当前位置:文档之家› 信号与系统问答题

信号与系统问答题

信号与系统问答题
信号与系统问答题

考核人数______ 考核班次_______________ 任课教员_________ 出题教员签名________ 任课教研室主任签名_______日期_______ 队别__________ 教学班次___________ 学号___________ 姓名____________

…………………………密………………………………封………………………………线………………………………………

《信号与系统》期末考试试卷(A 卷)

一、解答题(100小题,共100分)

8.求下图所示系统的单位冲激响应()h t 。

10.某电路如图所示,其中

c=2F .1

2

L H =

,1R =Ω,电流源()()i t t

δ=,已电容上的初始电压(0)1

c u V =,电感上的初始电流(0)0L i A

=试求电阻R 两端电压的全响应。

12.求题图中两种周期信号的傅里叶级数。

13.求下图所示对称周期矩形信号的傅里叶级数(三角形式与指数形式)。

17.求下列函数的拉氏变换,考虑能否借助于延时定理。

(1)sin()

(0)()20

()

T t t f t t ω?

<<

?=?

??当为其他值

2T π

ω

=

(2)()sin()f t t ω?=+

18.下图(a)所示RC 电路,211

()3t e t e -=,421()3t e t e -=,2R =Ω,16

C F =。0

t -∞

<<时,开关S 位于“1”端,当t=0时,S 从“1”转到“2”端,用双边拉氏变换法求响应()C v t 。

19.分别写出题图中(a),(b),(c)所示电路的系统函数21()

()()

V s H s V s =

考核人数______ 考核班次_______________ 任课教员_________ 出题教员签名________ 任课教研室主任签名_______日期_______ 队别__________ 教学班次___________ 学号___________ 姓名____________

…………………………密………………………………封………………………………线………………………………………

24.求下列各项函数所变换()f t 的初值和终值

(1)221()(1)(2)(3)s s F s s s s ++=-++ (2)3221

()(1)(2)(3)

s s s F s s s s +++=+++

(3)21

()(1)(2)

s F s s s s +=++ (4)232

23()44s s F s s s s ++=+++ (5)221()(4)

s

e

F s s s --=

+

26.求下列函数的拉普拉斯逆变换。

(1)

22

1(3)s + (2)22()[()]s s a s αβ+++ (3)2222()[()]s

s s ωαβ+++

27.如下图所示电路。

(1)写出电压转移函数0()

()()

V s H s E s =

; (2)若激励信号()cos(2)()e t t u t =?,为使响应中不存在正弦稳态分量,求L ,C 值。 (3)若1R =Ω,1L H =,按第(2)问条件,求0()t υ。

56.已知因果序列的z 变换()X z ,求序列的初值(0)x 与终值()x ∞。

(1)12

11

1()(1)(12)

z z X z z z ----++=-- (2)11

1

()(10.5)(10.5)

X z z z --=

-+ (3)1

12

()1 1.50.5z X z z z ---=-+

61.列写下图所示电路的状态方程与输出方程,指定1()y t ,2()y t 为响应变量。

65.考虑下图线路。如果A 表示这样一种元件:它的端电流等于它两端电压的二阶导数。

(1) 它选择状态变量,并列出该电路的状态方程和输出方程表示式。 (2) 根据状态方程求网络的自由频率[提示:系统的特征根中有一个等于2)]- (3) 求系统的微分方程表示式。

考核人数______ 考核班次_______________ 任课教员_________ 出题教员签名________ 任课教研室主任签名_______日期_______ 队别__________ 教学班次___________ 学号___________ 姓名____________

…………………………密………………………………封………………………………线………………………………………

70.如下图所示电路,输出量取2()()C r t t υ=,状态变量取1C 和2C 上的电压11()()C t t λυ=和

22()()C t t λυ=,且有121C C F ==,0121R R R ===Ω。列写系统的状态方程和输出方程。

74.求函数sin 4

t 的傅立叶变换。

76.求图所示周期信号的傅立叶级数。

77.两个周期性波形如下图,求它们的傅立叶级数,并说明只有奇次谐波时波形的特点。

81.电路如图所示,激励信号()()at e t Ee U t -=,求输出信号0()v t ,电容起始电压为零

.

82.系统函数1

()2H f j ωω

=

+,激励为如下周期信号,求系统稳态响应r(t),画出e(t)与r(t)

的波形,并讨论经传输是否引起失真。 (1)()sin e t t = (2)()sin3e t t = (3)()sin sin3e t t t =+

87.如图所示电路。(1)求()

()()

Y j H j F j ωωω=

;(2)欲使响应()y t 不失真,求12R R ?的值。

考核人数______ 考核班次_______________ 任课教员_________ 出题教员签名________ 任课教研室主任签名_______日期_______ 队别__________ 教学班次___________ 学号___________ 姓名____________

…………………………密………………………………封………………………………线………………………………………

89.用拉普拉斯变换解下列微分方程

()

2()()dy t y t f t dt

+= (1) ()()

(0)1f t U t y -==若

(2) 若()sin 2()

(0)0f t t U t y -==

90.某线性时不变系统的初始状态一定,已知输入1()()f t t δ=时,全响应

1()3t y t e -=-,0t ≥,输入2()()f t u t =时,全响应2()15,0t y t e t -=-≥,试求输入

()()f t tu t =时的全响应()y t 。

91.利用部分分式展开法,求下列函数的拉普拉斯反变换式()f t .

(1) 23

1

(1)(3)

s s s +++ (2) 3326116s s s s +++ (3) 21(1)(5)

s e s s π

--++ (4)21(22)s s s ++

93.试求如图(a)所示电路的电流1()i t 和2()i t ,t ≥0,已知输人电压()s t υ如图(b)所示。

95.已知RC 串联电路如图所示,根据下述条件,用拉普拉斯变换法求解电路响应。

(1)在t=0时刻加入两周正弦电压()e t ,电路参数10,0.1R C F =Ω=,电容C 上有初始电压

1

3

V ,求()c u t 的零输入响应、零状态响应与全响应; (2)在t=0时刻加入一个周期性指数电压()e t ,每周期均为105t

e

-,持续时间为0.1s ,电路参

数1

,12

R C F =

Ω=,求0.30.4s t s <<内的()c u t 。

96.()f t 如图所示。 (1)求()f t 的拉氏变换; (2)求(1)2

t

f -和(21)f t -的拉氏变换。

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

操作系统简答题试题及答案

1.I/O软件一般分为哪几个层次? 从硬件层到用户层分为中断处理程序;设备驱 动程序;与设备无关的I/O软件;用户空间的 I/O软件等4层。 2.操作系统有哪些基本类型? 基本的操作系统类型有三种:多道批处理操作 系统,分时操作系统及实时操作系统。.各举 出一个实例?随着计算机体系结构的发展,先 后出现了个人计算机操作系统、嵌入式操作系 统、多处理机操作系统、网络操作系统和分布 式操作系统。 3.有几种I/O控制方式?各自的含义是什么? 答:常用的I/O控制技术有4种:程序直接控 制方式、中断控制方式、DMA方式和通道控制 方式。 程序直接控制方式是由用户进程直接控制内 存或CPU和外围设备之间的信息传送。这种方 式控制者都是用户进程。 中断方式被用来控制外围设备和内存与CPU 之间的数据传送。这种方式要求CPU与设备 (或控制器)之间有相应的中断请求线,而且 在设备控制器的控制状态寄存器的相应的中 断允许位。 DMA方式又称直接存取(direct memory access)方式。其基本思想是在外围设备和内 存之间开辟直接的数据交换通道。 通道控制(channel control)方式与DMA 方式相类似,也是一种以内存为中心,实现设 备和内存直接交换数据的控制方式。与之不同 的是,在DMA方式中数据传送方向、存放数据 内存始址以及传送的数据块长度等都是由 CPU控制,而在通道方式中这些都是由专管输 入输出的硬件——通道来进行控制 4.常见的文件物理结构有哪些?各有什么特 点?各自与文件的存取方式的关系如何? 常见的文件物理结构有顺序结构,链接结构, 索引结构。 顺序结构以编号连续的磁盘块存储文件内容, 适合于顺序存取和直接存取; 链接结构将逻辑上连续的文件块存放到不连 续的物理块中、然后在每一个物理块保存一个 存放下一个逻辑块的物理块的指针,以保持逻 辑块的连续性,此类结构顺序存取;以索引结 构存储的文件,适合于顺序存取、直接存取。 索引结构是在文件目录中设置一张文件物理 块的索引表,表中依文件逻辑块的顺序登记各 个逻辑块所在的物理块地址。该方式适合于顺 序存取、直接存取。以顺序结构存储的文 件,适合于顺序存取和直接存取,以链接结构 存储的文件,适合于顺序存取,以索引结构存 储的文件,适合于顺序存取、直接存取。 5.给出两种I/O调度算法,并说明为什么I/O 调度中不能采用时间片轮转法。 答: I/O调度程序通常采用(1)先来先服 务调度和(2)优先级调度两种调度算法。 由于I/O操作中一般会涉及通道操作,而通道 程序已经启动就不能停止,直至完成。在它完 成之前不会被中断,即通道程序不接受从CPU 来的中断。因此I/O调度程序不能采用时间片 轮转调度算法。 6.何谓缓冲区?为什么要引入缓冲? 缓冲即是使用专用硬件缓冲器或在内存中划 出一个区域用来暂时存放输入输出数据的器 件。 引入缓冲是为了匹配外设和CPU之间的处理速 度,减少中断次数和CPU的中断处理时间,同 时。解决DMA或通道方式时的数据传输瓶颈问 题 7.何谓进程通信?常见的进程通信方法有哪 些? 进程之间的信息交换共享存储区,信息传 递,共享文件 8.何谓死锁?产生死锁的原因有哪些? 若系统中存在一组进程(两个或多个),它们 中的每一个进程都占用了某种资源而又都在 等待其中另一进程所占用的资源,这种等待永 远不能结束,这种现象称为死锁。 产生死锁的原因包括竞争资源和进程推进顺 序不当。 9.何谓死锁?为什么将所有资源按类型赋予不 同的序号,并规定所有的进程按资源号递增 的顺序申请资源后,系统便不会产生死锁? 所谓死锁,是指多个进程在运行过程中因争夺 资源而造成的一种僵局,若无外力作用,这些

Altium Designer中进行信号完整性分析

在高速数字系统中,由于脉冲上升/下降时间通常在10到几百p秒,当受到诸如内连、传输时延和电源噪声等因素的影响,从而造成脉冲信号失真的现象; 在自然界中,存在着各种各样频率的微波和电磁干扰源,可能由于很小的差异导致高速系统设计的失败;在电子产品向高密和高速电路设计方向发展的今天,解决一系列信号完整性的问题,成为当前每一个电子设计者所必须面对的问题。业界通常会采用在PCB制板前期,通过信号完整性分析工具尽可能将设计风险降到最低,从而也大大促进了EDA设计工具的发展…… 信号完整性(Signal Integrity,简称SI)问题是指高速数字电路中,脉冲形状畸变而引发的信号失真问题,通常由传输线不阻抗匹配产生的问题。而影响阻抗匹配的因素包括信号源的架构、输出阻抗(output impedance)、走线的特性阻抗、负载端的特性、走线的拓朴(topology)架构等。解决的方式可以采用端接(termination)与调整走线拓朴的策略。 信号完整性问题通常不是由某个单一因素导致的,而是板级设计中多种因素共同作用的结果。信号完整性问题主要表现形式包括信号反射、信号振铃、地弹、串扰等; 1,Altium Designer信号完整性分析(机理、模型、功能) 在Altium Designer设计环境下,您既可以在原理图又可以在PCB编辑器内实现信号完整性分析,并且能以波形的方式在图形界面下给出反射和串扰的分析结果。 Altium Designer的信号完整性分析采用IC器件的IBIS模型,通过对版图内信号线路的阻抗计算,得到信号响应和失真等仿真数据来检查设计信号的可靠性。Altium Designer的信号完整性分析工具可以支持包括差分对信号在内的高速电路信号完整性分析功能。 Altium Designer仿真参数通过一个简单直观的对话框进行配置,通过使用集成的波形观察仪,实现图形显示仿真结果,而且波形观察仪可以同时显示多个仿真数据图像。并且可以直接在标绘的波形上进行测量,输出结果数据还可供进一步分析之用。 Altium Designer提供的集成器件库包含了大量的的器件IBIS模型,用户可以对器件添加器件的IBIS模型,也可以从外部导入与器件相关联的IBIS模型,选择从器件厂商那里得到的IBIS 模型。 Altium Designer的SI功能包含了布线前(即原理图设计阶段)及布线后(PCB版图设计阶段)两部分SI分析功能;采用成熟的传输线计算方法,以及I/O缓冲宏模型进行仿真。 基于快速反射和串扰模型,信号完整性分析器使用完全可靠的算法,从而能够产生出准确的仿真结果。布线前的阻抗特征计算和信号反射的信号完整性分析,用户可以在原理图环境下运行SI仿真功能,对电路潜在的信号完整性问题进行分析,如阻抗不匹配等因素。 更全面的信号完整性分析是在布线后PCB版图上完成的,它不仅能对传输线阻抗、信号反射和信号间串扰等多种设计中存在的信号完整性问题以图形的方式进行分析,而且还能利用规则检查发现信号完整性问题,同时,Altium Designer还提供一些有效的终端选项,来帮助您选择最好的解决方案。 2,分析设置需求 在PCB编辑环境下进行信号完整性分析。 为了得到精确的结果,在运行信号完整性分析之前需要完成以下步骤:

(完整版)操作系统简答题

1.操作系统的目标是什么? 答:方便性,有效性,可扩充性,开放性。 2.什么是计算机操作系统。 答:是计算机系统中的一个系统软件,能有效地组织和管理计算机系统中的硬件和软件资源,合理地组织计算机工作流程,控制程序的执行,并向用户提供各种服务功能,使得用户能够合理、方便、有效地使用计算机,使整个计算机系统能高效运行的一组程序模块的集合。 3.操作系统的三种基本类型是什么。 答:批处理操作系统,分时系统,实时系统 4.试说明多道批处理操作系统的优缺点。 答:优点是资源利用率高,系统吞吐量大。 缺点是平均周转时间长,无交互能力。 5.试叙述多道程序设计的基本概念。 答:在多道批处理系统中,用户所提交的作业首先存放在外存上并排成一个队列,成为“后备队列”;然后,按一定的作业调度算法从后备队列中选择若干个作业调入内存,使它们共享CPU 和系统中的各种资源。 6.简述分时系统的工作原理和特征。 答:(1)分时系统采用时间片轮转法,将CPU 的访问时间平均分给每个用户,使每个用户都可以访问到中央计算机资源。 (2)分时系统的特性:多路性,独立性,及时性,交互性。 7.操作系统的五大管理功能是什么? 答: 处理机管理、存储器管理、设备管理、文件管理、用户接口 8.操作系统的四个基本特征。 答:操作系统的四个基本特征分别是: (1)并发性:在多道程序环境下,并发性是指宏观上在一段时间内有多道程序在同时运行。但在单处理机系统中,每一时刻仅能执行一道程序,故微观上这些程序是在交替执行的。 (2)共享性:共享是指系统中的资源可供内存中多个并发执行的进程共同使用。根据资源属性不同分为互斥共享方式和同时访问方式。 (3)虚拟性:在操作系统中的所谓“虚拟”是指通过某种技术把一个物理实体变成若干个逻辑上的对应物。 (4)异步性:在多道程序环境下,允许多个进程并发执行,但由于资源等因素的限制,通常,进程执行并非“一气呵成”,而是以“走走停停”的方式运行。

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.doczj.com/doc/1816467805.html, for more information,please refer to https://www.doczj.com/doc/1816467805.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

信号完整性需要重视的几大关键问题

信号完整性需要重视的几大关键问题 信号完整性是许多设计人员在高速数字电路设计中涉及的主要主题之一。信号完整性涉及数字信号波形的质量下降和时序误差,因为信号从发射器传输到接收器会通过封装结构、PCB走线、通孔、柔性电缆和连接器等互连路径。 当今的高速总线设计如LpDDR4x、USB 3.2 Gen1 / 2(5Gbps / 10Gbps)、USB3.2x2(2x10Gbps)、PCIe和即将到来的USB4.0(2x20Gbps)在高频数据从发送器流向接收器时会发生信号衰减。本文将概述高速数据速率系统的信号完整性基础知识和集肤效应、阻抗匹配、特性阻抗、反射等关键问题。 随着硅节点采用10nm、7nm甚至5nm工艺,这可以在给定的芯片尺寸下实现高集成度并增加功能。在移动应用中,趋势是更高的频率和更高的数据速率,并降低工作核心电压如0.9v、0.8V、0.56V甚至更低以优化功耗。 在较低的工作电压下以较高的频率工作会使阈值电平或给定位数据的数据有效窗口变小,从而影响走线和电源层分配功率以及“眼图”的闭合度。 由较高频率和较低工作电压引起的闭眼,增加了数据传输误差的机会,因而增加了误码率,这就需要重新传输数据流。重传会导致处理器在较长时间处于有源模式以重传数据流,这会导致移动应用更高的功耗并减少使用日(DOU)。

图1. 频率和较低电压对眼图张开的影响 在给定的高频设计中增加其它设计挑战如信号衰减、反射、阻抗匹配、抖动等时,很明显,信号损耗使接收器难以正确译出信息,从而增加了误差的机会。 数据流中的时钟采样 在接收器处,数据是在参考时钟的边缘处采样的。眼图张开越大,就越容易将采样CLK设置在给定位的中间以采样数据。任何幅值衰减、反射或任何抖动,都将使眼图更闭合并使数据有效窗口和有效位时间变得更窄,从而导致接收端出现误差。 图2. CLK采样 现在,让我们检查何时需要将通道或互连视为传输线,并查看在智能手机或平板电脑等系统中传输损耗的一些主要原因。

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

《操作系统》试题库_简答题

1、什么是操作系统?它有什么基本特征? 操作系统是控制和管理计算机系统内各种硬件和软件资源、有效地组织多道程序运行的系统软件(或程序集合),是用户与计算机之间的接口。 操作系统的基本特征是:并发、共享和异步性。 2、操作系统的含义及其功能是什么? 1)、含义:OS是一组系统软件,它是软硬件资源的控制中心,它以尽量合理有效的方法组织多个用户共享计算机的各种资源。 2)功能:管理计算机的软硬件资源(包括:处理机管理,作业管理,存储管理,设备管理,文件管理)、提高资源的利用率、方便用户。 3、叙述操作系统的含义及其功能,并从资源管理角度简述操作系统通常由哪几部分功能模 块构成,以及各模块的主要任务。 答: 1)、OS是一个系统软件,是控制和管理计算机系统硬件和软件资源,有效、合理地组 织计算机工作流程以及方便用户使用计算机系统的程序集合。 2)功能:管理计算机的软硬件资源、提高资源的利用率、方便用户。 3)组成模块: (1)、处理机管理(或进程管理):对CPU的管理、调度和控制。 (2)、存储管理:管理主存的分配、使用和释放。 (3)、设备管理:管理设备的分配、使用、回收以及I/O控制。 (4)、文件管理:管理外存上文件的组织、存取、共享和保护等。 (5)、作业管理:对作业的管理及调度。(或用户接口,使用户方便的使用计算机) 4、什么是中断向量?什么是多级中断?中断处理的过程一般有哪几步? (1)、中断向量:存放中断处理程序入口地址的内存单元称为中断向量。 (2)、多级中断:为了便于对同时产生的多个中断按优先次序来处理,所以在设计硬件时,对各种中断规定了高低不同的响应级别。优先权相同的放在一级。 (3)、中断处理步骤:响应中断,保存现场;分析中断原因,进入中断处理程序;处理中断;恢复现场,退出中断。 5、什么是多道程序设计技术 多道程序设计技术就是在系统(内存)中同时存放并运行多道相互独立的程序(作业),主机以交替的方式同时处理多道程序。它是一种宏观上并行,微观上串行的运行方式。 6、分时系统和实时系统有什么不同? 答:分时系统通用性强,交互性强,及时响应性要求一般(通常数量级为秒);实时系统往往是专用的,系统与应用很难分离,常常紧密结合在一起,实时系统并不强调资源利用率,而更关心及时响应性(通常数量级为毫秒或微秒)、可靠性等。

信号完整性学习笔记

期待解决的问题: 1.为何AC耦合电容放在TX端; 2.为何有的电源或地平面要挖掉一块; 3.搞清楚反射; 4.搞清楚串扰; 5.搞清楚地弹; 6.搞清楚眼图; 7.搞清楚开关噪声; 8.各种地过孔的作用; 9.写一份学习总结。 自己总结: 从微观的角度讲,信号完整性研究的是电子在电场和磁场的作用下是如何运动的,以及这种运动会造成哪些电气特性产生什么变化。 从宏观的角度讲,信号完整性研究的是如何保证信号从源端传送到终端的过程中,失真的程度在要求的范围内。

第1章 四类基本信号完整性问题: 1、单一网络的信号质量:在信号路径和返回路径上由阻抗突变而引起的反射和失真。 2、两个或多个网络间的串扰:理想回路和非理想回路耦合的互电容和互电感。 3、电源分配系统中的轨道塌陷:电源和地网络中的阻抗压降。 4、来自元件或系统的电磁干扰。 阻抗: 1、任何阻抗突变,都会引起电压信号的反射和失真。 2、信号的串扰,是由相邻线条及其返回路径之间的电场和磁场的耦合引起的,信号线间的 互耦合电容和互耦合电感的阻抗决定了耦合电流的值。 3、电源供电轨道的塌陷,与电源分布系统(PDS)的阻抗有关。 4、最大的EMI根源是流经外部电缆的共模电流,此电流由地平面上的电压引起。在电缆周 围使用铁氧体扼流圈,增加共模电流所受到的阻抗,从而减小共模电流。

第2章时域与频域 频谱:在频域中,对波形的描述变为不同正弦波频率值的集合。每个频率值都有相关的幅度和相位。把所有这些频率值及其幅度值的集合称为波形的频谱。(在频域中,描述波形的方法) 频域中的频谱表示的是时域波形包含的所有正弦波频率的幅度。 计算时域波形频谱的唯一方法是傅立叶变换。 即使每个波形的时钟频率相同,然而他们的上升时间可能不同,因此带宽也不同。 每个严肃认真的工程师都应该至少用手工计算一次傅立叶积分来观察它的细节。 带宽:表示频谱中有效的最高正弦波频率分量。 把频谱中更高频率的分量都去掉,也能充分近似时域波形的特征。 信号的带宽就是幅度比理想方波幅度小3dB(50%)的那个最高频率。 上升时间与时钟周期什么关系? 原则上讲,两者之间的唯一约束是:上升时间一定小于周期的50%。

高速电路中的信号完整性问题

高速电路中的信号完整性问题 许致火 (07级信号与信息处理 学号 307081002025) 1 信号完整性问题的提出 一般来讲,传统的低频电路设计对于电子工程师并不是多么复杂的工作。因为在低于30MHz的系统中并不要考虑传输线效应等问题,信号特性保持完好使得系统照常能正常工作。但是随着人们对高速实时信号处理的要求,高频信号对系统的设计带来很大的挑战。电子工程师不仅要考虑数字性能还得分析高速电路中各种效应对信号原来 面目影响的问题。 输入输出的信号受到传输线效应严重的影响是我们严峻的挑战 之一。在低频电路中频率响应对信号影响很小,除非是传输的媒介的长度非常长。然而伴随着频率的增加,高频效应就显而易见了。对于一根很短的导线也会受到诸如振玲、串扰、信号反射以及地弹的影响,这些问题严重地损害了信号的质量,也就是导致了信号完整性性能下降。 2 引起信号完整性的原因 2.1 传输线效应 众所周知,传输线是用于连接发送端与接收段的连接媒介。传统的比如电信的有线线缆能在相当长的距离范围内有效地传输信号。但是高速的数字传输系统中,即使对于PCB电路板上的走线也受到传输线效应的影响。如图1所示,对于不同高频频率的PCB板上的电压分布是不同的。 图 1 PCB在不同频率上的电压波动

因为低频电路可以看成是一个没有特性阻抗、电容与电感寄生效应的理想电路。高速电路中高低电平的快速切换使得电路上的走线要看成是阻抗、电容与电感的组合电路。其等效电路模型如图2所示。导线的阻抗是非常重要的概念,一旦传输路径上阻抗不匹配就会导致信号的质量下降。 图 2 传输线等效电路模型 由图2的模型可得电报方程: 2.2 阻抗不匹配情况 信号源输出阻抗(Zs)、传输线上的阻抗(Zo)以及负载的阻抗(ZL)不相等时,我们称该电流阻抗不匹配。也这是说信号源的能量没有被负载全部吸收,还有一部分能量被反射回信号源方向了。反射后又被信号源那端反射给负载,除了吸收一部分外,剩下的又被反射回去。这个过程一直持续,直到能量全部被负载吸收。这样就会出现过冲与下冲(Overshoot/Undershoot)、振铃(ring)、阶梯波形(Stair-step Waveform)现象,这些现象的产生导致信号出现错误。 当传输媒介的特性阻抗与负载终端匹配时,阻抗就匹配了。对于PCB板来说,我们可以选取合适的负载终端策略及谨慎地选择传输介

操作系统简答题(含答案)复习课程

1.OS的主要功能 操作系统的基本功能:处理机管理、存储管理、设备管理、信息管理(文件系统管理)、用户接口。 2.OS有哪三种类型?各有什么特点? 操作系统一般可分为三种基本类型,即批处理系统、分时系统和实时系统。 批处理操作系统的特点是:多道和成批处理。 分时系统具有多路性、交互性、“独占”性和及时性的特征。 实时系统特点:及时响应和高可靠性 3.OS的基本特征是什么? 并发性、共享性、虚拟技术、异步性 4.OS一般为用户提供了哪三种接口?各有什么特点? 1.联机命令接口 提供一组命令供用户直接或间接操作。根据作业的方式不同,命令接口又分为联 机命令接口和脱机命令接口。 2.程序接口 程序接口由一组系统调用命令组成,提供一组系统调用命令供用户程序使用。 3.图形界面接口 通过图标窗口菜单对话框及其他元素,和文字组合,在桌面上形成一个直观易懂使用方便的计算机操作环境. 5.OS主要有那些类型的体系结构? 单体结构、层次结构、微内核结构与客户机-服务器模型、虚拟机结构 6.多道程序设计的主要特点是什么? 多道程序设计技术是指在内存同时放若干道程序,使它们在系统中并发执行,共享系 统中的各种资源。当一道程序暂停执行时,CPU立即转去执行另一道程序。 [特点]:多道、宏观上并行(不同的作业分别在CPU和外设上执行)、微观上串行(在单CPU上交叉运行)。 7.OS在计算机系统中处于什么地位? 操作系统在计算机系统中占有特殊重要的位置,所有其他软件都建立在操作系统基础上,并得到其支持和服务;操作系统是支撑各种应用软件的平添。用户利用操作系统提供的命令和服务操纵和使用计算机。可见,操作系统实际上是一个计算机系统硬件、软件资源的总指挥部。操作系统的性能决定了计算机系统的安全性和可靠性。 8.解释一下术语:进程、进程控制块、进程映像、线程、进程的互斥和同步、临界区和临 界资源、竞争条件、原语、信号量、管程、死锁、饥饿 进程:进程是程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立的基本单位。 进程控制块(Procedure Control Block):使一个在多道程序环境下不能独立运行的程序(含

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

信号完整性问题

二信号的完整性问题及解决办法 两个方面(时序和电平) 信号完整性(Signal Integrity)是指信号未受到损伤的一种状态,它表示信号质量和信号传输后仍保持正确的功能特性。良好的信号完整性是指在需要时信号仍能以正确的时序和电压电平值作出响应。随着高速器件的使用和高速数字系统设计越来越多,系统数据速率、时钟速率和电路密集度都在不断增加。在这种设计中,系统快斜率瞬变和工作频率很高,电缆、互连、印制板(PCB)和硅片将表现出与低速设计截然不同的行为,即出现信号完整性问题。 信号完整性问题能导致或者直接带来信号失真,定时错误,不正确数据、地址和控制线以及系统误工作甚至系统崩溃,解决不好会严重影响产品性能并带来不可估量的损失,已成为高速产品设计中非常值得注意的问题。 信号完整性问题的真正起因是不断缩减的信号上升与下降时间。一般来说,当信号跳变比较慢即信号的上升和下降时间比较长时,PCB中的布线可以建模成具有一定数量延时的理想导线而确保有相当高的精度。此时,对于功能分析来说,所有连线延时都可以集总在驱动器的输出端,于是,通过不同连线连接到该驱动器输出端的所有接收器的输入端在同一时刻观察都可得到相同波形。然而,随着信号变化的加快,信号上升时间和下降时间缩短,电路板上的每一个布线段由理想的导线转变为复杂的传输线。此时信号连线的延时不能再以集总参数模型的方式建模在驱动器的输出端,同一个驱动器信号驱动一个复杂的PCB连线时,电学上连接在一起的每一个接收器上接收到的信号就不再相同。从实践经验中得知,一旦传输线的长度大于驱动器上升时间或者下降时间对应的有效长度的1/6,传输线效应就会出来,即出现信号完整性问题,包括反射、上冲和下冲、振荡和环绕振荡、地电平面反弹和回流噪声、串扰和延迟等。表1列出了高速电路设计中常见的信号完整性问题,以及可能引起该信号完整性的原因,并给出了相应的解决方法。目前,解决信号完整性问题的方法主要有电路设计、合理布局和建模仿真。电路设计中,通常采用以下方法来解决信号完整性问题:·控制同步切换输出数量,控制各单元的最大边沿速率(dI/dt和dV/dt),从而得到最低且可接受的边沿速率;·为高输出功能块(如时钟驱动器)选择差分信号;·在传输线上端接无源元件(如电阻、电容等),以实现传输线与负载间的阻抗匹配。端接策略的选择应该是对增加元件数目、开关速度和功耗的折中,且端接串联电阻R或RC电路应尽量靠近激励端或接收端。布线非常重要,设计者应该在不违背一般原则的前提下,利用现有的设计经验,综合多种可能的方案,优化布线,消除各种潜在的问题。一方面要充分利用现有的、已经过验证的布线经验,将它们应用于布线工作中;另一方面要积极利用一些信号完整性方面的仿真工具,约束、指导布线。合理进行电路建模仿真是最常见的信号完整性解决方法。在高速电路设计中,仿真分析越来越显示出优越性。它给设计者以准确、直观的设计结果,便于及早发现问题,及时修改,从而缩短设计时间,降低设计成本。在进行电路建模仿真过程中,设计者应对

操作系统填空问答题

操作系统复习资料 1、现代操作系统的基本特征是程序的并发执行、资源共享和操作的异步性。 2、为了使系统中所有的用户都能得到及时的响应,该操作系统应该是分时系统。 3、操作系统内核与用户程序、应用程序之间的接口是系统调用。 4、多个进程的实体都能存在于同一内存中,在一段时间内都能得到这种性质称作进程的 并发性。 5、为了使系统中各部分资源得到均衡使用,就必须选择对资源需求不同的作业进行合理 搭配,这项工作是由作业调度完成的。 6、通常,用户编写的程序中所使用的地址是逻辑地址。 7、在分页存储管理系统中,从页号到物理块号的地址映射是通过页表实现的。 8、文件管理实际上是管理辅助存储空间。 9、如果文件系统中有两个文件重名,不应该采用单级目录结构。 10、引入缓冲技术的主要目的是提高CPU与设备之间的并行程度。 11、设备的打开、关闭、读、写等操作是由设备驱动程序完成的。 12、控制和管理资源建立在单一系统策略基础,将计算机功能分散化,充分发挥网络 互联的各自治处理机性能的多机系统是分布式系统。 13、在计算机系统中,操作系统是处于裸机之上的第一层软件。 14、属于多用户、多进程、多任务分时系统的是UNIX系统。 15、引入多道程序的目的是充分利用CPU,减少CPU等待时间。 16、在操作系统中引入“进程”概念的主要目的是描述程序动态执行过程的性质。 17、作业调度的关键在于选择恰当的作业调度算法。 18、若处理器有32位地址,则它的虚拟地址空间是4GB字节。 19、除操作系统占用的内存空间之外,所剩余的全部内存只供一个用户进程使用,其 他进程都放在外存上,这种设计称为对换技术。 20、文件系统为每个文件建立一张指示逻辑记录和物理记录之间的对应关系表,由此 表和文件本身构成的文件是索引文件。 21、使用绝对路径名访问文件是从根目录开始按目录结构访问某个文件。 22、用户程序与实际使用的物理设备无关,由操作系统考虑因实际设备不同而需要使 用不同的设备驱动程序,这是由设备管理的设备独立性功能实现的。 23、不属于分布式系统特征的是可定制性。 24、操作系统核心部分的主要特点是主机不断电时常驻内存。 25、操作系统中用的最多的数据结构是表格。 26、索引式(随机)文件组织的一个主要优点是能实现物理块的动态分配。 27、文件目录的主要作用是按名存取。 28、在操作系统中管理中,面向用户的管理组织机构称为逻辑结构。 29、单机操作系统的共享资源主要是指内存、CPU和基本软件。 30、为方便用户,操作系统负责管理和控制计算机系统的硬件和软件资源。 31、设备I/O方式有如下三种:询问、中断、通道。 32、操作系统五大功能中作业管理包括用户任务管理和人机交互界面管理;文件管理 又称信息管理;存储管理主要讲解内存管理;设备管理是最原始的监控程序管理;进程管理实质上是CPU的执行调度管理。

五款信号完整性仿真分析工具

SI五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

高速信号与信号完整性分解

什么是高速数字信号? 高速数字信号由信号的边沿速度决定,一般认为上升时间小于4倍信号传输延迟时可视为高速信号,而高频信号是针对信号频率而言的。高速电路涉及信号分析、传输线、模拟电路的知识。错误的概念是:8KHz帧信号为低速信号。多高的频率才算高速信号? 当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号. 对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,信号从10%上升到90%的时间小 于6倍导线延时,就是高速信号! 即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线理论。 信号完整性研究:什么是信号完整性? 时间:2009-03-11 20:18来源:sig007 作者:于博士点击:1813次 信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。一般认为,当系统工作在50MHz时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等 这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。 1、什么是信号完整性(Singnal Integrity)? 信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法: 问题可能原因解决方法其他解决方法 过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源 直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面

操作系统常见问答题总结

操作系统常见问答题总结 1、简述操作系统的定义。 操作系统是计算机系统的一种系统软件,它统一管理计算机系统的资源和控制程序的执行。 2、在多道程序设计技术的系统中,操作系统怎样才会占领中央处理器? 只有当中断装置发现有事件发生时,它才会中断当前占用中央处理器的程序执行,让操作系统的处理服务程序占用中央处理器并执行之。 3、简述“删除文件”操作的系统处理过程。 用户用本操作向系统提出删除一个文件的要求,系统执行时把指定文件的名字从目录和索引表中除去,并收回它所占用的存储区域,但删除一个文件前应先关闭该文件。 4、对相关临界区的管理有哪些要求? 为了使并发进程能正确地执行,对若干进程共享某一变量(资源)的相关临界区应满足以下三个要求: ①一次最我让一个进程在临界区中执行,当有进程在临界区中时,其他想进入临界区执行的进程必须等待; ②任何一个进入临界区执行的进程必须在有限的时间内退出临界区,即任何一个进程都不应该无限逗留在自己的临界区中; ③不能强迫一个进程无限地等待进入它的临界区,即有进程退出临界区时应让下一个等待进入临界区的进程进入它的临界区。 5、简述解决死锁问题的三种方法。 ①死锁的防止。系统按预定的策略为进程分配资源,这些分配策略能使死锁的四个必要条件之一不成立,从而使系统不产生死锁。 ②死锁的避免。系统动态地测试资源分配情况,仅当能确保系统安全时才给进程分配资源。 ③死锁的检测。对资源的申请和分配不加限制,只要有剩余的资源就呆把资源分配给申请者,操作系统要定时判断系统是否出现了死锁,当有死锁发生时设法解除死锁。 6、从操作系统提供的服务出发,操作系统可分哪几类? 批处理操作系统、分时操作系统、实时操作系统、网络操作系统、分布式操作系统。 7、简述计算机系统的中断机制及其作用。 中断机制包括硬件的中断装置和操作系统的中断处理服务程序。 中断装置由一些特定的寄存器和控制线路组成,中央处理器和外围设备等识别到的事件保存在特定的寄存器中,中央处理器每执行完一条指令,均由中断装置判别是否有事件发生。 若无事件发生,CPU继续执行;若有事件发生,则中断装置中断原占有CPU的程序的执行,让操作系统的处理事件服务程序占用CPU,对出现的事件进行处理,事件处理完后,再让原来的程序继续占用CPU执行。 8、选择进程调度算法的准则是什么? 由于各种调度算法都有自己的特性,因此,很难评价哪种算法是最好的。一般说来,选择算法时可以考虑如下一些原则: ①处理器利用率; ②吞吐量; ③等待时间; ④响应时间。 在选择调度算法前,应考虑好采用的准则,当确定准则后,通过对各种算法的评估,从中选择出最合适的算法。 9、独占设备采用哪种分配方式?

相关主题
文本预览
相关文档 最新文档