当前位置:文档之家› 固态射频微波功率放大器简介-2016

固态射频微波功率放大器简介-2016

固态射频微波功率放大器简介-2016
固态射频微波功率放大器简介-2016

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

微波线性功率放大器综述

微波线性功率放大器综述 1概述 微波线性功率放大器在现代微波(无线)通信系统中的重要性越来越大。特别是在CDMA 体制移动通信系统中,线性功率放大器已经是必不可少的重要部件。 2基本指标 2.1 AM/AM AM/PM失真 一个HPA的线性特征可以用AM/AM和AM/PM 曲线来表示. 输入的RF 信号可以表示为: x(t)=R i(t)?cos[ω0t+θx(t)] (1) 相应的输出表示为: y(t)=G[R i(f)] ?cos{ω0t+θx(t)+ψ[R i(f)]} (2) 其中G和ψ表示AM/AM 和AM/PM曲线,如图一。 图. 1 实测的放大器失真曲线 理想的线性功放的曲线如图2。 图. 2 理想的放大器AM/AM和AM/PM曲线

2.2 双音IMD 、IP3、P1dB 双音IMD ,在放大器输入端加入两个CW 信号,在放大器的输出端测量的3阶、5阶等信号大小,以dBc 表示。 IP3 IMD 、IP3及P 1dB 定义图示 2.3 ACPR ACPR 主要应用在象CDMA 这样的宽频谱信号的研究上。邻道功率(ACP )定义为当主信道加一信号时,紧邻主信道的两个信道内的功率大小。邻道功率的产生主要来自两个方面,一是由于器件的非线性作用产生,二是由于主信道信号本身频谱较信道宽。ACPR 定义为ACP 功率与主信道功率的比值。 图3 邻道功率(ACP )定义 图4 器件非线性产生的邻道功率 对移动通信的CDMA 信号而言,其IM3(即ACPR )与IP3的关系可以通过一公式表示。 IP3=-5log[P IM3(f 1,f 2)B 3/P O [(3B-f 1)3-(3B-f 2)3]]+22.2 (dBm) 其中: P IM3(f 1,f 2) 表示要求的IM3的输出功率(W ) B 表示二分之一CDMA 信号带宽 (KHz ) f 1,f 2表示两个边带频率相对于中心频率的差值(KHz )

射频功率放大器实时检测的实现

射频功率放大器实时检测的实现 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,过温度和过激励保护等,图1为实现上述检测控制功能的方框图,它由取样放大电路,V/F变换,隔离电路,F/V变换,A/D转换,AT89C51,显示电路和输出保护电路等组成。 1、隔离电路 在功放模块中,由于大功率器件的应用,往往单个模块的输出功率都比较大,因而对小信号存在较大的高频干扰,如处理不好,就会影响后级模数转换电路工作,从而导致检测数据不准确,显示数据跳动的现象,甚至出现误动作。这里采用光电耦合器进行隔离,由于光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强、无触点且输入与输出在电气上完全隔离等特点,从而将模拟电路和数字电路完全隔离,保障系统在高电压、大功率辐射环境下安全可靠地工作。 2、LM331频率电压转换器

V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。其输入电压和输出频率的关系为:fo=(Vin×R4)/(2.09×R3×R2×C2) 由式知电阻R2、R3、R4、和C2直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。 同样,由LM331也可构成频率-电压转换电路。

微波线性功率放大器设计研究

微波线性功率放大器设计研究 摘要随着4G无线通信和军事领域新标准新技术的迅速发展,对于作为微波通信系统、雷达、电子对抗、宽带频率调制发射机、数字电视发射机等系统核心部件的功率放大器来说,它不仅仅是将信号放大到足够的功率电平,以实现信号的发射、远距离传输和可靠接收,而且对带宽、输出功率、线性度、效率和可靠性方面都提出了更高的要求。功率放大器的好坏成为制约系统发展的瓶颈。因此对于微波功率放大器的研究和设计有着重要的意义。 关键词微波;线性功率放大器;设计 前言 在宽带通信系统中,如多载波调制OFDM、长期演进系统LTE,都是非恒包络调制信号,信号的峰均比很高,回退放大器会大大降低工作效率,有必要采取有源线性化技术,射频预失真技术顺势而生,它只需在射频通路增加很少的射频元器件,就可达到提高功放输出功率、降低系统功耗、节约系统成本的效果。 1 原理 美国Scintera公司推出的射频数字预失真(RF DPD)产品RFPALSC18xx 系列,为数字预失真提出了新的解决方案。RFPAL工作午射频频率上,只涉及到射频通路的信号输入和输出,比较方便和功放集成,它具有较高的集成度,电路设计简单。其最新产品SC 1894,工作频率168MHz至3800MHz,输入信号带宽25kHz至75MHz,它利用功放输出信号和输入信号计算功放非线性参数,具有自适应调节功能,与工作在SW至60 W平均输出功率的A/AB类或Doherty 放大器一起使用,最高能達到28dB。的临波道抑制和38dB的三阶交调系数改善。它采用QFN管脚封装,支持外部时钟输入,低功耗设计,最大功耗仅为990mW。SC1894所采用的射频预失真技术可补偿调幅至调幅(AM~AM)和调幅至调相(AM-PM)失真、互调失真和功放记忆效应,采用反馈信息补偿由于温差和功放老化造成的信号失真。图1a)是SC1894管脚封装及典型外围电路,b)是基于SCI894实现射频预失真的原理框图。 射频信号经过输入定向耦合器耦合出输入信号RFin,经过巴伦匹配和阻抗变换进入芯片,功放输出信号进过反馈定向耦合器和阻抗匹配后进入芯片RFFB 管脚,SC1894通过处理这两个信号对功放进行建模和预失真处理,并输出预失真处理信号,通过定向耦合器叠加至输入信号端,最后输出预失真以后的信号。 当频率高于3800MHz时,我们采用变频模式的射频预失真电路,如图2所示,输入信号从中频通过定向耦合器进入SC1894的RFIN端口,功放输出信号经过定向耦合器,下变频至3800MHz以内的中频频率,送入芯片RFFB端口,进行自适应预失真处理,输出信号RFOUT通过反向定向耦合器进入发射通路[1]。

射频功率放大器的主要技术指标

射频功率放大器是各种无线发射机的主要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大如缓冲级、中间放大级、末级功率放大级,获得足够的射频功率后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器电路设计需要对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题进行综合考虑。 射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。 为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。 3.1.1输出功率 在发射系统中,射频末级功率放大器输出功率的范围可小到毫瓦级(便携式移动通信设备)、大至数千瓦级(发射广播电台)。 为了要实现大功率输出,末级功率放大器的前级放大器单路必须要有足够高的激励功率电平。显然大功率发射系统中,往往由二到三级甚至由四级以上功率放大器组成射频功率放大器,而各级的工作状态也往往不同。 根据对工作频率、输出功率、用途等的不同要求,可以用晶体管、FET 、射频功率集成电路或电子管作为射频功率放大器。 在射频功率方面,目前无论是在输出功率或在最高工作频率方面,电子管仍然占优势。现在已有单管输出功率达2000kW 的巨型电子管,千瓦级以上的发射机大多数还是采用电子管。 当然,晶体管、FET 也在射频大功率方面不断取得新的突破。例如,目前单管的功率输出已超过100W ,若采用功率合成技术,输出功率可以达到3000W 。 3.1.2效率 效率是射频功率放大器极为重要的指标,特别是对于移动通信设备。定义功率放大器的效率,通常采用集电极效率?c 和功率增加效率PAE 两种方法。 1. 集电极效率?c 集电极效率?c 定义为输出功率P out 与电源供给功率P dc 之比,即 dc out p P =c η (3.1.1) 2.功率增加效率(PAE ,power added efficiency ) 功率增加效率定义为输出功率P out 与输入功率P in 的差于电源供给功率P dc 之比,即 c p dc in out PAE A P P P PAE ηη)11(-=-== (3.1.2) 功率增加效率PAE 的定义中包含了功率增益的因素,当有比较大的功率增益。 如何提高输出功率和保证高的效率,是射频功率放大器设计目标的核心。 3.1.3线性 ? 衡量射频功率放大器线性度的指标有三阶互调截点(IP3)、1dB 压缩点、谐波、邻道功率比等。邻道功率比衡量由放大器的非线性引起的频谱再生对邻道的干扰程度。 ? 由于非线性放大器的效率高于现行放大器的效率,射频功率放大器通常采用非线性放大器。但是分线性放大器在放大输入信号的放大的同时会产生一系列的有害影响。 ? 从频谱的角度看,由于非线性的作用,输出信号中会产生新的频率分量,如三阶互调分 量、五阶互调分量等,它干扰了有用信号并使被放大的信号频谱发生变化,即频带展宽了。

(完整版)射频功率放大器的发展现状

1.1 研究背景 随着人类社会进入信息化时代,无线通信技术有了飞速的发展,从手机,无线局域网,蓝牙等,到航空航天宇宙探测,已经深入到当今社会生活的各个方面,成为社会生活和发展不可或缺的一部分。无线通信设备由最初体积庞大且功能单一的时代,发展到如今的口袋尺寸,方寸之间集成了各类功能强大的电路。这些翻天覆地的变化,都离不开射频与微波技术的支持。而急速增长的应用需求又促使着射频微波领域不断的研究,更新换代。快速的发展使得射频微波领域的研究进入了白热化阶段,而在几乎所有的射频与微波系统中,都离不开信号的放大,射频与微波功率放大器作为系统中功耗最大,产生非线性最强的模块,它的性能将直接影响系统性能的优劣,由于其在射频微波系统中的突出位置,功率放大器的研究也成为射频微波领域研究的一个十分重要的方向[1]。 功率放大器作为射频微波系统中最重要的有源模块,其理论方面已经十分成熟。 A 类、 B 类、 C 类、 D 类、AB 类、E/I E 类、F/I F 类、Doherty等各类功率放大器也已经成功应用到各个领域。 1.2射频功率放大器的发展现状 射频功率放大器的核心器件为其功率元器件——晶体管,它是一种非线性三端口有源半导体器件,它的放大作用,并不是晶体管能凭空产生能量,使能量放大,而是完全由集电极(BJT)或漏极(FET)电源的直流功率转换而来的。晶体管只是起到了一种控制作用,即用比较小的信号去控制直流电源产生随小信号变化的大信号,从而把电源的直流功率转换成为负载上的信号功率。功率放大器的理论知识发展已经十分完善,其面临的更多是一些工程的问题。所以,射频功率放大器性能的提升主要来自于晶体管性能的提升,即半导体技术的发展,和放大器本身电路形式的改进。根据晶体管所用的半导体材料的不同,可以大体将其分为三个不同的发展阶段。第一代半导体材料以硅(Si)和锗( Ge)等元素半导体为主。第二代半导体材料以砷化镓(GaAs)、磷化铟( InP)、锗硅(SiGe)等化合物半导体为代表,相比于第一代半导体材料,其禁带更宽、 1

射频功率放大器

射频功率放大器 射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 目录 一、什么是射频功率放大器 二、射频功率放大器技术指标 三、射频功率放大器功能介绍 四、射频功率放大器的工作原理 五、射频放大器的芯片 六、射频功率放大器的技术参数 七、射频放大器的功率参数 八、射频功率放大器组成结构 九、射频功率放大器的种类 正文

一、什么是射频功率放大器 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 射频功率放大器是对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题作综合考虑的电子电路。在发射系统中,射频功率放大器输出功率的范围可以小至mW,大至数kW,但是这是指末级功率放大器的输出功率。为了实现大功率输出,末前级就必须要有足够高的激励功率电平。 射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。 二、射频功率放大器技术指标 1、工作频率范围 一般来讲,是指放大器的线性工作频率范围。如果频率从DC开始,则认为放大器是直流放大器。 2、增益

工作增益是衡量放大器放大能力的主要指标。增益的定义是放大器输出端口传送到负载的功率与信号源实际传送到放大器输入端口的功率之比。 增益平坦度,是指在一定温度下,整个工作频带范围内放大器增益的变化范围,也是放大器的一个主要指标。 3、输出功率和1dB压缩点(P1dB) 当输入功率超过一定量值后,晶体管的增益开始下降,最终结果是输出功率达到饱和。当放大器的增益偏离常数或比其他小信号增益低1dB时,这个点就是大名鼎鼎的1dB压缩点(P1dB)。一般说放大器的功率容量,就是拿1dB压缩点来表示的了。 4、效率 由于功放是功率元件,需要消耗供电电流。因此功放的效率对于整个系统的效率来讲极为重要。 功率效率是功放的射频输出功率与供给晶体管的直流功率之比。 ηp=射频输出功率/直流输入功率 5、交调失真(IMD) 交调失真是指具有不同频率的两个或者更多的输入信号通过功率放大器而产生的混合分量。这是由于功放的非线性特质造成的。

射频功率放大器(RF PA)概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类 根据工作状态的不同,功率放大器分类如下:

传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

微波功率放大器发展概述

微波功率放大器发展概述 微波功率放大器主要分为真空和固态两种形式。基于真空器件的功率放大器,曾在军事装备的发展史上扮演过重要角色,而且由于其功率与效率的优势,现在仍广泛应用于雷达、通信、电子对抗等领域。后随着GaAs晶体管的问世,固态器件开始在低频段替代真空管,尤其是随着GaN,SiC等新材料的应用,固态器件的竞争力已大幅提高[1]。本文将对两种器件以及它们竞争与融合的产物——微波功率模块(MPM)的发展情况作一介绍与分析,以充分了解国际先进水平,也对促进国内技术的发展有所助益。 1. 真空放大器件 跟固态器件相比,真空器件的主要优点是工作频率高、频带宽、功率大、效率高,主要缺点是体积和质量均较大。真空器件主要包括行波管、磁控管和速调管,它们具有各自的优势,应用于不同的领域。其中,行波管主要优势为频带宽,速调管主要优势为功率大,磁控管主要优势为效率高。行波管应用最为广泛,因此本文主要以行波管为例介绍真空器件。 1.1 历史发展 真空电子器件的发展可追溯到二战期间。1963年,TWTA技术在设计变革方面取得了实质性进展,提高了射频输出的功率和效率,封装也更加紧凑。1973年,欧洲首个行波管放大器研制成功。然而,到了20世纪70年代中期,半导体器件异军突起,真空器件投入大幅减少,其发展遭遇极大困难。直到21世纪初,美国三军特设委员会详细讨论了功率器件的历史、现状和发展,指出真空器件和固态器件之间的平衡投资战略。2015年,美国先进计划研究局DARPA分别启动了INVEST,HAVOC计划,支持真空功率器件的发展和不断增长的军事系统需要,特别是毫米波及THz行波管[2-4]。当前真空器件已取得长足进步,在雷达、通信、电子战等系统中应用广泛。 1.2 研究与应用现状 随着技术的不断进步,现阶段行波管主要呈现以下特点。一是高频率、宽带、高效率的特点,可有效减小系统的体积、重量、功耗和热耗,在星载、弹载、机载等平台上适应性更强,从而在军事应用上优势突出。二是耐高温特性,使行波管的功率和相位随着温度的变化波动微小,对系统的环境控制要求大大降低。三是

高效率微波功放现状

高效率微波功放现状 功率放大器常应用在发射机的末端,是收发信机中最重要的耗能元件。随着通信产业的发展,无线通信系统的耗能问题受到越来越多的重视。在无线通信系统中,射频系统是其重要的部分,功率放大器作为射频系统的前端模块,它的成本大约占到基站的三分之一。而射频功率放大器作为重要的耗能元件,在整个无线通信系统中的耗能占了很大比重,追求更高的功放效率已经成了设备制造商们的重要目标。 针对功放效率,国内外在开关模式放大器技术、EE&R技术、LINC 技术和Doherty 放大器、谐波控制技术等方向进行过研究。同其它几种技术相比,Doherty 技术有着工作效率高、实现方式简单,成本相对低廉,对系统的线性度的影响相对较小等多个优点,并且可以方便地和改善线性度的前馈和预失真技术相结合,因此在现代无线通信系统中得到广泛的研究和应用。本文将简要介绍高效率微波功放技术中的谐波控制技术、Doherty技术、EE&R技术。 一、谐波控制技术 理想情况下,A 类放大器的最大效率只有50%,B 类放大器的最大效率为78.5%,C 类放大器的最大效率为100%时输出功率为0,这在功率放大器设计中是不可取的。由负载线理论可知,负载阻抗(主要是基波阻抗)决定晶体管的最大输出功率,必然会影响其最大效率。大信号下的功放早已产生谐波分量,推而广之,谐波阻抗必然也会影响功放的效率。当漏极电压与电流波形交错,即没有重叠部分时,直流能量可以完全地转化为了交流能量。而如何获得理想的电压电流波形便成了提高功放效率的关键。谐波控制类功放是从频域出发,利用特定比例的谐波分量来调控波形,从而实现高效率的。F类,逆F类,J类功放均是典型的谐波控制类功放。下面分别对F类、逆F类功放中谐波控制技术的应用进行说明。 为获得理想F类波形,功放输出需要对偶次谐波短路,奇次谐波开路。即负载匹配电路的偶次谐波阻抗为零,奇次谐波阻抗呈现无限大。这也是F类功放设计的精要。在物理现实中,因为漏源电容等因素作用,无法对所有高次谐波进行控制。因此,工程上通常利用二、三次谐波分量调整功放输出波形。 不同的输出电压电流波形能够使放大器工作时产生不同量的耗散功率。耗散功率越小,功率放大器将能量转化能力就越强。逆F类功放提高效率的原理也即是此:通过对谐波分量的控制,来输出最佳的波形(电压为半正弦,电流为方波)。要实现逆F功放的理想波形必须满足两个条件:(l)电压中只有偶次谐波分量,电流中只有奇次谐波分量;(2)剩余的谐波分量形成一定的幅度相位关系。要满足以上两个条件,不仅需要在输出端进行谐波负载控制,输入谐波控制也是必要的。 二、EE&R技术 EE&R技术是提取出信号的幅度和相位信息,分别放大后再进行相位和幅度的合成,输出射频信号。相位和幅度的合成一般使用高效率的开关类功率放大器,管子的栅极接相位信号,电源电压用幅度信号进行调制。这种方法的优点是平均效率比较高,一般是线性功放的3~5倍,且线性度只与包络通道有关,提高线性性能比较方便。缺点是需要补偿相位、幅度两路径的延时差。除了两个通道的时间队列之外,EE&R系统的线性受到两个支路的限制带宽的影响,特别是包络通路。信号分离为包络和相位(即从笛卡尔坐标到极坐标的转换)展宽了频谱。 EE&R技术的系统图大致如下图所示:

微波功率放大器线性化技术

微波功率放大器线性化技术 刘海涛 京信射频技术研究部产品部 摘要:现代无线通信飞速发展,有限的频谱资源上需要承载越来越高的数据流量,4G LTE技术将达到100Mbps的传输速率。在这种情况下,无线传输系统的设计和工作将承受着巨大的压力。为了提高效率,作为系统中的核心部件——微波功率放大器一般都处于在非线性工作状态,而包络变化的调制信号经过非线性微波功率放大器后会产生互调失真,造成严重的码间干扰和邻信道干扰。为了保证通信质量,必须采用线性化技术。本文对目前常用的各种线性化进行梳理,并分析了工作原理、介绍了技术特点,为高线性高效率微波功率放大器的设计提供了重要的参考依据。 关键词:无线通信微波功率放大器线性化技术前馈预失真 1.引言 功率放大器的线性化技术研究可以追溯到上个世纪二十年代。1928在贝尔实验室工作的美国人Harold.S.Black发明了前馈和负反馈技术并应用到放大器设计中,有效地减少了放大器失真,可以认为是线性化功率放大器技术研究的开端。但那时主要是从器件本身的角度来提高功率放大器的线性度,所研究的功率放大器频率也较低。 随着通信技术的飞速发展,以下一些原因促使线性化功率放大器技术得到广泛研究并迅速发展: 1)早期的移动通信采用恒包络调制方式与单载波传输覆盖,对于功率放大器的线性要求并不高;而进入21世纪,无线通信的飞速发展和宽带通信业务的开展,通信频段变得越来越拥挤,为了在有限的频谱范围内容纳更多的通信信道,要求采用频谱利用率更高的传输技术与复杂调制模式;因此线性调制技术如QAM ( Quadrature Amplitude Modulation )、QPSK ( Quadrature Phase Shift Keying)等在现代无线通信系统中被广泛采用。但对于包络变化的线性调制技术,发射机系统会产生较大的失真分量,从而对传输信道或邻道产生不同程度的干扰,因此必须采用线性化的发射机系统。射频功率放大器是发射机系统中非线性最强的器件,特别是为了提高功率效率,射频功放基本工作在非线性状态,因此线性化功率放大器设计技术己成为线性化发射机系统的关键技术; 2)简单的功率回退技术不能满足现代系统要求:简单的功率回退技术虽然能获得较好的线性,但是由于器件本身的原因,纵使再深的回退,也无法达到很高的线性水平,满足不了系统的高线性要求,再者,功率回退技术使得电源利用率很低,一般仅为5%,会产生导致终端自主时间过短、基站热管理等一系列问题; 3)多载波调制技术的逐渐采用要求线性化的功率放大器:以OFDM ( Orthogonal Frequency Division Multiplexing)为代表的多载波调制技术具有高传输速率、不需均衡等明显优点,己为许多标准如802. 11, HDTV ( High Definition Television )、4G LTE等所采用。由

04射频功率放大器

第四章射频功率放大器 本章介绍射频功率放大器RFPA 与射频匹配网络、射频功率合成技术4.1 引言 4.2 A类射频功率放大器 4.3 B类和C类射频功率放大器4.4 高效射频功率放大器 4.5 阻抗匹配网络与网络设计4.6 射频宽带功率合成 返回

4.1 引言 RFPA应用于发射机末级,将已调信号放大到所需功率值,送天线发射。 RFPA所带来的问题: ◆为输出大电流,输出级晶体管芯片面积增大,导致极间电容增加; ◆电路寄生参数影响较大; ◆晶体管等效输入输出阻抗小,且为复数;

◆指标与以前的 放大器不同: 输出功率P 0, 电源供给功率P D,管耗P T, 效率η 等。 ◆对功率管的要求: 最大击穿电压V (BR)CEO 、最大集电极电流I CM、最大管耗P CM及最高工作频率f max等 ◆多级功放的级间匹配网络设计计算; 一、RFPA的特点

二、RFPA的工作状态 为提高效率而设计成各种工作状态: 1.A类(甲类)工作状态: ◆输入正弦波的一周期内,功率管全导通。 ◆输入是正弦波,输出也是正弦波,且频率相同,因此是同频线性放大器。 2.B类(乙类)工作状态: ◆输入正弦波的一个周期内,功率管半个周期导通,半周期截止。 ◆形成半波失真输出,产生多次谐波。 ◆常用LC并联谐振回路选频:同频放大和倍频放大

3. C类(丙类)工作状态 ◆在输入正弦波的一周期内,功率管导通时间小于半个周 期。 ◆输出为小于半个周期的余弦脉冲,从而形成丰富的谐波输 出。 ◆同频放大和倍频放大 4. 高效功率放大 ◆为进一步提高效率,要求功率管处于开关状态。 ◆双管D类功放。 ◆单管E类功放。 ◆单管F类功放。

线性化微波功放现状及发展趋势1..

线性化微波功放现状及发展趋势 学院:电子工程学院 < 专业:电磁场与微波技术 教师:徐瑞敏教授

姓名:XXX 学号:02XX 报告日期:线性化微波功放现状及发展趋势 一、引言 电磁波和低频率端相比高频率端拥有其独特的优点,近年来尤其是微波毫米波电路作为航空航天的无线通信手段得到广泛应用。但是在几乎所有的微波电子系统中,要将信号放大都需要微波功放,因此微波功放在微波有源电路中拥有了无可比拟的重要地位。对微波功放,除了有一定的功率输出和增益指标以外,线性度也是一个十分重要的指标。例如在微波测试设备中,由于功放的非线性失真所产生的谐波往往影响了测试精度;在移动通信的基站和移动站中,功放的非线性失真往往会产生邻道干扰,从而引起信号失真。因此,在这些设备中对功放的线性度提出了很高的要求。 对功放线性度的衡量可从两个指标来考察:一为谐波抑制度,当放大器输人频率为f0的单频信号时,由于非线性失真,会产生频率为nf0等的谐波,如图1所示,输出主频与谐波的功率电平之差即为谐波抑制度,用dBc表示。 第二个衡量指标为三阶交调系数。当放大器输人一定频率间隔(例如SMH:)、幅度相同的频率为f,和f:两信号时,由于非线性失真,在放大器输出端除了放大的f’,和f:外,还有2j,;一J:和2j:一f,,此为三阶交调频率,如图1(b)所示,主频与三阶交调频率的功率电平之差即为功放的三阶交调系数,用(IBc表示也可用一分贝压缩点来表示功放的线性度的,一分贝压缩点与三阶交调之间具有换算关系。 二、功率放大器的非线性特性 ; 现在一方面人们追求更高的功率利用率,另一方面是日益发展的无线通信产业的要求迫

50MHz-250W射频功率放大器的设计

出处:何庆华

去取得胆机那中清晰温暖的声音,在这里,使用共射共 基电路是必然的,共射共基电路又叫渥尔曼电路,前管 共射配合后管的共基放大,让两管中间严重失配,却大 降低了前管的密勒电容效应,使前管的频响大改善,而 后管是共基电路,天生是频响的高手。在放大能力上, 基射共基电路与一般的单管共射电路是没有分别的,但 频响却在高频上独领风骚,故而在许多的进口名器上不 乏其影,用于本机却可大大改善了开环响应与高频线 性。 电路的参数计算在上篇已介绍过,这里就不再罗索 了,第一级的工作电流是5mA,增益是2K2与470欧的比值,增益约为15dB,注意的是两个33欧的电阻是配合了K170/J74的参数,如要换用其他的管子可能需要更改 这两个电阻的数值。第二级的工作电流约为13mA,增益约为18dB,忽略了输出级的轻微损耗,整机增益在33dB左右,可以直驳CD机了。 第一级电路与第二级电路在匹配上是没有问题的,但第二级与输出级却由于无反馈而有一定的要求了。若在此输出级使用一般常见的两级射极跟随器,输入阻抗一般 只能达到15K欧,由于音箱的阻抗在全频段的不平均,将令第二级电压放大电路的负载(为输出级的输入阻抗)变得不平均稳定。这将导致此级在全频带的放大量不一 致,而本机又没有使用环路负反馈来纠正增益。 要解决这一问题有两种方法,一个是输出级用场效应管作推动,使输入阻抗阻抗在理论上达百万M欧,,在实际的应用中可在50K欧,但使用场效应管往往需要有120mA 如此大的静态电流,否则音色显得干硬,而如此大的功耗而使功放级的偏置难于补偿。另一种方法是使用近年来许多进口高档机采用的三级双极型三极管组成的输出级电

射频功率放大器

2013年全国大学生电子设计竞赛 射频宽带放大器(D题) 【本科组】 2013年9月7日

摘要 本作品由前置放大电路、吸收式电调衰减器、末级放大电路和增益控制模块构成。在放大电路中,采用AG604-89宽带放大器,实现了信号的固定增益放大。吸收式电调衰减器采用四元PIN二极管 型衰减器,通过电位器或单片机外加控制电压来调节衰减实现增益的手动控制与数字程控功能。采用合理的级联和阻抗匹配加入末级功率放大,全面提高了增益、带宽和带负载能力。综合应用电容去耦、滤波、使用屏蔽线传输信号等抗干扰措施以减少放大器的噪声并抑制高频自激,提高放大器的稳定性。经测试验证系统实现了全部基本功能和部分扩展功能。 关键词:射频,放大器,电调衰减器,增益控制 Abstract This design is composed of preamplifier circuit, absorptive voltage variable attenuator, post amplifier and AGC module. AG604-89 broadband amplifiers were used to implement the fixed gain amplification of signals in this amplifying circuit.Absorptive voltage variable attenuator which usedπType Electronic Attenuator adjusted the gain by the potentiometer and microcontroller. Cascade and impedance matching improved the overall gain, bandwidth, and loading capability of system. The anti-interference measures such as decoupling capacitance, f ilterin g and the shielded wire were used to reduce the noise, suppress the amplifier’s hig h frequency self-excitation and improve its stability. It has been verified that the system implements all the basic function and some extensions function. KEYWORDS: RF, amplifier, absorptive voltage variable attenuator, gain controlling

射频功率放大器(RF PA)概述复习课程

射频功率放大器(R F P A)概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类

根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成

相关主题
文本预览
相关文档 最新文档