当前位置:文档之家› 钢管混凝土拱桥的施工方法和结构设计..

钢管混凝土拱桥的施工方法和结构设计..

钢管混凝土拱桥的施工方法和结构设计..
钢管混凝土拱桥的施工方法和结构设计..

钢管混凝土拱桥的施工方法

钢管砼结构,由于能通过互补使钢管和混凝土单独受力的弱点得以削弱甚至消除,管内混凝土可增强管壁的稳定性,钢管对混凝土的套箍作用,使砼处于三向受力状态,既提高了混凝土的承载力,又增大了其极限压缩应变,所以自钢管砼结构问世以来,是桥梁建筑业发展的一项新技术,具有自重轻、强度大、抗变形能力强的优点,因而得到突飞猛进的发展。在桥梁方面,已以各种拱桥发展到桁架梁等结构形式,并发展到钢管混凝土作劲性骨架拱桥。其施工方法发展很快,已经应用的有无支架吊装法,支架吊装法,转体施工法等。

1 拱肋钢管的加工制作

拱肋加工前,应依理论设计拱轴座标和预留拱度值,经计算分析后放样,钢管拱肋骨架的弧线采用直缝焊接管时,通常焊成1.2-2.0m的基本直线管节;当采用螺旋焊接管时,一般焊成12.0~20m弧形管节。对于桁式拱肋的钢管骨架,再放样试拼,焊成10m左右的桁式拱肋单元,经厂内试拼合格后即可出厂。具体工艺流程为:选材料进场材料分类材质确认和检验划线与标记移植编号码下料坡口加工钢管卷制组圆、调圆焊接非坡口检验附件装配、焊接单节终检组成10m左右的大节桁式拱肋焊接无损检验大节桁式拱肋终检 1:1大样拼装检验

防腐处理出厂。

当拱肋截面为组合型时,应在胎模支架上组焊骨架一次成型,经尺寸检验和校正合格后,先焊上、下两面,再焊两侧面(由两端向中间施焊)。

焊接采用坡口对焊,纵焊缝设在腔内,上、下管环缝相互错开。在平台上按1:1放样时,应将焊缝的收缩变形考虑在内。为保证各节钢管或其组合骨架拼组后符合设计线型,可在各节端部预留1cm左右的富余量,待拼装时根据实际情况将富余部分切除。钢管焊接施工以“GBJD05—83、钢结构施工和施工及验收规范”的规定为标准。焊缝均按设计要求全部做超声波探伤检查和X射线抽样检查(抽样率大于5%)。焊缝质量应达到二级质量标准的要求。

2 钢管混凝土拱桥的架设

2.1无支架吊装法

2.1.1缆索吊机斜拉扣挂悬拼法

具体做法与其他拱肋的架设相似,只是钢管混凝土拱肋无支架架设方案用于较大跨度,它可根据吊机能力把钢管拱肋合成几大段进行分段对称吊装,并随时用扣索和缆风绳锚固,稳定在桥位上,最后合拢。如净跨度150m 四川宜宾马鸣溪金沙江大桥,为钢筋混凝土箱拱,分五段吊装,吊重700KN。广西邕宁邕江大桥,主跨312m的钢管混凝土劲性骨架箱肋拱,每根拱肋的钢管骨架分9段吊装,吊重590KN。四川万县长江大桥,跨径420m的钢管混凝土劲性骨架上承式拱桥,分36段吊装,吊重612.5KN。

缆索吊机斜拉扣挂悬拼法施工是我国修建大跨度拱桥的主要方法之一。施工理论成熟,施工体系结构简单,施工调整与控制较方便。但这种方法起吊端要有一定的施工场地,缆索跨度较桥跨要大,用缆索较多,主塔架与扣索塔架相互分开,存在受压杆稳定要求塔高不能过高,并且要设置各种缆风索而占地面积较大。

2.1.2整体(或大段)吊装施工方法

整体吊装施工方法也称为三大段吊装施工方法。主跨分三段,边段利用鹰架悬臂拼装或采用龙门吊机与起吊塔架共同起吊就位,同时调整好拱肋空间位置,中段两肋连同横撑在岸上拼装,用临时拉杆拉住,整体浮运到桥位,利用鹰架和主拱拱肋悬臂段设置提升设备将中段提升就位,解除中段临时系

杆,然后合拢,如图1所示。

这种施工方法,美国的弗里蒙特桥曾采用,该桥为最长跨度悬臂系杆拱桥主跨为382.65m,1973年建成。

三段吊装法,工期短,将大量的现场工作转移到工厂内,能确保拱轴线及质量,不受桥头拆迁控制,占地较少,对城市建桥尤为重要;与引桥施工不发生干扰,机具设备少,临设材料可以大量回收,节省投资;技术可行,且施工不复杂,安全度校高。但该施工方法,长大段钢管拱肋的运输受水位及河道的限制;工厂制造需要有较大的场地和下河码头等。这种施工方法在国内尚无先例。

2.1.3双塔缆索吊机法

该缆索吊机塔架之缆塔和扣塔合二为一,并于前塔上附加后塔形成空间框架结构,故称为双塔缆索吊机施工法。如图2:

这种施工方法,塔架刚度较大,可不设缆风。吊装操作方法为:①拼装缆索吊和塔架,安装缆索吊机缆索及机械部分,试吊合格后投入使用;②工厂内制造钢管拱桁架节段并予以试样,合乎要求后按顺序下河运到桥轴位处抛锚定位;③对称按序逐节段起吊、对位、扣索、连接、调整拱肋空间位置,挂锚索,对称同步张拉相应扣、锚索;④调整与控制塔架水平位移调整与控制拱肋各节段的高程及平面位置;⑤全面检查与调整拱肋轴线控制点高程及平面位置。焊接各节段接头处外包钢板。这种施工方法为缆索吊机的特例,具有一般缆索吊机施工方法的优点,但因不设缆风索,可大幅压缩桥址区红线外征地,节省投资。但是缆塔和扣索塔合二为一,使两者之间的变形连为一体,相互影响,施工调整与控制较为不便,体系构造复杂,受力不很直观。我国江汉三桥下承式钢管拱桁架系杆无铰拱桥采用此方法施工,主跨280m。

2.2转体施工法

2.2.1平面转体施工法

(1)有平衡重转体施工,平衡重转体主要由平衡体系,转动体系(转轴及环道)和位控体系三部分组成。其平衡体系一般利用桥台或配重来平衡

主拱,转动体系为拱脚后的球铰;同时在球铰周围布置千斤顶或卷扬机使转动轴转动,转动轴上的半跨拱肋随之徐徐转动,直到就位。如图3所示。我国的黄柏河、下牢溪大桥,跨径均为160m采用此法施工,转体重量达36000KN。

(2)无平衡转体施工,是采用锚碇体系平衡悬臂主拱,取消平衡重,而节省材料。锚碇体系由作为压杆的主柱,作为撑梁的引桥主梁以及后锚等部分组成,如图4所示。

2.2.2竖向转体施工法

竖向转体是根据桥位的情况,采用在桥轴线竖向而预制半拱肋,然后再从两边向上或向下转体施工就位的施工方法,一般用在小跨径的拱桥上。

如图5所示。三峡莲沱大桥采用此法施工,净跨48.3m+114m+48.3m钢管混凝土带悬臂中承式刚架系杆拱桥。

2.2.3双向转体施工

当桥位处地形不允许拱肋在桥位的设计平面或轴线竖面预制时,可采用竖转加平转施工。其转动设竖向转轴和平转体系满足双向转体施工。我国的河南安阳文峰路立交桥采用竖转加平转法施工,主跨为135m的钢管混凝土刚架系杆拱;广州丫髻沙大桥,主跨为360m带悬臂的中承式刚架系杆钢管混凝土拱桥。

2.3有支架吊装法

根据桥位处的地形及设计情况可采用有支架吊装法进行钢管主拱肋的架设。拱肋的吊装仍采用缆索系统,不同之处是在每一拼接处设置支架,使拱肋的连接和焊接在支架上进行。

支架的设置按拱肋的轴线和段接头位置及高程,在精确定位后,就每个段接头的高度设计相应的支架高度(该高度考虑了支架、支承结构的变形和施工预拱度),经计算确定支架的形式和材料,满足强度、稳定及刚度要求,支承处圆弧和坡度应和该处的拱肋设计完全吻合,以保证较大的支承面积和钢管拱肋的稳定。吊装时用索道吊运到位初步控制合格后,拱肋的一端采用焊搭板螺栓联接,另一端用两道临时缆风护设稳定,合拢段在准确测量出实际的长度和待合拢段拱肋的长度根据实际将多余的长度割掉后按吊装顺序吊装,到位后两端精确对位连接。吊装顺序如图6所示。

采用此法施工的有延安王家坪大桥净跨190m的中承式钢管混凝土拱桥,天津塘沽彩虹大桥主桥3跨168m下承式系杆钢管混凝土拱桥等。

3 钢管拱混凝土的灌注

3.1拱肋钢管内混凝土的灌注

钢管混凝土拱桥钢管内的混凝土优先采用泵送顶升法灌注,对小跨径的钢管混凝土拱桥也可采用浇注捣固法。

拱肋钢管内混凝土一般采用微膨胀混凝土,要有一定的流动性,混凝土中所用的各中外掺剂,如减水剂、微膨胀剂、粉煤灰等品种的选用和掺用量均应通过试验确定。泵送混凝土坍落度一般为18~22cm。

泵送顶升法采用混凝土输送泵将混凝土从低处向高处顶升,当加载程序是从拱脚往拱顶一次浇注时,从两端拱脚向拱顶泵送,拱顶附近开排气孔。当拱肋钢管较长时,可采用“分仓法”进行泵送顶压,每隔仓段顶部设排气孔,如图7所示。

对于单管拱肋钢管,只要同时对称灌注即可,组合截面应先灌注上、下缀板仓由跨中自拱脚同时浇注下层内侧钢管(待达到要求的强度后)下层外侧钢管上层内侧钢管上层外侧钢管拱脚实腹段混凝

土。如图8所示。

泵送混凝土时两边泵送速度应加强协调,尽量对称顶升,特别是接近拱顶时要注意避免一边上升过快越过拱顶,引起钢管骨架的纵向振动。

人工浇灌时,混凝土从浇注段的上端灌入,但混凝土落差不宜太大以免混凝土离析。在钢管上开浇灌孔,孔径一般为φ200mm,通过漏斗下料,振动可用插入式振动棒振捣。为此应在钢管上开设振捣孔,一般振捣孔和浇灌孔相隔设置,振捣孔直径视振动棒大小而定,一般为150mm;浇灌孔开孔距离不应大于振动器的有效工作范围和2~3m的水平距离。

混凝土通过振动孔和浇灌孔时可稍溢出,然后在开口盖板原位点焊,使混凝土强度达到设计强度的50%后,再按设计要求进行补焊。

混凝土在灌注时,钢管内混凝土温度控制在60℃以下,以免微膨胀混凝土失效。

钢管内灌注混凝土的密实度可采用敲击钢管和超声波检测。若混凝土不密实的部位,应采用钻孔压浆法进行补强。当缺陷较小时,压环氧树脂;当

缺陷较大时,可压高标号砂浆,压浆后将钻孔补强焊牢。

3.2钢管作为劲性骨架外包混凝土的灌注

用钢管作为劲性骨架的大跨度拱桥近年较多,如四川内江新龙坳大桥主跨净跨117.8m,江西德兴钢矿太白大桥净跨130m,广西邕宁邕江大桥计算跨径312m均为钢管混凝土劲性骨架桥,架设后管外包混凝土形成箱型拱肋。四川万县大桥主桥净跨420m,为钢管劲性骨架,该桥为世界同类桥中跨度最大者。

钢管劲性骨架已形成一个稳定的整体结构,为吊装模板及施工脚手架提供了方便,可以按照设计要求的加载程序分段,分层地灌注拱圈砼,并进行拱上结构施工。

4 钢管防锈处理

4.1钢管除锈

钢管除锈通常采用机械法中的喷砂除锈,抛丸除锈辅以化学清洗。除锈方法与除锈等级与设计采用的防腐材料有关。一般要求钢管外侧表面无油污、氧化皮、锈迹等杂物,表面呈钢材金属光泽,以确保除锈质量。

4.2防腐保护层

钢管外露面需要防腐处理,常用的方法有金属涂层和非金属涂层,现介绍如下:

4.2.1金属涂层

(1)阴极防腐涂层,这类涂层若存在孔隙,则会在涂层与钢材表面形

成电池引起腐蚀,施工难度大,工艺复杂,难以保证质量,一般不采用。镀锡层等属于阴极防腐。

(2)阳极防腐涂层,锌、铝等属于阳极防腐涂层,其防腐效果较好,也称为长效复合防涂层,主要工序为先热喷一定厚度的铝镁合金,再以锌磺环氧树脂作封闭层,面层用氯化橡胶涂敷,保护层的总厚度约300μm。其中铝镁合金层厚200μm,其余2层为100μm,此法一次费用较高,有关资料表明,其防锈年限可达30年以上,以长远效益看,用长效复合保护层可降低后期的维修保养工作。

目前先进的GCM特种长效金属防腐防护系统,有关资料表明,防锈年限可达50年,这种防护系统有以下显著特点:

①GCM防护系统由密闭层、强度层、耐候层三层结构构成,三层总厚度一般在1000μm以上,使其成为防腐、防护系统。

②GCM防护系统在固化时系统自身产生收缩,使之紧固于金属表面,不会因产生“滑移”、“脱层”、“刺伤”而使防护失败。

③GCM防护系统施工方便,不需高压喷砂、除锈的施工程序。

④GCM防护系统的耐候层具有优异的抗紫外线搞感化性能、满足长效防腐、防护要求。

⑤GCM防护系统具有优异的绝缘功效。

⑥GCM防护系统的颜色可根据桥地处周围环境选择合适的颜色,是目前较理想防腐、防护系统。

4.2.2非金属涂层

非金属涂层又分无机涂层和有机涂层。无机涂层包括化学转涂层、珐琅、玻璃的水泥等。有机涂层包括塑料、涂料和防锈油。非金属涂层在建成的钢管混凝土拱桥防护中应用较多。

5 吊杆安装

吊杆一般用在钢管混凝土拱桥中承式和下承式桥中,常用材料有圆钢、高强钢丝和钢绞线,锚头用冷铸锚或镦头锚,夹片群锚使用较少。吊杆的构造同斜拉桥中的斜拉索构造均用定型成套产品。

钢管拱肋在制作时将吊杆上端的导管、螺旋钢筋、垫板一并设置在拱肋中,吊杆下端的导管、垫板应预埋在吊杆横梁中。

为了保证桥面标高的正确位置,待拱肋架设调整完成后,准确测量拱肋上垫板的标高,然后计算吊杆的下料长度,在工厂加工成型运到工地进行安装。

6 桥面板安装

桥面板的安装按设计加载程序进行吊装、轴线对称、两端对称,同一般中承式和下承式桥面板安装。

7 结语

⑴钢管混凝土拱桥是近年发展起来的,重量轻、结构合理,发挥了两种材料优点,有发展前景。

⑵钢管混凝土拱桥架设方案的选择,应根据桥址处地形、设计要求进行方案比选,确定合理的架设方案。

⑶钢管内混凝土的灌注顺序应按加载程序进行,对拱肋的灌注应优先考虑泵送顶升法。

⑷钢管防腐防护处理采用GCM特种长效金属防腐防护系统,工艺简单,费用低,防护效果好。

⑸吊杆防护安装采用PE防护,两端锚头在工厂加工镦头,高空作业简

单,施工方便。

钢管混凝土拱桥结构设计探讨

2009-05-11 16:50 【大中小】【打印】【我要纠错】

摘要:钢管混凝土拱桥在我国的应用发展很快。本文对刚架系杆拱桥型、助供横向结构、拱助我面设计和桥面系构造等问题进行探讨。

关键词:钢管混凝土;拱桥结构设计;探讨

管混凝土拱桥近十年来在我国发展迅速,随着数量的增多,跨径与规模也不断增大,分布区域也越来越广,除了钢管混凝土拱桥具有材料强度高、施工方便、造型美观等优点的原因外,与我国正处于大规模的交通基础设施建设时期的大环境有密切的关系[2]。本文将根据钢管混凝土拱桥在我国的应用情况与近几年的发展趋势,对结构的合理设计进行定性的讨论。

一、刚架系杆拱桥型

钢管混凝土拱桥结构形式丰富多样,承载形式上、中、不承式均有。按拱的推力,又可分为有推力供和无推力供。无推力供又有拱架组合体系和刚架系杯供。钢管混凝土拱桥以中下承式为主,有推力拱和元推力拱均占相当的比重。在无推力拱中,以刚架系杆拱为主。这些都是钢管混凝土拱桥的构造特点,与我国传统的石拱桥、钢管混凝土拱桥均有明显的不同。

刚架系杆拱是在钢管混凝土拱桥中出现的拱桥新的结构形式。我国建成的第一座钢管混凝土拱桥--四川旺苍东河大桥采用的就是刚架系杆拱。与拱架组合体系不同,刚架系杆供中拱助与桥墩团结,不设支座,采用预应力钢绞线作为拉杆来平衡换的推力,拉杆独立于桥面系之外,不参与桥面系受力,而桥面系为局部受力构件。这种结构由于拱和墩连接处为刚结点,属刚架结构,又带有系杆,故称之为刚架系杆拱。

刚架系杯拱为超静定结构,桥梁上部、下部以及基础甚至地基连成一体,结构的超静定次数较多,受力复杂。由于其系杆刚度与供梁组合体系中的系杯梁刚度相比小很多,特别对于大跨径桥梁,系杆拉力增量将产生很大的变形,而供助、系杆和墩往团结在一起,根据位移交形协调条件,供的水平推力的增量主要由桥墩和拱助自身承受,因而考虑系杆变形后它是有推力的结构。系杆的作用是对拱施加预应力以抵消拱的大部分水平推力(主要是恒载产生的水平推力),因此通常把系杯看成预应力体外索。除去系杆承受的水平推力后余下的拱的水平推力一般来说不大,还可以通过适当的超张拉给予最大限度的减小,从这个角度可以看成无推力拱。刚架系杯拱由于系杆的存在,降低了对下部结构和基础的要求,使拱桥的应用范围从山区扩大到了平原和城市。

在施工方面,刚架系杆拱的施工可以像固定供一样采用无支架施工,因而桥梁的跨越能力也较大,也能够充分发挥钢管混凝土拱桥施工方便的优越性。由于这些优点,这种桥型出现以后得到较广泛的应用。

目前已建成的下承式刚架系杯拱中跨径最大的是深圳北站大桥(150m),在建的跨径最大的是湖

北武汉汉江三桥(跨径达280m);带双悬臂半拱的中承武刚架系杆拱(俗称飞鸟式或飞燕式),已建成的跨径最大的是广东东南海三山西大桥(主跨ZDO刎。在建的大跨径的有主跨达36的广州丫警沙大桥、主跨达280米的武汉汉江五桥和主跨达235m的江苏徐州京杭运河大桥。由此可以看出,刚架系杆玖正成为大跨径钢管混凝土拱桥的主要桥型。

钢管混凝土拱桥同自架设体系,先架设空钢管供,再准筑管内混凝土,然后上横梁、纵梁等桥系构造,最后进行桥回铺装和人行道、栏杆等附属物。在系杆张拉前的水平推力由洪和下部结构承担。因水平位移对拱的受力的不利影响很大,通常要求下部结构有较大的抗推刚度、承受大部分的水平推力。钢管混凝土拱先期架设的空钢管供的自重较轻,通常情况下其恒载水平推力较小.可以由下部结构承受。但此后加上的恒载,如横梁、纵梁、桥面铺装等自重,应由系杆承受。也就是说系杆应随上部结构的施工逐步张拉。

然而,近期出现的一些大跨宽桥,由于桥面纵坡的存在,使得系杆较难在横梁架设之前安装,因而在横梁架设之前的恒载水平推力要靠桥墩来抵抗。对于宽桥,横梁的自重在桥梁恒载中所占比重很大,尤其是混凝土横梁,这就使得桥梁基础工程量急增,未能充分发挥这类桥型对下部结构和基础要求低的优势。因此如何解决这一问题,是这一桥型应用与发展的关键之一。

刚架系杆拱供墩团结点的构造较为复杂,俄慢下承式。拱助、桥墩、帽梁汇聚在这里,为不规贝消几何体。其受力也较复杂,各方向的力也都集中于此点,且受系杯强大的集中力作用,容易在主技应力方向发生开裂;此外桥墩内也可能产生较大的主技应力。这些都应引起重视。

二、肋拱桥横向结构

钢管混凝土拱桥均为助拱桥,由于其材料强度高,随着跨径的增大,横向稳定问题较为突出,所以其横向结构的合理采用至关重要。上承式助供,可采用多助结构(多于二的),横向联系通常布置成等间距的径向根撑(或根系梁),其横向稳定主要取决于整桥的宽跨比。对于中不承式拱,横向联系的布置在桥面附近受到行车空间的限制,同时对横向动力特性和美观也有很大的影响,合理布且尤为重要。有时为加强其横向稳定性,将其两助内倾而成提亚扶。与之相对应,一般助扶则称为平行肋供。当然,对于跨径不是很大的城市桥梁,或出于景观考虑,也有做成无风撑的。

1、横撑布置

横撑布置对结构横向稳定的影响要大于其自身刚度。研究表明,拱顶附近揭撑布置成与拱轴线正交、在其他地方与拱轴线相切,对提高横同稳定效果较好[4]。这是因为,拱助横向先稳向面外恻倾时,拱顶处的债撑主要承受洪助的扭转变形,采用竖向布置的横撑增强了对拱肋在拱顶处的扭转变形的约束,能提高拱的面外稳定性。在其他地方,尤其是L/4附近拱助侧倾时根撑要承受供助的相对错动,对核撑是横向湾矩,因此,采用切向布置(如K撑),对约束拱助的相对错动有较大的作用。

横撑在增加横向稳定的同时,由于它使得供的横向整体刚和质量的提高,特别对于中下承式拱桥由于重心的提高,使得拱对横向地震波的响应增大[5]。对于钢管混凝土拱桥来说,在横向受力时,由于结构受力并不以受压为主,因此钢管混凝土抗压强度高的特点并没有得到充分发挥出.相对于宝钢管拱桥来说,钢管混凝土拱桥钢管内混凝土的质量加大了供的横向受力。因此,正确处理钢管混

凝土拱桥的横向稳

因此钢管混凝土抗压强度高的特点并没有得到充分发挥出.相对于宝钢管拱桥来说,钢管混凝土拱桥钢管内混凝土的质量加大了供的横向受力。因此,正确处理钢管混凝土拱桥的横向稳定和抗横向地震作用力这一矛盾显得十分重要。

拱桥的横向基频与结构型式和横向构造有关。中不承式拱的横向基频较上承式的低;在下承式中,拱架组合体系的横向基频较刚架系杆拱的低。不同位置的根撑对助供的横向基频也有着不同的影响。拱顶模搜数量和刚度变化较供脚的根撑数量变化,对面外基频影响要明显得多。因此,对于中承式拱在拱脚采用较强的横向联系(如K撑、X撑)、在拱顶采用较少较弱的横撑,既能满足横向稳定要求,又有利于减小横向地震力作用,同时建筑造型也较佳。

由于目前钢管混凝土拱桥横向稳定计算和抗震设计方法的还不完善,一些设计者由于担心横向先稳而采用过强的横向联系,既造成浪费,也不利于抗震安全社,这在位于强震区的桥梁尤其有害。

2、提篮拱(又称X型肋拱)显然能提高洪的横向稳定性。但提篮供随着倾角的增加,会使下部结构工程数量也相应增加。对拱应直接坐落于基岩时,由于可采用分离式拱座,工程数量增加有限。拱肋的倾斜也会给施工带来困难,因此,应选择合适的倾角。有关研究认为采用X型肋拱其横向稳定性可比平性助拱提高12-20倍,同时也会降低供肋的面内极限承载力。所以,X型肋拱的内倾角也不是越大越好,一般控制在3度~15度之间,以10度附近为佳。

尽管我国一些学者在研究的基础上,提倡采用提篮拱,但由于过去以钢筋混凝土材料为主的拱桥在施工上的困难而极少采用。1993年竣工的四川成渝高速公路上的内江新龙拗大桥,采用了提篮拱。该桥为单跨钢管混凝土劲性骨架箱助拱。目前在建的徐州一连云港高速公路徐州京杭大运河特大桥采用了提篮拱。该桥为带悬臂的中承武刚果系杆钢管混凝土拱,跨径布置为57.5米+235m+57.5米,主拱断面为根哑铃形平行四边形行式,拱肋内倾9.934度,成提篮状。

应该指出,提篮拱在提高横向稳定性的同时,也使得造型较佳,然而对于宽跨比较大的桥梁,纯粹为了造型的原因而采用提篮拱是增加了下部结构和基础的工程量,增加了施工的难度,是不必要、不合理、也是不经济的。

3、无风撑供

无风撑拱指中、下承式肋拱,出于美观考虑,或当桥面较宽而跨径又不大时出于经济和美观考虑,将两肋之间的横撑(或称风撑)完全取消的肋拱桥,也有称之为做四拱的。无风撑拱主要解决拱助的横向失稳问题。解决这一问题的途径主要有两个。一是提高拱肋自身的横向抗弯刚度;二是提高结构体系的横向稳定性。

采用横向圆端形截面(加浙江义乌篁园桥、杭州新塘桥)、横向双圆肋(如浙江义乌宾王桥)、横向底箱肋(如广东中山二桥)、三肢桁肋(如黑龙江依兰牡丹江大桥)等等,都是提高拱肋自身横向抗弯能力而采取的截面形式。

对于拱梁组合体系,宜作成刚性系杆刚性拱或刚性系杆柔性拱,系杆(梁)通常采用箱形梁,除自身有较强的抗扭、抗拉和抗弯能力外,与纵梁固结的桥面横梁也能极大地提高桥面系的刚度,这样为拱肋的横向稳定提供了较大的非保向力作用。

对于钢管混凝土中下承式拱桥,其桥面系一般为简单悬挂的结构,其自身的横向刚度不大,吊杆的刚度也很柔,所以桥面系对拱肋横向稳定的贡献与拱梁组合体系有很大的差别,因此,对于刚架系杆拱应慎用无风撑供。

三、拱肋截面构造

钢管混凝土拱桥的拱助,当跨径不大时可采用单管截面。单管截面主要有圆形和国端形,单圆管加工简单,抗扭性能好,抗轴向力性能由于紧箍力作用显示出优越性,但抗弯效率较低,主要用于跨径不大(80米以下)的城市桥梁和人行桥中。

肋拱桥中绝大部分为哑铃形断面,跨径从几十米到160m,以100m附近为多。哑铃形截面较之单圆管截面,截面抗弯刚度较大,类似于工字形截面,但由于两圆管的直径与高度之比在1/2.5附近,因而不能视为钢管混凝土格构式截面。腹腔内的混凝土受钢板横向套箍作用机理复杂,缺乏研究,若采用钢管混凝土理论计算,计算将很复杂。由于钢管混凝土拱桥设计理论滞后,现行的计算方法常将其作为钢筋混凝土结构,使这一矛盾并不突出,且考虑到腹腔内混凝土处于中和轴附近,设计计算常将其忽略,而只计及自重。

哑铃形截面的腹板与圆管相接的交角较小,而且上下两管弯曲成型后,腹板的焊接有较大的残余应力,所以加工较为困难,质量不易得到保证。在灌注混凝土过程中,腹板受混凝土压力的作用容易外鼓,所以有时需有拉杆对拉或采用其他措施,这使得较为构造复杂。

从经济角度来说,钢管混凝土构件中钢管的作用较大、所占的造价比重也较大,理应将钢材尽可能地安排在外留(即不计混凝土时,应是箱形断面),而哑铃形截面并没有使所有的钢材都处于截面的外围。这同钢筋混凝土构件将矩形截面变形工字形截面的效果不同。所以钢管混凝土拱桥,在跨径较小时可采用单臂截面,在跨径增大以后应采用行武断面,采用哑铃形截面的跨径范围不应像目前这样广泛。

桥式拱助能够采用较小的钢管直径取得较大的纵横向抗弯刚度,且杆件以受轴向力为主,能够充分发挥材料的特性,对跨径超过100米的钢管混凝土拱桥,桁肋是一个比较合适的截面形式。前苏联30年代建造的NceTb河铁路拱桥,即为二铰变截面桁拱。

我国较早出现的桁拱断面为横向哑铃形桥式,其上下为两个横哑铃形断面,腹杆用钢管桁片,广东南海三山西大桥(主跨200米,带悬臂中承式刚架系杆拱)、陕西延安王家坪延河大桥(净跨190m,中承式)等桥采用这种形式。这种截面形式,根哑铃形缀板中的混凝土较之前述的哑铃形断面对加大抗弯刚度有较大的作用,但这种截面的钢一混凝土横腹板的受力特性与国钢管混凝土相差很大,同样存在着设计计算上不能采用套箍理论的问题。因此,其后又发展了混合式的桁式断面。这种断面,上弦采取横哑铃形,下弦两根钢管采用钢管下平联联结。上弦为了缩短缀板的长度,宽度较下弦为短而形成梯形断面,河南安阳文峰立交桥(主跨135m,下承式刚果系杆拱)、四川高谷乌江大桥(净跨150m,中承式)等桥采用这一形式。

直接采用多肢桁式(格构式)断面的钢管混凝土肋拱近年来有较多采用的趋势。这种拱助弦杆采用钢管混凝土材料,腹杆和平联均采用钢管,它较之横哑铃形桥式截面,材料省自重轻,跨越能力强。同时,由于各肢以受轴向力为主,更易于采用钢管混凝土理论进行计算。在多肢桁式断面中,

四肢最为常见,截面的高度与宽度之比在2:回附近较为合理,拱肋的面外稳定性主要通过横向联系来保证。福建闽清石潭溪大桥(净跨136m,中承式)、沈阳浑河长青大桥(净跨140m,中承式)、四川眉山根江大桥(主跨206m,带悬臂中承式刚架系杆供)、广西三岸色江大桥(净跨270m,中承式)等桥采用了完全桁式断面。

另外,还有一种采用集束钢管混凝土的肋拱桥。这种结构加工量少,材料用量比桁拱多,未被桥梁界普遍接受,其受力性能有待实践与理论验证。

钢管混凝土材料的显着优点之一是在构件受压时,钢管对混凝土的紧箍力作用使混凝土的受压强度得到提高。为使这一优势得到充分发挥,应采用强度较高的钢材,但含铜率不必太大。在钢管混凝土拱桥中通常合钢车在5%~12%之间。但日前有些钢管混凝土拱桥的拱肋合钢车接近20%。通常所说的钢管混凝土结构其合钢率在20%以下。接近或超过20%则其受力性能与钢结构相近。钢管管壁较厚时,钢管的局部屈曲问题并不突出,填充混凝土的必要性不足,而且钢管的加工也困难。因此,采用太高的含铜率是不经济、不合理的。

因为有钢管的套箍作用、而且拱式结构常以稳定控制,所以管内混凝土的强度不必要求太高,一般采用C40。但由于现在混凝土标号的提高不会使造价成倍增加,所以也有采用C50甚至C60。

四、桥面系

钢管混凝土拱桥除拱梁组合体系桥面系为以纵梁为主外,其余均以横梁为主结构。它将横梁设置于立柱上或吊杆下,然后纵向铺设桥面板(梁)。活载经桥面系通常横梁传给立柱或吊杆,立柱或吊杆再将荷载传给拱肋。

这种桥面系不参与总体受力,属于局部受力传力结构,其单位自重不随着桥梁跨径的增加而明显增加,这也是这类拱桥跨径可以较大的原因之一。在已建成的钢管混凝土中下承式拱桥中,主拱跨径在五六十米时,吊杆间距一般在4m左右;主供跨径在60~150m时,吊杆间距在5~10m之间;跨径超过150m以后,吊杆间距宜在12m附近。吊杆间距再大以后,桥面板的自重会增加较多,建筑高度也会随之增大,这对中下承式供,特别是下承式拱的总体经济性是不利的。当然,无论桥梁跨径多大,一成不变地采用4m,5米的吊杆间距也是不合理的。因为在这种非拱架组合体系拱桥的桥面系中,桥面板和横梁中活载占总荷载的比例较大,而吊杯及其错具的受力更是以活载(尤其是挂车荷载)控制,在4~12m的吊杯间距范围内,吊杆、横梁、桥面板的受力并不随着吊杆间距的增大而明显增大。因此,随着桥梁跨径的增大,吊杆的间距适当地加大,总体经济效益是好的,而且也符合审美的需要。

钢管混凝土拱桥由于拱助截面的轻型化,使得桥面系在恒载中所占的比例上升。无论是从结构还是从施工方面来说,桥面系的轻型化问题都显得十分必要。尤其是宽桥,横梁的受力很大,其重量在桥面系自身中所占的比例也很大。横梁的跨度一般等于两拱助的中距。横梁所承担的荷载长度为两吊杆或立柱的间距。当横梁跨径在10m附近时,通常采用钢筋混凝土构造;在20m附近时,则应采用预应力构造;跨径更大时,可以考虑采用钢一混凝土或钢一预应力混凝土叠合梁构造。

广州丫髻沙大桥主跨 360米,桥面侧向总宽度32.4m(含分隔带),吊杆横梁采用了钢一混凝土组合梁。横梁计算跨径31.62m和35.5米,钢横梁为二字形,桥面横坡通常横梁腹板的变化形成。一

根钢横梁的自重在30t左右,吊装后在其顶板上浇筑混凝土约18t,总重仅46t左右。若采用预应力混凝土梁则重达100t左右,结构自重和吊装重量均大很多。

深圳北站大桥是一座城市跨铁路站场的立交桥,主跨150m,桥宽23.5米。横梁采用预应力钢一混凝土组合梁。利用纵铺的预应力空心桥面板作为组合梁受压翼缘的一部分,组合梁中的钢梁采用了高托座预应力钢箱梁。

五、结束语

钢管混凝土拱桥是一种优势明显、极具发展潜力的桥型,及时总结其应用经验是非常必要的,而开展深入系统的研究则更为重要。然而到目前为止,除少数研究单位进行了为数有限的钢管混凝土拱桥受力全过程性能、极限承载力、温度应力、混凝土徐变等实验室模型试验和理论外,大部分的研究是针对具体桥梁进行的实桥测试、验证性试验和以大型通用程序为主的有限元分析,动力性能研究则更少,对钢管混凝土拱桥受力性能的研究还缺乏深入细致和全面系统的了解。这就使得我国钢管混凝土拱桥的大规模应用缺乏必要的技术准备,实际应用带有较大的盲目性。在实际应用方面,目前还未有钢管混凝土拱桥的设计与施工技术规范,使得工程设计与施工无章可循,这可能给工程造成浪费和留下质量问题和安全隐患。因此建议有关方面应重视钢管混凝土拱桥的技术研究,投入较多的经费,组织科技攻关;尽快制定颁发钢管混凝土拱桥的设计与施工规范,以使这一具有中国特色的桥梁结构显示其应有的技术先进性的经济合理性。在当前的情况下,应慎重发展钢管混凝土拱桥,尤其是大跨径、大规模的钢管混凝土拱桥。

钢管混凝土拱桥发展趋势

钢管混凝土拱桥结构性能优越,跨越能力大,结构体系灵活多样,既可以做成有推力拱,也可以做成无推力的系杆拱,并能很好地适应不同地质与地形,外形优美,因此倍受桥梁工程界青睐。近几年随着对钢管混凝土结构研究的深入,钢管混凝土拱桥跨径记录在不断突破,形式在不断创新,技术在不断提高。原哈尔滨建筑工程学院钟善桐教授曾撰文指出系杆拱桥的跨度可达600m左右。同济大学的周念先教授则在文献[4]中提出:在500m~1000m的超大跨范围内,可供比选的方案有悬索桥、斜拉桥和系杆拱桥。对于系杆拱桥,虽一时不具备1000m的把握,但可以650m为第一步目标。同时周念先教授进行了初步探讨,认为是可行的。钢管混凝土拱在结构体系和施工方法上都具有更大的跨越能力,为拱桥跨径的继续向前推进提供了可能,相信经过广大桥梁工作者的努力,跨径650m 的拱桥在不远的将来会在我国实现,待有了成功经验后,再向1000m前进。

钢管混凝土拱桥的应用现状

钢管混凝土应用于拱桥,始于20世纪

30年代末,苏联建造了跨越列宁格勒涅瓦河101m的下承式钢管混凝土公路拱桥和位于西伯利亚跨度达140m 的上承式钢管混凝土铁路拱桥。此后相当长的时间内,世界范围内再没有修建这种类型的桥梁。1990年, 我国第一座钢管混凝土拱桥——四川旺苍东河大桥建成,该桥为跨径115m 的下承式刚架系杆拱桥。它是我国在钢管混凝土结构理论研究与实际应用上的新的突破,对我国钢管混凝土拱桥的发展影响是巨大的。

由于钢管混凝土结构在桥梁上的应用,同时解决了拱桥高强度材料应用与施工两大难题,因此,钢管混凝土拱桥在我国得到迅猛的发展。近二十年时间里,我国共修建了200多座钢管混凝土拱桥。如1995年建成的广东南海三山西大桥,主桥为45m+200m+45m带悬臂钢管混凝土中承式刚架系杆拱

桥,主拱肋采用等截面横哑铃形桁式,用预应力钢绞线作为系杆,平衡主拱与边拱的不平衡推力。2000年建成的广东丫髻沙大桥,主桥为76 + 360 + 76 m 三跨连续中承式钢管混凝土刚架系杆拱桥,跨径居当时同类型桥梁之最,施工采用竖向转体与

水平转体相结合的方法,转体重量也是国内之最。重庆巫峡长江大桥主孔跨径达460 m,是目前世界上跨径最大的钢管混凝土拱桥。该桥为中承式桁拱,采用斜拉悬臂缆索吊装施工,于2005 建成,无论在结构设计还是施工方面,该桥均有许多创新之处。我国第一座铁路钢管混凝土拱桥—水柏铁路北盘江大桥,2002 年建成,主桥结构为上承提篮式钢管混凝土拱,拱脚中心跨度236 m,拱肋横向内倾6.5°,采用水平转体施工,该桥的建成对推动钢管混凝土拱桥在我国铁路桥梁中的应用具有重大的意义。此外,较为典型的还有:广西三岸邕江大桥(主跨270 m),湖北武汉汉江五桥(主跨280m),广西南宁永和大桥(主跨349.5m),广东东莞水道大桥(主跨280m),湖南南县茅草街大桥(主跨368m),宜昌长江铁路大桥(主跨264m),安徽黄山太平湖大桥(主跨336m)等。

目前在建的跨度较大的钢管混凝土拱桥有湖北支井河大桥、湘潭湘江四桥等。湖北支井河大桥,主桥为上承式有推力钢管混凝土拱桥,主拱跨径为430 m,失跨比为1/5,拱肋为变高度钢管混凝土桁式拱肋,采用斜拉悬臂施工。湘江四桥主桥为120 + 400 + 120 m 钢管混凝土斜拉飞燕式拱桥。边跨与主跨跨度比为0.3 。结构以拱结构受力为主,辅以斜拉索受力的组合结构体系。边跨拱脚、主跨拱脚、索塔均固结于拱座。主拱为中承式双肋无铰平行拱,拱轴线为高次抛物线,采用6 管桁架截面。边拱拱肋为上承式,双肋横向内倾,拱轴线采用1.45次抛物线。主跨桥道系采用悬吊体系。

详细说明:

旺苍东河桥位于四川省旺苍县,是我国第一座钢管混凝土拱桥。该桥净跨115m,是下承式钢管混凝土预应力系杆拱桥,矢度1/6,桥面为净7+2x0.8+2x3+2x0.2(m),总宽15m,主桥长248m,

两片拱肋间用Φ800横撑连接以保持其稳定性,垂直吊杆用高强钢丝组成,以吊挂钢筋混凝土

横梁。每根拱肋用两根直径为800mm、壁厚10mm的钢管组成,其间用分列的钢板连接成截面高

200cm的“哑铃形”拱肋断面,钢管中距120cm,。它的拱脚固定于桥墩上,并在两拱脚间设置

系杆,随着分段浇筑钢管拱肋内的混凝土而分批张拉系杆的预应力钢束,使拱脚的水平力由系

杆负担。活载作用下拱脚的水平推力由系杆及桥墩共同负担。钢管拱肋实际上是一种复合材料,

在破坏荷载作用下,钢管不仅起纵筋的作用,而且对混凝土起螺旋箍筋的作用,以提高构件的

承载能力。在施工阶段,钢管起着劲性骨架的作用,由于它的整体性好,具有较大的抗弯刚度,

材料数量比劲性骨架省,施工制作方便,显著地降低了造价,而且其外形也很美观,这类桥型

将具有一定的发展前途。于1990年建成。

钢管混凝土拱桥的施工方法和结构设计..

钢管混凝土拱桥的施工方法 钢管砼结构,由于能通过互补使钢管和混凝土单独受力的弱点得以削弱甚至消除,管内混凝土可增强管壁的稳定性,钢管对混凝土的套箍作用,使砼处于三向受力状态,既提高了混凝土的承载力,又增大了其极限压缩应变,所以自钢管砼结构问世以来,是桥梁建筑业发展的一项新技术,具有自重轻、强度大、抗变形能力强的优点,因而得到突飞猛进的发展。在桥梁方面,已以各种拱桥发展到桁架梁等结构形式,并发展到钢管混凝土作劲性骨架拱桥。其施工方法发展很快,已经应用的有无支架吊装法,支架吊装法,转体施工法等。 1 拱肋钢管的加工制作 拱肋加工前,应依理论设计拱轴座标和预留拱度值,经计算分析后放样,钢管拱肋骨架的弧线采用直缝焊接管时,通常焊成1.2-2.0m的基本直线管节;当采用螺旋焊接管时,一般焊成12.0~20m弧形管节。对于桁式拱肋的钢管骨架,再放样试拼,焊成10m左右的桁式拱肋单元,经厂内试拼合格后即可出厂。具体工艺流程为:选材料进场材料分类材质确认和检验划线与标记移植编号码下料坡口加工钢管卷制组圆、调圆焊接非坡口检验附件装配、焊接单节终检组成10m左右的大节桁式拱肋焊接无损检验大节桁式拱肋终检 1:1大样拼装检验 防腐处理出厂。 当拱肋截面为组合型时,应在胎模支架上组焊骨架一次成型,经尺寸检验和校正合格后,先焊上、下两面,再焊两侧面(由两端向中间施焊)。

焊接采用坡口对焊,纵焊缝设在腔内,上、下管环缝相互错开。在平台上按1:1放样时,应将焊缝的收缩变形考虑在内。为保证各节钢管或其组合骨架拼组后符合设计线型,可在各节端部预留1cm左右的富余量,待拼装时根据实际情况将富余部分切除。钢管焊接施工以“GBJD05—83、钢结构施工和施工及验收规范”的规定为标准。焊缝均按设计要求全部做超声波探伤检查和X射线抽样检查(抽样率大于5%)。焊缝质量应达到二级质量标准的要求。 2 钢管混凝土拱桥的架设 2.1无支架吊装法 2.1.1缆索吊机斜拉扣挂悬拼法 具体做法与其他拱肋的架设相似,只是钢管混凝土拱肋无支架架设方案用于较大跨度,它可根据吊机能力把钢管拱肋合成几大段进行分段对称吊装,并随时用扣索和缆风绳锚固,稳定在桥位上,最后合拢。如净跨度150m 四川宜宾马鸣溪金沙江大桥,为钢筋混凝土箱拱,分五段吊装,吊重700KN。广西邕宁邕江大桥,主跨312m的钢管混凝土劲性骨架箱肋拱,每根拱肋的钢管骨架分9段吊装,吊重590KN。四川万县长江大桥,跨径420m的钢管混凝土劲性骨架上承式拱桥,分36段吊装,吊重612.5KN。 缆索吊机斜拉扣挂悬拼法施工是我国修建大跨度拱桥的主要方法之一。施工理论成熟,施工体系结构简单,施工调整与控制较方便。但这种方法起吊端要有一定的施工场地,缆索跨度较桥跨要大,用缆索较多,主塔架与扣索塔架相互分开,存在受压杆稳定要求塔高不能过高,并且要设置各种缆风索而占地面积较大。

下承式钢管砼系杆拱桥施工技术

下承式钢管砼系杆拱桥施工技术 马卫明 (如皋市水利建筑安装工程有限公司,江苏南通,226500) 1 工程概况 如皋市蒲黄线通扬运河大桥位于蒲黄线K10+729处,上跨通扬运河。主桥采用80m钢管砼系杆拱结构,主桥纵向由拱肋、系杆并缀以吊杆,构成主要受力体系,为刚性系杆刚性拱结构。横向通过风撑、横梁和系杆将两片拱肋连城整体,并通过搁置在横梁上的桥面板及现浇层构成桥面行车系。 拱肋为本桥的主要受力构件,拱轴线为二次抛物线,计算跨径L=80m,计算矢高16m,矢跨比1/5。拱肋断面为哑铃型钢管混凝土,截面宽度0.75m,高度1.8m,宽度和高度沿拱轴线始终不变,拱肋上下弦管(Q345qC)直径均为750mm,壁厚16mm。通过两块缀板连接,坚缀板厚度为16mm,拱肋全断面填充C40微膨胀混凝土。 系杆作为纵向连接拱肋的主要受拉构件,为预应力混凝土箱型截面。系杆截面宽度1.2m,高度1.8m,系杆为矩形空箱断面,在系杆端头变为加高实心截面,系杆预应力钢束张拉须结合施工分批进行。 吊杆将桥面系重量传递给拱肋,本桥采用拉索结构。拉索外圆钢管Φ309×16mm,钢管上端焊接于拱肋下弦管下缘,钢管下端焊接于系杆顶面预埋钢板上,可以承受一定的压力。拉索内穿集束钢丝,承受拉力。吊杆下端为固定端,锚固于系杆内,上端为张拉端。 风撑连接两片拱肋,使其协同受力,并保持拱肋稳定。每道风撑由两根Φ500×10m钢管及多根Φ273×10mm腹杆组成,风撑所有钢管均不灌注混凝土。全桥共设5道风撑。 全桥横梁分为中横梁和端横梁。中横梁为工字型实心截面,端横梁为空心截面(与系杆交接处变为实心截面)。所有横梁顶面在行车道部分设双向2%横坡,以利用其上桥面板及铺装直接形成双向横坡,横梁底面水平。横梁均为预应力构件,横梁长度为17m,中横梁于系杆平面相交,每根中横梁由两根吊杆支承。中横梁采用预制安装、端横梁采用现浇施工,横梁预应力张拉应分批进行。 桥面板为22㎝厚的实心板,纵向搁置在横梁上,桥面板之间横向铰接,纵向主筋采用焊接,辅以22㎝厚现浇混凝土接头及10㎝混凝土桥面现浇层,构成桥面整体连续体系。桥面铺装为10㎝沥青混凝土。 2 施工难点 通扬运河为本市境内重要的水运通道,水上运输繁忙,来往船只多,给水上作业带来一定的困难。 钢管砼系杆拱桥工序多,交叉作业多。 系杆采用预制吊装技术,吊装长度16m,吊装重量达70t;拱肋采用分三段吊装,最大吊装长度29m,吊装重量达21t。 施工现场场地狭小,桥梁施工区外侧有民用码头,吊装条件差。 3 施工流程 下承式钢管砼系杆拱桥采用先梁后拱的少支架施工工艺,具体施工流程如下: (1)主墩基桩定位放样,搭设基础施工平台,安装钻机,进行桩基础施工,并对基桩进行无破损

大跨度中承式钢管混凝土拱桥设计

大跨度中承式钢管混凝土拱桥设计 陈勇勤1,邢 燕2,杨洁琼1,胡亚琴1 (1.浙江省公路水运工程咨询公司,浙江杭州310004;2.大连市政设计院有限责任公司,辽宁大连116011) 摘 要:以大连市开发区滨海路四号桥为例,介绍大跨度中承式钢管混凝土拱桥的总体设计、平面静力分析、空间静力分析、稳定分析和施工工艺的要点。 关键词:拱桥;钢管混凝土结构;系杆拱;桥梁设计中图分类号:U444.22;TU528.59 文献标识码:A 文章编号:1671-7767(2007)03-0018-03 收稿日期:2007-02-01 作者简介:陈勇勤(1975-),女,工程师,1998年毕业于重庆交通学院桥梁工程系,工学学士,2001年毕业于重庆交通学院桥梁与隧道工程专业,工学硕士。 1 工程简介 大连开发区滨海路,是继大连市内滨海路之外 的又一条著名滨海景观旅游线路。滨海路四号桥位于这条旅游线路的中部,桥梁走向南北,背靠山峦,面临黄海。建设单位对该桥的景观要求极高,同时要求尽量降低造价,减少维修养护费用。该设计以美观、靓丽、新颖、独特为出发点,同时兼顾到实用经济、安全合理。该桥的自然条件如下。 (1)水文:桥址与海岸的距离为200m 左右,潮汐对该桥没有影响。 (2)气象:桥位紧靠黄海,历年最大风速为29m/s ,发生在4月;极大风速为48.7m/s ,发生在8 月。通常夏季盛行东南风,其它时节以西北风为主。8月平均最高气温为27.5℃,1月平均气温为-5.5℃,属寒冷地区。最大冻结深度0.5m 。 (3)地质:桥址处为沟谷,设计桥面和谷底的最 大高差约15m ,沟谷边坡坡度为1∶2,谷底为旱地。该地区石英岩广泛分布,地质钻孔由上至下依次为素填土、碎石、强风化石英岩、中风化石英岩。其中,中风化石英岩岩面较浅,岩层稳定,是良好的持力层。 综合考虑地质条件和周围景观环境,在方案设计中,共选择3个方案:自锚式悬索桥、V 形墩连续梁桥、中承式钢管混凝土拱桥。上述方案经开发区有关领导及专家讨论评审,最终选定主拱为160m 跨的中承式钢管混凝土拱桥,采用单索面、异型拱肋。桥面系采用三跨连续梁体系,桥梁全长180m ,主跨150m ,两边跨各15m 。滨海路四号桥布置示意见图1。 图1 滨海路四号桥布置示意 2 总体设计 2.1 主要设计技术标准 (1)桥面宽度:桥面总宽18.5m 。(2)设计速度:60km/h 。 (3)荷载标准:车辆荷载为公路-Ⅰ级;人群荷 载为2.5kN/m 2;温度影响力按年均升温15℃、降温25℃考虑;风载:基本风压强度取750Pa ;地震基本烈度为6度,按7度设防。2.2 拱肋 拱肋中段采用圆端形钢管混凝土[1],肋高1.5m 、宽3.2m 。拱轴线为二次抛物线,抛物线方程为 Y =6.6X 2 /1000(坐标原点位于拱顶中心线位置)。 拱肋两端为人字形,拱轴线为直线,采用直径为2m 的圆形钢管混凝土。中拱肋和边拱肋的拱轴线在相交处相切。 该中承式钢管混凝土拱桥计算跨径160m ,拱肋矢跨比1/4.32,矢高37.036m 。 8 1世界桥梁 2007年第3期

钢管混凝土拱桥结构设计探讨(新编版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 钢管混凝土拱桥结构设计探讨 (新编版)

钢管混凝土拱桥结构设计探讨(新编版)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 【摘要】钢管混凝土拱桥在我国的应用发展很快。本文对刚架系杆拱桥型、助供横向结构、拱助我面设计和桥面系构造等问题进行探讨。 【关键词】钢管混凝土拱桥结构设计探讨 钢管混凝土拱桥近十年来在我国发展迅速,随着数量的增多,跨径与规模也不断增大,分布区域也越来越广,除了钢管混凝土拱桥具有材料强度高、施工方便、造型美观等优点的原因外,与我国正处于大规模的交通基础设施建设时期的大环境有密切的关系[2]。本文将根据钢管混凝土拱桥在我国的应用情况与近几年的发展趋势,对结构的合理设计进行定性的讨论。 一、刚架系杆拱桥型 钢管混凝土拱桥结构形式丰富多样,承载形式上、中、不承式均有。按拱的推力,又可分为有推力供和无推力供。无推力供又有拱架组合体系和刚架系杯供。钢管混凝土拱桥以中下承式为主,有推力拱

和元推力拱均占相当的比重。在无推力拱中,以刚架系杆拱为主。这些都是钢管混凝土拱桥的构造特点,与我国传统的石拱桥、钢管混凝土拱桥均有明显的不同。 刚架系杆拱是在钢管混凝土拱桥中出现的拱桥新的结构形式。我国建成的第一座钢管混凝土拱桥--四川旺苍东河大桥采用的就是刚架系杆拱。与拱架组合体系不同,刚架系杆供中拱助与桥墩团结,不设支座,采用预应力钢绞线作为拉杆来平衡换的推力,拉杆独立于桥面系之外,不参与桥面系受力,而桥面系为局部受力构件。这种结构由于拱和墩连接处为刚结点,属刚架结构,又带有系杆,故称之为刚架系杆拱。 刚架系杯拱为超静定结构,桥梁上部、下部以及基础甚至地基连成一体,结构的超静定次数较多,受力复杂。由于其系杆刚度与供梁组合体系中的系杯梁刚度相比小很多,特别对于大跨径桥梁,系杆拉力增量将产生很大的变形,而供助、系杆和墩往团结在一起,根据位移交形协调条件,供的水平推力的增量主要由桥墩和拱助自身承受,因而考虑系杆变形后它是有推力的结构。系杆的作用是对拱施加预应力以抵消拱的大部分水平推力(主要是恒载产生的水平推力),因此通常把系杯看成预应力体外索。除去系杆承受的水平推力后余下的拱

钢管混凝土拱桥报告

《钢管混凝土拱桥》-----钢管混凝土拱桥的施工方法 福州大学土木工程学院 2014年06月16日

钢管混凝土拱桥的施工方法 摘要: 钢管混凝土拱桥以其强度高、跨越能力大、施工便捷、经济效果好、桥型美观等优点在我国桥梁中得到了广泛应用。钢管混凝土结构,是桥梁建筑业发展的一项新技术。在桥梁方面,已以各种拱桥发展到桁架梁等结构形式,并发展到钢管混凝土作劲性骨架拱桥。其施工方法发展很快,已经应用的有无支架吊装法,支架吊装法,转体施工法等。 1、引言 钢管混凝土拱桥的发展与应用在我国仅有十余年的历史,但发展很快,已遍及全国广大地区,目前已经建成的就达80余座,在建的也有30余座。这主要是因为钢管混凝土组合材料的优越性决定的。关于钢管拱肋的加工、拼装、成拱、吊装工艺,对此类结构的施工技术、施工规范、质检和监理程序与指标、施工定额及管理等方面的研究和经验虽然有所积累,但仍不多见。广泛交流施工经验,研究制定和完善该类桥梁统一可行的规范规程,探讨其施工经济技术指标,是目前建造此类桥梁急待解决的课题之一。 从目前国内的钢管混凝土拱桥的施工实践来看,其施工方案主要有:无支架缆索吊装;少支架缆索吊装;整片拱肋或少支架吊装;吊桥式缆索吊装;转体施工;支架上组装;千斤顶斜拉扣索悬拼。以上除千斤顶斜拉扣索悬拼施工外其余施工安案都与普通混凝土拱桥安装类似,本文主要介绍钢管混凝土拱大桥的施工方法及其注意事项。 2、钢管混凝土拱桥的施工方法及其注意事项 钢管混凝土拱桥施工的主要环节包括:钢管拱肋的加工制作、钢管拱肋的架设、钢管混凝土的灌注、安装桥面系等。 2.1 钢管拱肋的加工制作

为了保证加工质量,拱肋通常在工厂制作。首先由定尺的钢板卷制成长(分段长度视运输条件而定)的单节直管,再根据设计拱轴线、预留拱度等进行放样、煨弯、焊接组成拱肋。出厂前在刚性平台上进行大样拼组,验收合格后进行初级防腐,然后分段出厂。应钢管焊接采用坡口焊,焊管对接的纵缝及上下钢管的环节均需错开。焊接时及时对焊缝收缩及日照温差引起的误差进行修正,以防误差积累。对每条焊缝要进行严格的探伤检查,发现问题及时处理,确保拱肋加工质量。 2.2 钢管拱肋的架设 钢管混凝土拱桥通常是先架设空钢管形成裸拱,再在其中灌注混凝土形成钢管混凝土拱;或再将其作为劲性骨架,在外部包上钢筋混凝土形成复合拱肋。钢管拱肋的架设可以根据不同的施工条件采用不同的施工方法,主要有搭支架施工法、无支架缆索吊装法、平转法、竖转法、以及多种方法的综合运用的施工方法。 2.2.1 搭支架施工法 搭支架施工法就是在桥位处按照钢管拱肋的设计线型加预拱度,拼装好支架,在支架上就位拼装、焊接成拱的施工方法。支架可采用满堂式、或者分离式、或者两种方式的结合。如:三峡莲沱大桥的两边跨、天津彩虹大桥等。 支架的设置按拱肋的轴线和段接头位置及高程,在精确定位后,就每个段接头的高度设计相应的支架高度(该高度考虑了支架、支承结构的变形和施工预拱度),经计算确定支架的形式和材料,满足强度、稳定及刚度要求,支承处圆弧和坡度应和该处的拱肋设计完全吻合,以保证较大的支承面积和钢管拱肋的稳定。吊装时用索道吊运到位初步控制合格后,拱肋的一端采用焊搭板螺栓联接,另一端用两道临时缆风护设稳定,合拢段在准确测量出实际的长度和待合拢段拱肋的长度根据实际将多余的长度割掉后按吊装顺序吊装,到位后两端精确对位连接。吊装顺序如图1所示。

ansys钢管混凝土拱桥

ansys钢管混凝土拱桥 /prep7 /title,the analyse of steel arch bridge *************************************************** et,1,82 cyl4,0.6,0.6,0.6,,0.586 cyl4,0.6,2.4,0.6,,0.586 rectng,0.35,0.364,0.8,2.2 rectng,0.85,0.836,0.8,2.2 asel,all aptn,all adele,5,8,1 allsel aadd,all smrtsize,5 amesh,all secwrite,gg,sect,,1 sectype,1,beam,mesh secoffset,cent,,, secread,gg,sect,,mesh asel,all aclear,all adele,all,,,1 /replot cyl4,0.6,0.6,0.586 cyl4,0.6,2.4,0.586 rectng,0.364,0.836,0.8,2.2 allsel aadd,all smrtsize,5

amesh,all secwrite,hnt,sect,,1 sectype,2,beam,mesh secoffset,cent,,, secread,hnt,sect,,mesh asel,all aclear,all adele,all,,,1 k,1,-0.5,0 k,2,-0.75,0.25 k,3,-0.75,0.5 k,4,-0.55,0.5 k,5,-0.55,0.85 k,6,0.55,0.85 k,7,0.55,0.5 k,8,0.75,0.5 k,9,0.75,0.25 k,10,0.5,0 a,1,2,3,4,5,6,7,8,9,10 smrtsize,5 amesh,all secwrite,hl1,sect,,1 sectype,4,beam,mesh secoffset,cent,,, secread,hl1,sect,,mesh asel,all aclear,all adele,all,,,1 k,1,-0.5,0 k,2,-0.5,1 k,3,-0.75,1.25 k,4,-0.75,1.5 k,5,0.75,1.5 k,6,0.75,1.25 k,7,0.5,1 k,8,0.5 a,1,2,3,4,5,6,7,8 smrtsize,5 amesh,all secwrite,hl2,sect,,1 sectype,5,beam,mesh

土木道桥毕业设计_30m上承式钢管混凝土拱桥

单跨30m上承式钢管混凝土拱桥设计 50m Single-span Concrete Filled Steel Tubular Arch Bridge Design

摘要 近几十年来,随着科学技术的进步,国民经济的蓬勃发展,国家基础设施建设规模的不断扩大,我国桥梁建设取得了举世瞩目的成就,桥梁建筑技术也有了很大的进展。其中钢管混凝土系杆拱桥是近年来我国桥梁建设新发展的桥型,具有强度大,自重轻,抗变形能力强的特点。钢管混凝土结构在桥梁上的应用,同时解决了高强度材料的应用和施工的不方便两大难题,因而,钢管混凝土系杆拱桥在我国得到了迅速的发展。现在钢管混凝土拱桥向着更大跨径、更大规模方向发展,同时应用区域和范围也不断扩大,在建的重庆朝天门大桥(钢桁架系杆拱)的跨径已达到552m,比上海卢浦大桥长2m,成为新的同类桥型世界之最。此次设计是一50m钢筋混凝土柔性系杆拱桥,桥全长54m,桥面净宽9+2×0.5m,矢跨比采用1/5,采用二次抛物线形式拱肋,拱肋截面为哑铃型,设计荷载为公路一级,双向四车道。运用Midas Civil软件完成建模和施工阶段受力分析。取分析数据作为结构设计的依据。通过此次设计,对桥梁设计的全过程有一个从概念上到实际上的了解,加深对桥梁设计规范的掌握程度,同时也学会了运用桥梁软件Midas Civil。 关键词:钢管混凝土;Midas Civil;上承式拱桥

ABSTRACT In recent decades,our country economy stability increases and the scientific technology develops quickly,more investment is put into the fundamental facilities,we accomplish a lot of great construction of bridges and a large improvement also be made in bridge construction technology.In our country,concrete fitted steel tubular (CFST) arch bridge is a new technique accompanied with bridge construction recently which are light deadweight,high strength and high resistance to deformation. It has solved two difficult of application and erection of high strength material in arch bridge. The CFST arch bridge has being developed quickly in our country. Now CFST arch bridge toward more and more large-scale direction, but also regional and scope of application expanded, Chaotianmen Bridge under construction (steel tied arch truss) the span has reached 552m, compared with the Lupu Bridge length 2m, a new kind of bridge in the world. The design is a 50m flexible reinforced concrete arch bridge, bridge length 54m, bridge clear width 9 +2 × 0.5m, span ratio is 1 / 5, with parabolic arch forms, arch cross section for the dumbbell type, design load for the road level, two-way four lanes. Complete the modeling software using Midas Civil and Mechanical Analysis of the construction phase. Analysis of data taken as a basis for structural design. With this design, bridge design process from concept to a practical understanding of the mastery of bridge design specifications, but also learned to use bridge software Midas Civil. Key words:concrete fitted steel tubular (CFST) arch bridge;Midas Civil;through arch

钢管混凝土拱桥方案与施工规程

福建省工程建设地方标准 钢管混凝土拱桥设计与施工规程 福州大学土木工程学院 2007年11月

前言 本规程是根据福建省建设厅闽建科【2007】×号文“关于制定福建省建设工程地方标准《钢管混凝土拱桥设计与施工规程》地通知”要求,由福州大学土木工程学院主编,会同福建省交通规划设计院、福州市规划设计研究院、福建省第一公路工程公司等参编单位编制而成.本规程地制定吸收了近年来有关单位在钢管混凝土拱桥设计与施工领域所取得地最新科研成果以及工程实践经验,充分参考和借鉴了国内外地相关规程和规范,在广泛征求意见、反复修改地基础上,最后由福建省建设厅组织专家审查定稿. 本规程共分×个章节及×个附录,主要技术内容包括: 下列标准所包含地条文,通过在本规程中地引用而构成本标准地条文,本规程出版时,所示标准版本均为有效.所有所示标准均有可能修订,使用本规程地各方应探讨使用下列标准最新版本地可能性: 1、

1、总则 1.1.1为满足桥梁工程建设地需要,使钢管混凝土拱桥地设计、施工和验收等工作符合技术先进、安全可靠、耐久适用、经济合理地要求,特制定本规程. 1.1.2本规程适用于以圆形钢管内浇筑素混凝土为拱肋地钢管混凝土拱桥. 1.1.3本规程适用于本省各级市政工程钢管混凝土拱桥地设计与施工,公路工程中地钢管混凝土拱桥可参照执行.(或写成市政工程与公路工程) 1.1.4本规程主要依据《公路工程结构可靠度设计统一标准GB/T50283》、交通部《公路工程技术标准JTG B01-2003》、《公路桥涵设计通用规范JTG D60-2004》、《公路桥涵施工技术规范JTJ 041-2000》以及福建省工程建设地方标准《钢管砼结构技术规程DBJB-51-2003》地有关规定制定.基本术语、符号按照国家标准《工程结构设计基本术语和通用符号GBJ132》和《道路工程术语标准GBJ124》地规定采用. 1.1.5荷载分市政与公路来写,各有规程 1.1.6钢管混凝土拱桥中地墩台与基础等圬工结构、钢筋混凝土结构和预应力混凝土结构地设计计算与验算,可采用《公路圬工桥涵设计规范JTGD61-2005》、《公路钢筋混凝土及预应力混凝土桥涵设计规范JTG D62-2004》和《公路桥涵地基与基础设计规范JTJ 024-85》等规范进行设计.横撑、钢横梁等钢结构设计应符合《公路桥涵钢结构及木结构设计规范JTJ025-86》地要求.结构抗震设计应采用《公路工程抗震设计规范JTJ 004-89》;结构抗风设计应采用《公路桥梁抗风设计规范JTG\T D60-01-2004》.材料和施工质量验收应符合《钢结构工程施工质量验收规范GB50205》、《混凝土结构工程施工质量验收规范GB 50204》以及《公路工

钢管混凝土拱桥设计与施工

摘要:介绍了上海城市轨道交通明珠线特殊大桥-苏州河桥(25m+64m+25m)的三跨中承式钢管混凝土梁-拱组合体系桥的设计特点,施工阶段划分及结构分析过程和施工难点处理措施。 关键词:钢管混凝土结构; 拱桥;设计与施工;徐变控制; 1 概述苏州河桥位于上海城市轨道交通明珠线跨越既有沪杭铁路苏州河桥桥位,与苏州河正交。桥梁需跨越苏州河及两岸的万航渡路和光复西路。河道通航标准为通航水位3.5m,ⅵ级航道,净宽20m,净高&=4.5m;两岸滨河路规划全宽20m(机非混行),其中机动车道宽8m;两侧非机动车道宽各3m;人行步道宽各3m;两岸滨河路机动车道净高&=4.50m,非机动车道净高&=3.50m,人行道净高&=2.5m。桥式采用25+64+25m三跨中承式钢管混凝土梁-拱组合体系桥,桥梁全长114m,宽12.5m。外部结构体系为连续梁,即拱脚与桥墩处以支座连接,内部为由主纵梁、小纵梁和横梁及钢管混凝土拱肋的组合结构体系。 2 钢管混凝土拱桥设计 2.1桥型选择本方案设计的主导思想是在现有桥梁结构的技术水平发展的基础上有所创新,桥梁造型与周围环境相协调,桥式方案力求新颖独特,并充分体现现代化大都市的节奏与气派。拱桥是一种造型优美的桥型,它的主要特点是能充分发挥材料的受压性能,而钢管混凝土的特点是在钢管内填充混凝土,由于钢管的套箍作用,使混凝土处于三向受压状态,从而显著提高混凝土的抗压强度。同时钢管兼有纵向主筋和横向套箍的作用,同时可作为施工模板,方便混凝土浇筑,施工过程中,钢管可作为劲性承重骨架,其焊接工作简单,吊装重量轻,从而能简化施工工艺,缩短施工工期。苏州河桥的桥型方案经过研究分析、结构优化及评估论证,最后采用25+64+25m飞鸟式钢管拱桥的设计方案。以抗压能力高的钢管混凝土作为主拱肋,以抗拉能力强的高强钢绞线作为系杆,通过边拱肋的重量,随着施工加载顺序逐号张拉系梁中的预应力筋以平衡主拱所产生的水平推力,最终在拱座基础中仅有很小的水平推力。拱脚与桥墩的连接由固接改为铰接,以避免由于轨道交通无缝线路产生的纵向水平力和温度应力引起拱脚过大的推力而导致拱脚处混凝土开裂,克服了拱桥对基础的苛刻要求。全桥总布置如图1: 2.2上部结构主桥为中承式拱桥,主拱理论轴线为二次抛物线,矢跨比为1:4,其中桥面以下部分采用c50钢筋混凝土结构,截面为带圆角的矩形截面。桥面以上部分采用钢管混凝土结构,钢管截面为圆端形,采用a3钢,钢管壁厚16mm,外涂桔红色漆,内填c55微膨胀混凝土。边拱矢跨比为1:7.4,理论轴线为二次抛物线,截面采用钢筋混凝土矩形截面,按偏心受压构件设计。拱上立柱采用圆形截面钢管混凝土立柱,下端与边拱肋固结,上端设聚四氟乙烯球冠形铰支座,与边纵梁铰接。主拱每侧设7根吊杆,间距约6.4m,吊杆采用挤包双护层大节距扭铰型拉索,吊杆钢索双护层均为高密度聚乙烯护层(pe+pe桔红色),锚具为冷铸墩头锚。吊杆上端锚固在钢管混凝土拱肋内,下端锚固在横梁底部。主拱桥面以上部分共设三道一字型风撑,每侧边拱设三道横撑,主拱设一道横撑,以增加全桥的稳定性。拱座采用钢筋混凝土结构,每墩设两个拱座。通过横撑相连。拱座施工时应预先埋好立柱钢管、主拱及边拱伸入拱座内的钢筋,准确对位。桥面系为由边纵梁、横梁、小纵梁及现浇桥面板组成。边纵梁为箱形断面,边孔与边拱肋相接部分及中拱与边纵梁连接部分为矩形断面,采用c50级部分预应力混凝土结构,在恒载及自重作用下为全截面受压构件。横梁采用c50级预应力混凝土结构,全桥共设小横梁15片,端横梁2片,中横梁与边纵梁接合处2片。全桥共设四片小纵梁(全桥通长)与横梁固结在一起形成格构体系。桥面板采用c40级钢筋混凝土板,桥面板采用在格构系上现浇的方法处理。桥面板的钢筋布置应采取防迷流措施。桥面排水原则上采用“上水下排”,即横坡加导水槽方式,在桥梁横断面内设0.5%的横坡。承轨台每隔一定的距离断开,向两侧排水。桥面上部建筑设施包括混凝土道床及轨道、通信信号电缆支架、隔音屏、防噪柱及接触网腕臂柱。桥面布置有:聚氨脂防水层、0.5%双向排水

钢管混凝土拱桥结构设计探讨(新版)

钢管混凝土拱桥结构设计探讨 (新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0331

钢管混凝土拱桥结构设计探讨(新版) 【摘要】钢管混凝土拱桥在我国的应用发展很快。本文对刚架系杆拱桥型、助供横向结构、拱助我面设计和桥面系构造等问题进行探讨。 【关键词】钢管混凝土拱桥结构设计探讨 钢管混凝土拱桥近十年来在我国发展迅速,随着数量的增多,跨径与规模也不断增大,分布区域也越来越广,除了钢管混凝土拱桥具有材料强度高、施工方便、造型美观等优点的原因外,与我国正处于大规模的交通基础设施建设时期的大环境有密切的关系[2]。本文将根据钢管混凝土拱桥在我国的应用情况与近几年的发展趋势,对结构的合理设计进行定性的讨论。 一、刚架系杆拱桥型 钢管混凝土拱桥结构形式丰富多样,承载形式上、中、不承式

均有。按拱的推力,又可分为有推力供和无推力供。无推力供又有拱架组合体系和刚架系杯供。钢管混凝土拱桥以中下承式为主,有推力拱和元推力拱均占相当的比重。在无推力拱中,以刚架系杆拱为主。这些都是钢管混凝土拱桥的构造特点,与我国传统的石拱桥、钢管混凝土拱桥均有明显的不同。 刚架系杆拱是在钢管混凝土拱桥中出现的拱桥新的结构形式。我国建成的第一座钢管混凝土拱桥--四川旺苍东河大桥采用的就是刚架系杆拱。与拱架组合体系不同,刚架系杆供中拱助与桥墩团结,不设支座,采用预应力钢绞线作为拉杆来平衡换的推力,拉杆独立于桥面系之外,不参与桥面系受力,而桥面系为局部受力构件。这种结构由于拱和墩连接处为刚结点,属刚架结构,又带有系杆,故称之为刚架系杆拱。 刚架系杯拱为超静定结构,桥梁上部、下部以及基础甚至地基连成一体,结构的超静定次数较多,受力复杂。由于其系杆刚度与供梁组合体系中的系杯梁刚度相比小很多,特别对于大跨径桥梁,系杆拉力增量将产生很大的变形,而供助、系杆和墩往团结在一起,

钢管混凝土拱桥施工

钢管混凝土拱桥施工 1钢管混凝土拱桥所用钢管直径超过600mm的应采用卷制焊接管,卷制钢管宜在工厂进行。在有条件的情况下,优先选用符合国家标准系列的成品焊接管。 2成品管及制管用的钢材和焊接材料等应符合设计要求和国家现行标准的规定,具备完整的产品合格证明。 3钢管拱肋(桁架)加工的分段长度应根据材料、工艺、运输、吊装等因素确定。在加工制作前,应根据设计图的要求绘制施工详图,包括零件图、单元构件图、节段单元图及组焊、拼装工艺流程图等。加工前应按半跨拱肋进行1:1精确放样,注意考虑温度和焊接变形的影响,并精确确定合龙节段的尺寸,直接取样下料和加工。 4工地弯管宜采用加热顶压方式,加热温度不得超过800℃。钢管对接端头应校圆,除成品管按相应国家标准外,失圆度不宜大于钢管外径的0.003倍。钢管的对接环焊缝可采用有衬管的单面坡口焊和无衬管的双面熔透焊。两条对接环焊缝的间距应符合设计要求,设计无规定时,直缝焊接管不小于管的直径,螺旋焊接管不小于3m。对接径向偏差不得超过壁厚的0.2倍。为减少运输及安装过程中对口处的失圆变形,应适当在该处加设内支撑。 5拱肋(桁架)节段焊接宜要求与母材等强度焊接。所有焊缝均应按规定进行强度和外观检查,宜要求主拱的焊缝达到二级焊缝标准。对接焊缝应100%进行超声波探伤,其质量检查标准可按照本规范第17章的有

关规定执行。 桁架式钢管拱主管与腹管采用相贯焊接时,宜采用自动或半自动的加工方式来保证相贯线和坡口的制作精度,对焊接材料和工艺的选择在满足焊接接头强度的原则下,应尽量提高接头的韧性指标。要力求避免和减少焊缝多次相交的不良结构细节。 6在钢管拱肋(桁架)加工过程中,应注意设置混凝土压注孔、防倒流截止阀、排气孔及扣点、吊点节点板。如拱肋(桁架)节段采用法兰盘连接,为保证螺栓连接的精度,宜采用3段啮合制孔工艺。对压注混凝土过程中易产生局部变形的结构部(如腹箱)应设置内拉杆。 7钢管拱肋(桁架)节段形成后,钢管外面应按设计要求做长效防护处理,宜采用热喷涂防护,其喷涂方式、工艺及厚度应符合设计要求。可参照有关规定执行。 二、钢管拱肋(桁架)安装 1钢管拱肋(桁架)的安装采用少支架或无支架缆索吊装、转体施工或斜拉扣索悬拼法施工的,可参照本章有关规定执行。 2钢管拱肋成拱过程中,应同时安装横向联接系,安装联接系的不得多于一个节段,否则应采取临时横向稳定措施。 3节段间环焊缝的施焊应对称进行,施焊前需保证节段间有可靠的临时连接并用定板控制焊缝间隙,不得采用堆焊。合龙口的焊接或栓接作业应选择在结构温度相对稳定的时间内尽快完成。 4采用斜拉扣索悬拼法施工时,扣索与钢管拱肋的连接件应进行设计计算。扣索根据扣力计算采用多根钢绞线或高强钢丝束,安全系数应大于

中承式钢管混凝土拱桥设计说明书

中承式钢管混凝土拱桥设计说明书 拱桥指的是在竖直平面内以拱作为主要承重构件的桥梁,是我国公路上使用较广泛的一种桥型,在我国已经有1800年的历史了。其与梁桥、刚构桥不仅外形不同,而且受力性能有较大差别。拱式结构在竖向荷载作用下,两端将产生轴向压力,从而大大减小了拱圈的截面弯矩,使之成为偏心受压构件,截面上的应力分布与受弯梁的应力相比较为均匀,因此可以充分利用主拱截面的材料的强度,使跨越能力大大增大。其主要优点是可充分的就地取材(砖石、混凝土结构时2),可节省大量的钢材和水泥,而且其受力性能好,维修费用少,外形美观,构造较简单。 此拱桥为中承式钢管混凝土拱桥,净跨径225m,主拱圈线型为二次抛物线。因为在竖向均布荷载作用下,拱的合理拱轴线为二次抛物线,而此拱桥自重集度较为均匀,且为大跨,故选用二次抛物线形式,其造型优美,构造较简单。桥梁全长316m,起终点至拱桥桥台处选用等截面梁布置,在跨中位置设置桥墩以分配受力。此拱桥拱肋截面为三角形桁式结构,主钢管为Φ610×13mm,连接钢管和横撑为Φ325×8mm,拱肋高3.7m,宽1.7m,吊索间距为6m,吊索下设30cm×30cm方形截面横梁。 此中承式钢管混凝土拱桥属钢-混凝土组合结构中的一种,主要用于受压为主的结构。它一方面借助内填混凝土增强钢管壁的稳定性,同时又利用钢管对核心混凝土的套箍作用,使核心混凝土处于三向受压状态,从而具有更高的抗压强度和抗变形能力。而且由于其承载能力大,正常使用状态是以应力控制设计,外表不存在混凝土裂缝问题。另外,钢管本身相当于混凝土的外板,它强度高,质量轻,易于吊装或转体,同时钢管兼做纵向主筋在施工过程中,可作为劲性承重骨架,方便施工,可先将空钢管拱肋合龙,再压注混凝土,从而降低施工难度,省去了支模、拆模等工序,简化了施工工艺,并可适应先进的混凝土泵送工艺。另外钢管混凝土使构件承载力大大提高,具有良好的塑形和韧性,降低了结构自重和造价,而且其防腐、防火性能好,结构造型美观。 但钢管混凝土拱桥也有其自身的缺点。此管壁外露的拱桥,在阳光照射下,钢管膨胀,容易造成钢管与内填混凝土之间出现脱空现象。另外,由于钢管先于管内混凝土受压,容易造成钢管应力偏高,而混凝土不能发挥应有的作用,而且其自重较大,相应的水平推力也较大,增加了下部结构的工程量,对地基要求高。而且虽然接头连接较为简便,但是接头进行焊接具有许多的难以避免的缺陷,钢管内灌注混凝土的密实度问题也较为突出,钢管的养护比较麻烦,钢管混凝土的动力性能和疲劳性能也必须考虑。

拱桥施工方案

钢管混凝土拱桥施工方案 一:工程概述 众所周知,中国有着悠久的古桥历史,早在东汉时期我国就在宜昌和宜都之间建在长江上的第一座浮桥,以及宋朝时在福建泉州修建的万安桥,清朝时修建的泸定铁索桥都显示出我国古代劳动人民高超造桥技术与智慧。而我国最杰出的石拱桥代表作是修建于隋朝河北省赵县的赵州桥,它由李春所创建,该桥设计独特,技艺精湛,结构美观,该桥是一座空腹式的圆弧拱桥, 拱圈一般有两个腹拱,这样独特的设 计不仅节省了大量材料,而且还增加 了泄洪能力。它不仅在我国桥梁史上 首屈一指,而且也是世界桥梁的一个 考证。而随着我国现代桥梁技术的进 一步发展,我国修建了许多现代化的大桥,如云南六库怒江大桥,长江湘江月亮岛大桥,以及苏通大桥,上海卢浦大桥,矮寨特大悬索桥,这些桥的建成,都标志着我国桥梁技术的日新月异。 赵州桥是我国拱桥史上的一个杰出代表作,距今已经1400多年的历史,它由隋朝李春所设计。此桥施工技术精巧,构造奇特,全桥只有一个大拱,大拱两肩各有两个小孔,这个独特的设计,不仅节约了石料,减轻了桥重,而且又便于排洪,防止洪水暴发时对桥的冲击。而随着现代桥梁技术的进一步发展,现代拱桥不仅继承了古代拱桥的优点,更有了发展。在受力方面它由拱肋承压,而且跨越大,与梁桥、

刚桥相比,可以节省大量钢材和水泥,耐久且维修费用也少。 现代拱桥技术的施工方法一般有五种,有支架施工,悬臂浇注法施工,装配式拱桥安装施工,转体施工,钢管混凝土施工等。而钢管凝土由于重量轻、刚度大、拱桥断面尺寸小吊装方便等优点,给大跨度施工带来了十分有利的条件,被广泛采用。以下将为大家简单介绍一下施工方法。 二、钢管混凝土拱桥构造特点 (1)、截面形式 钢管混凝土结构的主要特点之一就是钢管对混凝土的套箍作用,使钢管内混凝土处于三向受力状态,提高了混凝土的抗压强度与抗变形能力。因此,目前钢管混凝土拱桥基本上都采用圆形钢管组成。刚拱桥跨度较小时可以用单圆管。跨度在150米以内,采用哑铃型截面。超过150之后,一般采用桁式截面。 (2)结构形式 拱桥的形式一般都受到地质条件的影响,当地质条件教好时,一般采用有推力的中承式拱桥。当地质条件较差时一般采用中承式带两个半跨的自锚结构形式,同时也可以采用下承式系杆拱结构而且下承式也可适用于城市道路接线高度的地段,而这种系杆形式又分为两种:一种是上下部结构采用刚接联结,一种是上部结构

中承式钢管混凝土拱桥

宝汉高速公路坪坎至汉中(石门)段 石门水库特大桥 专项监理细则 陕西公路交通工程监理咨询有限公司 宝汉高速公路汉坪段PH-J5监理工程师办公室

二O—四年十月编制: 审核: 审批:

目录 第一章、工程概况 (5) 一、工程概况 (5) 二、工程地形地貌地质 (5) 三、气象 (6) 四、工程内容 (8) 第二章、监理依据及目标 (10) 一、监理依据 (10) 二、监理范围 (10) 三、监理内容 (11) 四、监理方针 (13) 五、监理目标 (13) 第三章、监理人员及设备 (15) 一、监理人员 (15) 二、监理设备配置 (20) 第四章、监理细则 (22) 一、质量监理细则 (22) 监理工作要点.............................................. .22 施工准备阶段监理.......................................... .30 施工阶段监理.............................................. .31 1、................................................... 一般要求31 2、 (32) 3、 (36) 4、 (40) 5、 (43) 6、 (56) 7、 (59) & (68) 9、 (82) 10、.......................................................... .83 二、安全及环保监理........................................ .84 1、安全监理 (84)

中承式拱桥

第四章模型设计及计算 4.1 桥型与孔跨布置 1.主桥设计采用一孔计算跨径为50m的下承式钢管拱桥,主桥全长70m。 2.桥面横向布置为:2m(拱肋及栏杆)+7.5m(两车道)+0.5m(路缘带)+4m(两人行道、栏杆),桥面全宽14.0m。 3.桥面纵坡:纵坡3%,横坡1.5%; 4.荷载标准:公路Ⅰ级; 5.设计使用年限:设计基准期为100年; 6.设计洪水频率:300年一遇; 4.2主要技术标准及设计采用规范 4.2.1主要技术标准 1.道路等级:公路I级; 2.车道数:双向两车道; 3.设计行车速度:40km/h; 4.设计荷载:人群荷载:2.5 kN/㎡; 5.桥面横坡:行车道1.5%人字形双面坡,人行道1%向内单面坡。 4.2.2设计采用规范 1.叶见曙《结构设计原理》北京.人民交通出版社,2004 2.邵旭东《桥梁工程》北京.人民交通出版社,2004 3.凌治平、易经武《基础工程》北京:人民交通出版社,2004 4.中华人民共和国交通部《公路工程技术标准(JTG B01-2003)》.北京.人民交通出版社,2003 5.中华人民共和国交通部.《公路桥涵设计通用规范(JTG D60-2004)》.北京.人民交通出版社,2004 6.中华人民共和国交通部.《公路钢筋砼及预应力砼桥涵设计规范(JTG D62-2004)》.北京.人民交通出版社,2004

4.3桥梁结构设计说明 4.3.1上部结构设计说明 本桥结构形式为Lp=50.0m下承式钢管混凝土简支系杆拱桥。拱肋的理论计算跨径为50.0m,计算矢高10.0m,矢跨比1/5,理论拱轴线方程为:Y=4/5X-2/225X2 (坐标原点为理论起拱点)。桥面结构采用横梁体系、整体桥面板,以提高结构的整体刚度。主要结构构造如下: 1.拱肋及风撑 全桥共设两榀钢管混凝土拱,拱肋截面为横哑铃形,高200cm,宽80cm,钢管壁厚为10mm,采用泵送混凝土顶升灌注。拱肋钢管在拱顶设一组排气孔,在拱座处各设一组进料口,待泵送混凝土完毕后,封死排气孔及进料口。风撑截面为圆形截面,直径D=80cm,钢管壁厚10mm,风撑钢管内不灌混凝土。 2.吊杆 每榀拱肋设10根厂制吊杆,吊杆间距为5.0m。吊杆采用PE5-61半平行钢丝成品索,外包双层高密度聚乙烯(PE)护套,配套锚具采用带有纠偏装置的DS(K)7-127镦头锚,吊杆标准强度Ryb =1670MPa,破断力Nb=8162kN,吊杆张拉采用单端张拉,张拉端设于纵梁底部,固定端设于拱肋顶部,吊杆锚垫板上下导管外设加强螺旋筋及钢筋网格,以弥补吊杆锚固对纵梁和拱肋截面的削弱。 3.横梁 全桥共设14道混凝土空心板横梁。横梁高35cm,宽100cm。 4.桥面板:桥面板采用预制矩形板,板厚25cm。 4.3.2下部结构设计说明 本桥下部结构桥台采用一字形桥台,台身厚100cm。,桥墩高600cm桥承台为700cm宽、200cm厚,桩采用直径100cm的钻孔灌注桩,桩长1200cm。桥台基础采用Φ100cm钻孔灌注桩基础,桩基按端承桩设计。台后接路基挡墙,挡墙采用明挖基础。 4.4桥面工程及其它 1.桥面铺装及桥面排水 机动车道桥面铺装均采用10cm厚沥青混凝土铺装;人行道采用人行道砖铺

相关主题
文本预览
相关文档 最新文档