分情况下,数据库设计都应该达到第二范式。 第3规范: 一个非关键字段不能依赖于另一个非关键字段。消除传递依赖,达到第三范式应该是系统中大部分表的要求,除非一些特殊作用的表。 更高的范式要求这里就不再作介绍了,个人认为,如果全部达到第二范式,大部分达到第三

浅谈数据库系统优化

浅谈数据库系统优化 概要:数据库系统的优化可以有效提高系统的性能,微软的SQL Server数据库的优化是一个系统工程,需要从设计开始就进入优化程序。 数据库的性能的优化成了数据处理的一个很重要环节。系统的性能优化应该贯穿系统工作的整个生命周期,从开发开始直到系统最终下线,都应该不断的动态的优化并不断调整优化过程。基于SQL Server的数据库优化是指对数据库处理、存储、查询等进行调优的过程。 基于SQL Serve数据库的优化,应该从数据库设计的时候就做好优化打算,为后面系统正式投入运行后优化做好准备。其主要策略有: 1)调优数据库。数据库性能的优化基础就是数据库的基本设计,如果设计端出了问题则对数据库的影响很大,也很有可能没有优化的必要。数据库的优化应该从数据库的设计开始,一般要找专业的性能优化专家根据系统的要求,对数据库采取合理的设计方案。数据库的设计主要包含两个部分,一个是数据库存储分配的物理设计,一个是数据流量分配的逻辑设计。物理设计主要包括数据对象在物理介质上存储分布等各个方面,所要注意的问题就是在不同的存储介质上所放的数据块的大小,这个直接关系到数据的存储速度。而逻辑设计主要包括在数据库的索引、数据库模式、视图等。数据库的设计是基础,如果在设计初始出了问题,则不可能通过单纯的优化来完成数据库的正常工作,所以这是数据库调整和优化的保障。 2)优化应用程序。网络中数据的查询和传输速度及效率不仅仅在于服务器,而是和多种因素相关联的,根据网络上的相关统计,对和数据库相关的各个外部因素进行调整,同样可以达到数据库性能优化的目的。相关因素主要包括,网络、操作系统、硬件、数据库参数等各个方面。而这因素大都设计硬件设备,其它软件方面主要是应用程序的优化,包括数据库的SQL语句和系统开发语言的优化。在数据库的应用中,大部分是通过SQL语句来实现的,因此SQL语句的优化对数据系统优化起到很重要的作用。 大多数针对系统应用程序的优化也都集中在查询语句的处理上,而SQL语句的优化则可集中到合理利用临时数据表及索引。充分利用临时数据表,及建立合理的索引、调整优化SQL语句,等可以减少客户访问数据库的次数,减小CPU

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

大型数据库的优化方法及实例

大型数据库的优化方法及实例 尹德明杨富玉杨莹时鹏泉 中国金融电子化公司 E_mail: dm_mis@https://www.doczj.com/doc/1d4284507.html, 1.引言 随着银行业数据集中,作为整个系统核心的数据库,其存放、管理的数据越来越庞大,已经超越GB而到达TB数据量层次,数据库的性能成为整个系统性能的关键。 国库会计核算系统是国库部门用以进行国库业务的会计核算,并通过支付系统、国库内部往来、同城票据交换系统进行资金清算的计算机网络系统。国家金库会计核算系统每天处理的税票数据多达10万笔,税收高峰可能会到100万笔,这样一年累计下来其中历史登记簿中的数据达到2000万条以上,给检索和数据处理带来非常大的困难。 如何对于一个已经上线运行的重要业务系统,通过对数据库的优化和简单的系统流程调整,实现系统性能的大幅提升具有现实、迫切、重要的意义。 2.优化策略 根据Sybase的数据存储机制,在进行一段时期的数据删除、插入和更新等操作后,数据库往往会产生大量的碎片。大量碎片的存在,会严重影响数据库的I/O性能,如果在使用数据库一段时间后,整理碎片,可以提高数据库的性能。由于国家金库会计核算系统在预处理、日间报解、日初始化等步骤,会大批量进行数据删除、插入和更新等操作,因此会产生大量的数据碎片。碎片整理对于国家金库会计核算系统性能优化将会有重要效果。 Sybase Adaptive Server对于按顺序存储和访问的页,在单个I/O中最多读取八个数据页。由于大部分I/O时间都花在磁盘上的物理定位和搜寻上,因此大I/O可极大地减少磁盘访问时间。在大多数情况下,希望在缺省数据高速缓存中配置一个16K缓冲池。为事务日志创建4K缓冲池可极大地减少数据库系统日志写操作的数量。 好的性能同优良的数据库设计及优秀的程序写法关系极大,可以这样说,如果一个数据库没有好的设计及对程序未进行优化的话即使对参数进行调整也不可能有好的性能。 3.数据库碎片整理 由于Sybase是通过OAM页、分配单元和扩展页来管理数据的,所以对OLTP应用的Database Server会十分频繁地进行数据删除、插入和更新等操作,时间一长就会出现以下几种情况: (1)页碎片 即本来可以存放在一个页上的数据却分散地存储在多个页上。如果这些页存储在不同的扩展单元上,Database Server就要访问多个扩展单元,因此降低了系统性能。 (2)扩展单元碎片 在堆表中,当删除数据链中间的记录行时,会出现空页。随着空页的累积,扩展单元的利用率也会下降,从而出现扩展单元碎片。带cluster index的table也有可能出现扩展单元碎片。当有扩展单元碎片存在,会出现以下问题: 对表进行处理时,常常出现死锁;利用较大的I/O操作或增加I/O缓冲区的大小也无法改变较慢的I/O速度;行操作的争用。 (3)扩展单元遍历 带有cluster index的table会由于插入记录而导致页分裂,但当删除记录后,页会获得释放,从而形成跨几个扩展单元和分配单元的数据,而要访问该数据就必须遍历几个扩展单元和分配单元。这将导致访问/查询记录的时间大大延长,开始时数据库的性能虽然较高,

最优化理论与方法论文

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个

SQL Server数据库优化方案汇总

SQL Server数据库优化方案汇总 50种方法优化SQL Server 1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2、I/O吞吐量小,形成了瓶颈效应。 3、没有创建计算列导致查询不优化。 4、内存不足 5、网络速度慢 6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量) 7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷) 8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。 9、返回了不必要的行和列 10、查询语句不好,没有优化 可以通过如下方法来优化查询 : 1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要. 2、纵向、横向分割表,减少表的尺寸(sp_spaceuse) 3、升级硬件 4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使 用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段 5、提高网速; 6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行 配置。运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。如果另外安装了全文检索功能,并打算 运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。 7、增加服务器 CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成 多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并 行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作Update,Insert, Delete还不能并行处理。 8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。 9、DB Server 和APPLication Server 分离;OLTP和OLAP分离

SQL数据库优化方法

SQL数据库优化方法

目录 1 系统优化介绍 (1) 2 外围优化 (1) 3 SQL优化 (2) 3.1 注释使用 (2) 3.2 对于事务的使用 (2) 3.3 对于与数据库的交互 (2) 3.4 对于SELECT *这样的语句, (2) 3.5 尽量避免使用游标 (2) 3.6 尽量使用count(1) (3) 3.7 IN和EXISTS (3) 3.8 注意表之间连接的数据类型 (3) 3.9 尽量少用视图 (3) 3.10 没有必要时不要用DISTINCT和ORDER BY (3) 3.11 避免相关子查询 (3) 3.12 代码离数据越近越好 (3) 3.13 插入大的二进制值到Image列 (4) 3.14 Between在某些时候比IN 速度更快 (4) 3.15 对Where条件字段修饰字段移到右边 (4) 3.16 在海量查询时尽量少用格式转换。 (4) 3.17 IS NULL 与IS NOT NULL (4) 3.18 建立临时表, (4) 3.19 Where中索引的使用 (5) 3.20 外键关联的列应该建立索引 (5) 3.21 注意UNion和`UNion all 的区别 (5) 3.22 Insert (5) 3.23 order by语句 (5) 3.24 技巧用例 (6) 3.24.1 Sql语句执行时间测试 (6)

1系统优化介绍 在我们的项目中,由于客户的使用时间较长或客户的数据量大,造成系统运行速度慢,系统性能下降就容易造成数据库阻塞。这是个非常痛苦的事情,用户的查询、新增、修改等需要花很多时间,甚至造成系统死机的现象。速度慢的原因主要是来自于资源不足。 数据库的优化通常可以通过对网络、硬件、操作系统、数据库参数和应用程序的优化来进行。最常见的优化手段就是对硬件的升级。根据统计,对网络、硬件、操作系统、数据库参数进行优化所获得的性能提升,全部加起来最多只占数据库系统性能提升的40%左右(我将此暂时称之为外围优化);其余大部分系统性能提升来自对应用程序的优化,对于应用程序的优化可以分为对源代码的优化及数据库SQL语句的优化。在本文档只介绍外围优化及SQL语句的优化,对于源代码的优化需要相关方面的专家,形成统一的规范。 一个数据库系统的生命周期可以分成:设计、开发和成品三个阶段。在设计阶段进行数据库性能优化的成本最低,收益最大。在成品阶段进行数据库性能优化的成本最高,收益最小。规范的代码和高性能的语句,功在平时,利在千秋。 2外围优化 1、将操作系统与SQL数据库的补丁打到最高版本,WIN2003最高补丁是SP4, SQL SERVER2000最高补丁是SP4(版本号:2039)。 2、在服务器上不要安装与VA程序任何无相关的软件,甚至一些与VA运行 无关的服务都可以停掉。一般只安装SQL数据库、VA服务端服务及杀毒 软件。 3、杀毒软件避免对大文件进行扫描,特别是数据库(MDF和LDF)文件,一 定要从杀毒软件的范围内排除掉。 4、在进行服务器分区时,分区不要太多,两三个分区就可以了。分区最好 都使用NTFS格式。

2011年下学期最优化理论与方法考试试卷(A)

中南大学考试试卷 2011--2012学年 1 学期 时间100分钟 最优化理论与方法 课程 48 学时 学分 考试形式: 闭 卷 专业年级: 信科08、应数08 总分100分,占总评成绩 70 % 注:此页不作答题纸,请将答案写在答题纸上,可用中英文作答。 1.(15 points ) For an unconstrained optimization problem: ),(min x f Let )0(x be a given point, )0(d be a descent search direction at )0(x . (1) With the exact line search, show that there is a steplength 0α satisfying .0)()0()0(0)0(=+?d d x f T α (2)Show that when applied to a quadratic objective function, the Newton method with the exact line search terminates in at most one iteration. 2. (15 points )For an unconstrained optimization problem: .2)(min 2 221x x x f += (1) Find a descent direction )0(d of f at .)1,1() 0(T x = (2) By the Armijo line search, find a steplength 0α along )0(d at .)0(x 3.(15 points ) (1)Let .2113???? ??=A Find two directions 1d and 2d such that 1d and 2d are conjugate with respect to the matrix A . (2)Show that when applied to a quadratic objective function, with the exact line search, the PRP conjugate gradient method is equivalent to the FR conjugate gradient method.

sql优化方案讲解

Sql优化方案 一.数据库优化技术 1.索引(强烈建议使用) 1.1优点 创建索引可以大大提高系统的性能。 第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。 第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。 第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。 第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。 第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。 1.2 缺点 第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。 第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。 1.3 使用准则 索引是建立在数据库表中的某些列的上面。因此,在创建索引的时候,应该仔细考虑在哪些列上可以创建索引,在哪些列上不能创建索引。 一般来说,应该在这些列上创建索引。 第一,在经常需要搜索的列上,可以加快搜索的速度;

第二,在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构; 第三,在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;第四,在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的; 第五,在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间; 第六,在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。 同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点: 第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。 第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。 第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。 第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。 1.4 总结 1)索引提高了数据库的检索性能,但一定程度上牺牲了修改性能。因此适用于“多查询少修改”(insert,update,delete)的表。 2)对此类表中的外键,需要分组,排序或作为检索条件的字段建立索引 3)对此类表中查询使用少,字段取值少,字段数据量大的不应创建索引

数据库优化设计方案

数据库优化方案设计 XX信息管理平台从大型数据库环境四个不同级别的调整分析入手,分析数据库平台的系统结构和工作机理,从九个不同方面设计数据库的优化方案。 对于数据库的数据优化,主要有四个不同的调整级别,第一级调整是操作系统级包括硬件平台,第二级调整是RDBMS级的调整,第三级是数据库设计级的调整,最后一个调整级是SQL级。通常依此四级调整级别对数据库进行调整、优化,数据库的整体性能会得到很大的改善。下面从九个不同方面介绍数据库优化设计方案。 一、数据库优化自由结构 数据库的逻辑配置对数据库性能有很大的影响。为此,数据库平台一般对表空间设计提出有相应的优化结构,如ORACLE公司的OFA(Optimal flexible Architecture),使用这种结构进行设计会大大简化物理设计中的数据管理。优化自由结构,简单地讲就是在数据库中可以高效自由地分布逻辑数据对象,因此首先要对数据库中的逻辑对象根据他们的使用方式和物理结构对数据库的影响来进行分类,这种分类包括将系统数据和用户数据分开、一般数据和索引数据分开、低活动表和高活动表分开等等。 数据库逻辑设计的结果应当符合下面的准则: (1)把以同样方式使用的段类型存储在一起; (2)按照标准使用来设计系统; (3)存在用于例外的分离区域; (4)最小化表空间冲突; (5)将数据字典分离。 二、充分利用系统全局区域 系统全局区域是数据库平台的心脏,如Oracle数据库的SGA(SYSTEM GLOBAL AREA) 。用户的进程对这个内存区发送事务,并且以这里作为高速缓存读取命中的数据,以实现加速的目的。正确的SGA大小对数据库的性能至关重要。SGA包括以下几个部分: 1、数据块缓冲区(data block buffer cache)是SGA中的一块高速缓存,占整个数据库大小的1%-2%,用来存储从数据库重读取的数据块(表、索引、簇等),因此采用least recently used (LRU,最近最少使用)的方法进行空间管理。 2、字典缓冲区。该缓冲区内的信息包括用户账号数据、数据文件名、段名、盘区位置、表说明和权限,它也采用LRU方式管理。 3、重做日志缓冲区。该缓冲区保存为数据库恢复过程中用于前滚操作。 4、SQL共享池。保存执行计划和运行数据库的SQL语句的语法分析树。也采用LRU 算法管理。如果设置过小,语句将被连续不断地再装入到库缓存,影响系统性能。 另外,SGA还包括大池、JAVA池、多缓冲池。但是主要是由上面4种缓冲区构成。对这些内存缓冲区的合理设置,可以大大加快数据查询速度,一个足够大的内存区可以把绝大多数数据存储在内存中,只有那些不怎么频繁使用的数据,才从磁盘读取,这样就可以大大提高内存区的命中率。 三、规范与反规范设计数据库

数据库优化

关于数据库优化方面的文章很多,但是有的写的似是而非,有的不切实际,对一个数据库来说,只能做到更优,不可能最优,并且由于实际需求不同,优化方案还是有所差异,根据实际需要关心的方面(速度、存储空间、可维护性、可拓展性)来优化数据库,而这些方面往往又是相互矛盾的,下面结合网上的一些看法和自己的一些观点做个总结。 一个系统的性能的提高,不单单是试运行或者维护阶段的性能调优,也不单单是开发阶段的事情,而是在整个软件生命周期都需要注意。所以我希望按照软件生命周期的不同阶段来总结数据库性能优化相关的注意事项。 一、分析阶段 一般来说,在系统分析阶段往往有太多需要关注的地方,系统各种功能性、可用性、可靠性、安全性需求往往吸引了我们大部分的注意力,但是,我们必须注意,性能是很重要的非功能性需求,必须根据系统的特点确定其实时性需求、响应时间的需求、硬件的配置等。最好能有各种需求的量化的指标。 另一方面,在分析阶段应该根据各种需求区分出系统的类型,大的方面,区分是OLTP(联机事务处理系统)和OLAP(联机分析处理系统)。 二、设计阶段 设计阶段可以说是以后系统性能的关键阶段,在这个阶段,有一个关系到以后几乎所有性能调优的过程—数据库设计。 在数据库设计完成后,可以进行初步的索引设计,好的索引设计可以指导编码阶段写出高效率的代码,为整个系统的性能打下良好的基础。 以下是性能要求设计阶段需要注意的: 1、数据库逻辑设计的规范化 数据库逻辑设计的规范化就是我们一般所说的范式,我们可以这样来简单理解范式:第1规范:没有重复的组或多值的列,这是数据库设计的最低要求。 第2规范: 每个非关键字段必须依赖于主关键字,不能依赖于一个组合式主关键字的某些组成部分。消除部分依赖,大部分情况下,数据库设计都应该达到第二范式。 第3规范: 一个非关键字段不能依赖于另一个非关键字段。消除传递依赖,达到第三范式应该是系统中大部分表的要求,除非一些特殊作用的表。 更高的范式要求这里就不再作介绍了,个人认为,如果全部达到第二范式,大部分达到第三范式,系统会产生较少的列和较多的表,因而减少了数据冗余,也利于性能的提高。 2、合理的冗余 完全按照规范化设计的系统几乎是不可能的,除非系统特别的小,在规范化设计后,有计划地加入冗余是必要的。 冗余可以是冗余数据库、冗余表或者冗余字段,不同粒度的冗余可以起到不同的作用。 冗余可以是为了编程方便而增加,也可以是为了性能的提高而增加。从性能角度来说,冗余数据库可以分散数据库压力,冗余表可以分散数据量大的表的并发压力,也可以加快特殊查询的速度,冗余字段可以有效减少数据库表的连接,提高效率。 3、主键的设计 主键是必要的,SQL SERVER的主键同时是一个唯一索引,而且在实际应用中,我们往往选择最小的键组合作为主键,所以主键往往适合作为表的聚集索引。聚集索引对查询的影响是比较大的,这个在下面索引的叙述。 在有多个键的表,主键的选择也比较重要,一般选择总的长度小的键,小的键的比较速度快,同时小的键可以使主键的B树结构的层次更少。 主键的选择还要注意组合主键的字段次序,对于组合主键来说,不同的字段次序的主键的性能差别可能会很大,一般应该选择重复率低、单独或者组合查询可能性大的字段放在前

相关主题
文本预览
相关文档 最新文档