当前位置:文档之家› 卷取机动态力矩及张力损失的计算

卷取机动态力矩及张力损失的计算

卷取机动态力矩及张力损失的计算
卷取机动态力矩及张力损失的计算

薄膜分切机放卷至卷取的张力控制(上)讲解

薄膜分切机放卷至卷取的张力控制 (上) 1.分切机的重要选定要素2.放卷至卷取的张力3.接触辊及接触压力4.卷取张力的自由选择及设定5.在薄膜主要物性条件下所设定的卷取条件1.分切机的重要选定要素在分切机的选定方面最受关注的应该是分切卷取后的产品如何?也就是产品内部品质。从外观上来看,无皱褶、无划痕、端面整齐、卷取表面硬度适当等,这些都应该是基本的。但是,我们认为仅关注这些还不够。因为分切卷取后的产品其内部残留着很大的应力(内部张力),这将会对 1.分切机的重要选定要素 2.放卷至卷取的张力 3.接触辊及接触压力 4.卷取张力的自由选择及设定 5.在薄膜主要物性条件下所设定的卷取条件 1.分切机的重要选定要素 在分切机的选定方面最受关注的应该是分切卷取后的产品如何?也就是产品内部品质。从外观上来看,无皱褶、无划痕、端面整齐、卷取表面硬度适当等,这些都应该是基本的。但是,我们认为仅关注这些还不够。因为分切卷取后的产品其内部残留着很大的应力(内部张力),这将会对后道工序带来各种不利影响,比如说印刷的套印不准等。 这种内部品质的状况如何,将会很大程度地影响到用户的订购量、产品韵价格及用户对制膜厂家的信赖和评价。 而这种选定要素却无法用肉眼看到,因此,对薄膜的张力控制及接触压力的控制是最重要的选定要素。 2。放卷至卷取的张力

分切机的放卷至卷取张力可分为以上3大部分。 2—2放卷张力 2—2—1内部张力 前道工序卷取下来的原膜母卷的内部含有残留应力,这残留应力的大小同生产线的设备性能有关,特别同卷取机的性能有很大的关系。如卷取机的张力过大且张力的变动量也大时,会对分切机的放卷张力的控制带来不利影响。另外,原膜母卷由于熟化的缘故几乎多少都存有偏芯,这就是放卷速度的变化而造成放卷张力变化的原因所在。放卷张力发生变化会使薄膜内部产生应力,将存有内部应力的薄膜从牵引部传送至卷取部,最终肯定会对卷取张力的变动带来影响。 为使放卷张力的变动量降低,放卷部采用浮动辊方式来控制放卷张力。该方式可使原膜母卷的内部应力减少,可吸收放卷速度的变化,实现放卷张力保持稳定。 为使浮动辊的效果更佳,本公司研制开发了2根串联在一起浮动辊方式(已取得专利权),该方式可使放卷张力的变动量降低到最低限度。 2—2—2为实现放卷张力变动量最小而采取的对策 串联浮动辊的控制 偏芯原膜母卷回转时,靠浮动辊的摆动来吸收,但是,浮动辊的质量成为惯性抵抗使薄膜产生松弛,并使张力也增加。由于此惯性抵抗会给每一时间上的变动量及浮动辊的质量本身带来很大的影响。现在,本公司研发开发了把2根浮动辊组合在一起的串联浮动方式,可实现低张力条件下的高速运转。 串联浮动辊的方式相对于1根浮动辊来说,偏芯原膜母卷每回转1次,薄膜偏芯量的1/2通过浮动辊的位置变化来吸收,同时,由于浮动辊及惯性力的变动所产生的作用于薄膜的张力,因每一根浮动辊的质量是原来1根的1/2,可使得总体上放卷张力的变动量减少到原来1根浮动辊张力变量的1/4。

拧紧力矩的计算方法

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm K 值表(参考) 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

卷取张力原理

直流调速器卷取张力控制原理 卷取张力控制原理卷取机的卷取张力由卷取电动机产生。电动机力矩为: 式中Km——比例系数,常数 ∮——磁通量; I枢——电动机电枢电流。 卷取张力T与电动机力矩的关系为: 式中 D——带卷直径。 带卷速度为: 式中行电——电动机的转速; i——电动机至卷筒的速比。 将式2-2、式2-4代入式2-3得: 电动机电枢电势E为: 或 式中K。——比例系数,常数; ∮——磁通量; n电——电动机转数。 将式2-6代入式2-5则得:

其中: 欲使詈=常数,若E不变,口亦不变,则张力T与电动机电枢电流k成正比。换言之,在保持线速度钞不变的条件下,一定的电枢电流珠表示一定的卷取张力T。张力控制的实质在于,若卷取线速度不变,采用电流调整器使电枢电流保持恒定,就可以保持张力恒定。 怎样才能保持卷取线速度不变呢?由于卷取线速度口与带卷直径和带卷转速的乘积Dn成正比,欲使口不变,随着卷径D的变化,带卷转速必须相应变化。一般采用电势调整器调节电动机的磁通量①,以改变电动机转速,使卷取线速度保持不变,这就是卷取机的速度调节。 卷取机的速度调节除了补偿卷径变化外,还应包括根据工艺要求,对机组速度进行调整。一般来说机组速度的调节,可采用改变电压(降压)的方法,从基数咒基往下调;而卷径变小时,调速则采用改变激磁(弱磁)的方法,从基速孢基往上调。这样就可必最大机组速度'Ornax和最大卷径D。诅x时的转速为基速挖基。因此,调激磁的调速范围应保证满足下式: 式中 nrtmx、咒基——分别为卷筒的最大转速、基速; D、d——分别为带卷的外径、内径。 综上所述,电枢电流j枢与卷取张力T成比例;磁通量①与卷径D成比例。在电器上采用电流调节器和电势调节器来实现恒张力控制。 上述电势电流复合张力调节系统,用改变磁通的方法来适应卷径的变化,以保证卷取线速度,从而实现恒张力控制。卷取机处于弱磁条件下土作,不能充分利用电动机力矩;由于电动机磁通的调速范围往往受到限制,不能满足卷径比的要求,在此情况下不得不增加电动机容量。近年来出现的最大力矩张力调整系统,基本上克服了电势电流复合张力调整系统的缺点。 电动机力矩M为: 电动机电势E为: 电动机功率N为:

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图 2

2.2 张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 1、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 2、与开环转矩模式有关的功能模块: 1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩 3

表面张力的测量方法

表面张力的测量方法 英才学院 1236305 张雍淋 6121810519 液体表面张力测量在化学、医药、生物工程等领域具有重要意义, 根据液体表面张力的大小可以确定表面活性并计算表面活性剂在溶液表面的吸附量;在合金液体体系中,借助于表面张力还可以评价金相组织及孕育效果等重要参数。目前,测量液体表面张力系数有毛细上升法、最大气泡压力法、液滴法等。 1. 毛细上升法 这个方法,研究的比较早,在理论和实际上都比较成熟。如图 1所示,干净的毛细管浸入液体内部时,如果液体间的分子力小于液体与管壁间的附着力,则液体表面呈凹形。此时表面张力产生的附加力为向上的拉力,并使毛细管内的液面上升, 直到液柱的重力与表面张 力相平衡。 图 1 212cos ()g r r gh πσθπρρ=- 1()2cos g ghr ρρσθ-=

其中:σ—液体的表面张力;r-毛细管的内径;θ-接触角; ρ 1ρ-液体和气体的密度;h-液柱的高度;g-当地的重力加速度。在 和 g 实际应用中一般用透明的玻璃管,如果玻璃被液体完全润湿,可以近似的认为θ= 0。 毛细上升法是测定表面张力最准确的一种方法,国际上也一直用此方法测得的数据作为标准。应用此方法时,要注意选择管径均匀, 透明干净的毛细管,并对毛细管直径进行仔细的标定;毛细管要经过仔细彻底的清洗,毛细管浸入液体时要与液面垂直。 2.最大气泡压力法 如图 2 所示,向插入液体的毛细管轻轻的吹入惰性气体(如 N 2等)。如果选用的毛细管半径很小,在管口形成的气泡基本上是球形的。并且当气泡为半球时,球的半径最小等于毛细管半径 r ;在其前后曲率半径都比r大,如图2 所示。当气泡为半球时,泡内的压力最大,管内外最大压差可由差压计测量得到。 图2

卷取恒张力控制

酸洗线卷取机恒张力控制原理及实现方法 摘要:卷取机张力的稳定性直接影响到清洗线产品的质量,卷取机的恒张力控制是卷绕自动控制系统中的关键技术。本文首先描述了实现恒张力控制的原理,通过分析选取了适合的控制方法。并结合意大利Ansaldo 全数字直流传动装置SPDM给出了一种具体的实现方法,这种方法搭建的系统在实际应用运行稳定,清洗效果良好。 关键词:张力控制最大力矩法全数字直流调速装置SPDM Abstract: The stability of the wind reel’s tension will influence the quality of the acid cleaning‘s product directly. The way of constant tension control to the wind reel is a key technique of the automatic taking-up equipment. At the beginning of this paper, we describe the principle of tension control. Then we choose a better control method based on analyze. And then we give a implement method use the Italian Ansaldo’s whole digit direct current timing equipment SPDM. The acid cleaning system based on this method worked steady and the wash effect is good. Key words: tension control; maximal moment method; whole digit direct current timing equipment SPDM. 1、概述 近年来,市场上对铜带的需求有增无减,国际市场上铜产品价格呈强劲上涨趋势。用户对铜带产品表面的光洁度要求越来越高,同时企业对清洗的效率也提出了更高的要求。传统的清洗方式已不能满足企业的需要。铜带清洗的质量一方面取决于工艺,另一方面也与卷取机张力有密切的关系。一般来说,卷取机张力的稳定性直接影响带材的质量和成品率。尤其在带材被拖动动态升降速的过程中,更要保持张力的恒定以免出现断带。传统的卷取机张力控制装置为模拟系统,其张力控制精度低,大约在±5%左右,而且由于调试困难,实际上往往难以达到。当前普遍采用全数字直流调速装置来实现恒张力控制。意大利Ansaldo 全数字直流传动装置SILCOPAC D在冶金领域有着广泛的应用。它有许多优异的性能如具有电流、速度、电势环的自整定功能,可以通过串行总线进行大量的数据交换,可以通过软硬件设定系统功能,满足用户多种需要等。磁场控制由一个可控硅控制的调压器作为电机的励磁控制,励磁控制模式可以是恒压控制、恒流控制以及自动弱磁升速控制。利用SILCOPAC D可以方便的实现卷取机的恒张力控制。本文的研究基于铜带酸洗线设计,主要讨论使卷取机张力恒定的控制原理并结合Ansaldo直流调速装置(SPDM)说明其实现方法。 2、卷取机恒张力控制原理 保持张力恒定通常采用间接张力控制方式。所谓间接恒张力控制方式,就是只给定张力设定值,不用检测器采集张力的实际值,对张力不形成闭环控制,而是通过对开卷机电流或磁场的控制来间接实现对张力进行恒定控制的方法。 2.1 常用间接张力控制法 通常采用的间接张力控制方式有2种:比例控制方式和最大力矩控制方式。为了说明这两种方式的差别,进行以下推导。下图为卷取机示意图:

张力控制收卷

辽宁科技学院 本科生毕业设计(论文)任务书 题目:张力控制变频收卷的控制系统 专题: 系别:电信与信息工程学院 专业:测控技术与仪器 班级:测控BG08 学生姓名: 学号: 指导教师:丁英丽 2011年12月22日

一、设计(论文)的主要任务与内容(含专题) 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小 到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、 加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能 使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 具体要求如下: 1.学习掌握西门子PLC编程设计和变频器的相关技术知识。 2.查阅相关技术资料,结合工况完成PLC的选型。 3.提出设计系统的具体方案 4.选择合适的变频器,设计出西门子S7-300的程序,构成张力控制系统。 5.给出设计的主要设计思想,完成软件的总体流程设计。 6.学会相关资料的检索,翻译一篇与课题内容相关的英文资料。 二、设计(论文)的基本要求 1.利用图书馆、网络等途径进行必要的文献检索,完成本次设计所需的器件的选型, 进行规范的理论设计,方案论证合理。 2.培养自身的灵活实际应用能力和创新精神,例如,可在收卷之前加一些剪切材料 的设计,剪刀类型可自行选择。 3.在设计中应有一定的实际工作体现,例如方案设计,硬件独创的论证与设计等。 4.论文工作量要足够,符合学校有关规定。 5.翻译一篇与课题内容相关的英文资料。 三、推荐参考文献(一般4~6篇,其中外文文献至少1篇) [1]《可编程序控制器原理及应用》钟肇新彭侃编华南理工大学出版社2001 [2] 《电气与可编程序控制器技术》汤以范主编机械工业出版社2004 [3] 《电工电子选训教程》董儒胥主编上海交通大学出版社2006 [4] 《机床电气及可编程序控制器实验、课程设计指导书》郁汉琪主编高等教育出版 社2001 [5] 《矢量闭环控制恒张力收放卷系统及其在工业上的应用》姚晴洲湖州职业

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力 一、实验目的 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 二、实验原理 1、表面张力的产生 液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大, 因此在液体表面层中,每个分子都受到垂直 于液面并指向液体内部的不平衡力,如图所 示,这种吸引力使表面上的分子自发向内挤 促成液体的最小面积。 在温度、压力、组成恒定时,每增加单位 表面积,体系的表面自由能的增值称为单位表面的表面能(J·m-2)。若看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。事实上不仅在气液界面存在表面张力,在任何两相界面都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向是表面积缩小的一侧。 液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 由于表面张力的存在,产生很多特殊界面现象。

2、弯曲液面下的附加压力 静止液体的表面在某些特殊情况下是一个弯曲表面。由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。 弯曲液体表面平衡时表面张力将产生一合力P s ,而使弯曲液面下的液体所受实际压力与外压力不同。当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为: P ' = P o - P s ;当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为: P ' = P o + P s 。这一合力P S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率 中心。 附加压力与表面张力的关系用拉普拉斯方程表示:(式中σ为表面张力,R 为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况)。 3、毛细现象 毛细现象则是弯曲液面下具有附加压力的直接结果。假设溶液在毛细管表面完全润湿,且液面为半球形,则由拉普拉斯方程以及毛细管中升高(或降低)的液柱高度所产生的压力 P=gh ,通过测量液柱高度即可求出液体的表面张力。这就是毛细管上升法测定溶液表面 张力的原理。 此方法要求管壁能被液体完全润湿,且液面呈半球形。 4、最大泡压法测定溶液的表面张力 实际上,最大泡压法测定溶液的表面张力是毛细管上升法的一个逆过程。其装置图如所示,将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,由于毛细现象液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,系统减压,毛细管内液面上受到一个比表面张力仪瓶中液面上(即系统)大的压力,当此压力差——附加压力(Δp = p 大气 - p 系统 ) 在毛细管端面上产生的作用力稍大于毛细管口液体的表面张力时,气泡就从毛细管口脱 出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为拉普拉斯公式:R p σ2=?. P s = 2σ R

什么是扭矩 扭矩计算公式和单位

什么是扭矩扭矩计算公式和单位 2008年01月07日 10:07 转载作者:本站用户评论(0) 关键字: 什么是扭矩 扭矩:扭矩是使物体发生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。 扭矩和功率一样,是汽车发动机的主要指数之一,它反映在汽车性能上,包括加速度、爬坡能力以及悬挂等。它的准确定义是:活塞在汽缸里的往复运动,往复一次做有一定的功,它的单位是牛顿。在每个单位距离所做的功就是扭矩了。是这样的,扭矩是衡量一个汽车发动机好坏的重要标准,一辆车扭矩的大小与发动机的功率成正比。举个通俗的例子,比如,像人的身体在运动时一样,功率就像是身体的耐久度,而扭矩是身体的爆发力。对于家用轿车而言,扭矩越大加速性越好;对于越野车,扭矩越大其爬坡度越大;对于货车而言,扭矩越

大车拉的重量越大。在排量相同的情况下,扭矩越大说明发动机越好。在开车的时候就会感觉车子随心所欲,想加速就可加速,“贴背感”很好。现在评价一款车有一个重要数据,就是该车在0-100公里/小时的加速时间。而这个加速时间就取决于汽车发动机的扭矩。一般来讲,扭矩的最高指数在汽车2000-4000/分的转速下能够达到,就说明这款车的发动机工艺较好,力量也好。有些汽车在5000/分的转速左右才达到该车扭矩的最高指数,这说明“力量”就不是此车所长。 扭矩在物理学中就是力矩的大小,等于力和力臂的乘积,国际单位是牛米Nm,此外我们还可以看见kgm、lb-ft这样的扭矩单位,由于G=mg,当g=9.8的时候,1kg=9.8N,所以1kgm =9.8Nm,而磅尺lb-ft则是英制的扭矩单位,1lb=0.4536kg;1ft=0.3048m,可以算出1lb-ft =0.13826kgm。在人们日常表达里,扭矩常常被称为扭力(在物理学中这是2个不同的概念)。现在我们举个例子:8代Civic 1.8的扭矩为173.5Nm@4300rpm,表示引擎在4300转/分时的输出扭矩为173.5Nm,那173.5N的力量怎么能使1吨多的汽车跑起来呢?其实引擎发出的扭矩要经过放大(代价就是同时将转速降低)这就要靠变速箱、终传和轮胎了。引擎释放出的扭力先经过变速箱作“可调”的扭矩放大(或在超比挡时缩小)再传到终传(尾牙)里作进一步的放大(同时转速进一步降低),最后通过轮胎将驱动力释放出来。如某车的1 挡齿比(齿轮的齿数比,本质就是齿轮的半径比)是3,尾牙为4,轮胎半径为0.3米,原扭矩是200Nm的话,最后在轮轴的扭力就变成200×3×4=2400Nm(设传动效率为100%)在除以轮胎半径0.3米后,轮胎与地面摩擦的部分就有2400Nm/0.3m=8000N的驱动力,这就足以驱动汽车了。 若论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手动变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而传动轴的万向节效率约为98%。整体而言,汽车的驱动力可由下列公式计算: 扭矩×变速箱齿比×最终齿轮比×机械效率 驱动力= ———————————————————— 轮胎半径(单位:米) 小结:1kgm=9.8Nm 1lb-ft=0.13826kgm 1lb-ft=1.355Nm 一般来说,在排量一定的情况下,缸径小,行程长的汽缸较注重扭矩的发挥,转速都不会太高,适用于需要大载荷的车辆。而缸径大,行程短的汽缸较注重功率的输出,转速通常较高,适用于快跑的车辆。简单来说:功率正比于扭矩×转速 补充一点:为什么引擎的功率能由扭矩计算出来呢? 我们知道,功率P=功W÷时间t 功W=力F×距离s 所以,P=F×s/t=F×速度v

溶液表面张力的测定(精)

溶液表面张力的测定-最大气泡法 Determination of Surface Tension Using Maxinum Bubble Pressure Method 一、实验目的及要求 1.掌握最大气泡法测定表面张力的原理和技术。 2. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 3. 求正丁醇分子截面积和饱和吸附分子层厚度。 二、实验原理 在液体的内部任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液体的最小面积。要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值 图1 分子间作用力示意图 ΔG称为单位表面的表面能其单位为J.m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗的可逆功A为: 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决 定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的

SIMOVERT卷取机张力控制系统

控制工程C ontrol Engineering of China Mar .2005V ol.12,N o.2 2005年3月第12卷第2期 文章编号:167127848(2005)022******* 收稿日期:2004208209; 收修定稿日期:2004210210 作者简介:马美娜(19682),女,辽宁东港人,工程师,硕士,主要从事工业企业自动化等方面的研究工作。 SIMOVERT 卷取机张力控制系统 马美娜 (本溪钢铁公司热连轧厂,辽宁本溪 117000 ) 摘 要:论述了西门子SI M OVERT M ASTER DRI VE 在本钢热连轧厂平整分卷机组卷取机控 制上的应用,重点分析了SI M OVERT M ASTER DRI VE 交流矢量控制中卷取机张力恒定控制原理及自动转矩控制特点。在卷取张力控制中,由于采用了西门子全数字多处理控制系统SI M A 2DY N D 与主传动相联的SI M O LI NK 网络,通过Profibus DP Lan 网络联接的P LC S imatic S7系统以及与管理系统相联接的以太网通讯完成各种数据快速传输,使得SI M OVERT M ASTER DRI VE 高精度高质量的转矩动态控制效果满足了精品板材的生产工艺要求。关 键 词:张力;自动转矩控制;矢量控制中图分类号:TP 273 文献标识码:A SIM OVERT Reel T ension C ontrol System MA Mei 2na (H ot S trip M ill of Ben G ang ,Benxi 117000,China ) Abstract :The application of SI M OVERT M ASTER DRI VE for reel tension control is discussed.The princple for the constant tension control in the SI M OVERT AC vector control and the automatic torque control are analyzed in detail.The high quality and accuracy dynamic torque is satis fied for the need of the fine strip because of all data quick delivery by SI M ADY N D ,including SI M O LI NK,Profibus and ETHERNET 1K ey w ords :tension ;automatic torque control ;vector control 1 引 言 本钢热连轧厂于2002年6月引进的平整分卷机组是由意大利MI NO 公司设计安装的。其电气自动控制部分由意大利E DM 公司完成,采用西门子的“SI MOVERT MASTER DRI VE ”可调速矢量控制传动系统。 平整分卷机组从工艺上是对板材的再加工,一方面可以根据用户需求生产出大小不同的钢卷;另一方面是对钢卷的平整重卷,使生产出来的钢卷更具精品质量。在生产过程中,卷取机与开卷机之间必须保持恒张力。特别是进行平整时,由于带材存在弹性变形,很可能因为张力的波动,影响带材断面尺寸改变或使带材产生波浪形裂边,严重时断带。张力波动,还可能造成带材在卷筒上的层间串动。可见,卷取机张力控制系统调节品质的好坏,直接影响带材的产品质量。 SI MOVERT MASTER DRI VE 卷取机,除了具有 高动态响应精度及在每个方向上精确的电机速度控制外,其恒张力控制的良好效果保证了板材平整及分卷的质量。 2 控制原理和特点 1)张力控制原理 平整分卷机组中,卷取机 采用SI MOVERT MASTER DRI VE 交流调速矢量控制方式。矢量控制原理的出发点是,考虑到异步机是一个多变量、强耦合、非线性的时变参数系统,很难直接通过外加信号准确控制电磁转矩,但若以转子磁通这一旋转的空间矢量为参考坐标,利用静止坐标系到旋转坐标系之间的变换,可以把定子电流中的励磁电流分量I sd 与转矩电流分量I sq 变成标量独立开来,进行分别控制。这样异步机与直流电动机有相同的转矩产生机理,即回到磁场与其相垂直的电流I sq 的积为转矩这一基本原理进行张力分析。 张力T 和电动机转矩之间关系为 M =DT Π2i (1)

扭矩和功率的计算公式推导及记忆方法(全)

扭矩和功率及转速的关系式,是电机学中常用的关系式,近期在百度知道上常有看到关于扭矩和功率及转速的相关计算式的问答,一般回答者都是直接给出计算公式,公式中的常数采用近似值,常数往往不容易记住,本文的目的就是帮助大家方便的记住这些公式,并在工程应用中熟练的使用。 一记住扭矩和功率的公式形式 扭矩和功率及转速的关系式一般用于描述电机的转轴的做功问题,扭矩越大,轴功率越大;转速越高,轴功率越大,扭矩和转速都是产生轴功率的必要条件,扭矩为零或转速为零,输出轴功率为零。因此,电机空转或堵转就是轴功率等于零的两个特例。 功率和扭矩及转速成正比,扭矩和功率的关系式具有如下形式: P=aTN 上式中,a为常数,对应的有: T=(1/a)(1/N)P 即扭矩和功率成正比,和转速成反比。 记忆方法: 记住扭矩T和功率P成正比,扭矩T和转速N成反比,而系数a不必记忆。 二记住力做功的基本公式 提问者通常都知道上述关系式,问题的焦点在于常数a的具体数值。 如果不是经常使用该公式,的确很难记住这个常数,本人亦是如此。 不过,只要记住扭矩和转速公式的推导方式,可以很快推导出结果,得到系数a的准确值。 我们知道力学中力做功的功率计算公式为: P=FV(2) 上述公式为力做功的基本公式。然而,基本公式中没有出现扭矩T和转速N。 如果我们注意到:扭矩实际上就是力学上的力矩。就很容易联想到扭矩T和力F的关系。 由于力矩等于力F和力臂的乘积,而力臂是轴的半径r,因此有: T=Fr或 F=T/r(3)

图2 扭矩和力臂的关系 记忆方法: N是力的单位,m是长度的单位,因此,力等于扭矩除以长度,而长度就是半径r。扭矩的单位是N.m, 三掌握角速度和速度的转换方法 第二节告诉我们,扭矩与轴的半径有关,可是,扭矩和功率的关系式(1)中,并无轴半径的参数r,也无力做功基本公式(2)中的速度V。 这就引导我们去思考,将速度V变换为转速N后,转速N与扭矩T相乘,应该可以抵消掉轴半径r。实际正是如此: 电动机轴面上任意一点的速度与旋转的角速度及轴半径成正比,即: V=ωr(4) 记忆方法: 圆弧的长度等于角度乘以半径,圆周运动的速度等于角速度乘以半径。 四扭矩和功率的基本公式 将式(3)和(4)代入式(2),得到: P=Tω(5) 式(5)为扭矩和功率的基本公式,这个公式,我们可以按照上述方式推导,不过最好的办法还是直接记住。 记忆方法: 角速度ω和转速N都可以反映转速,采用角速度时,扭矩和功率成正比,扭矩和转速成反比,且正反比的系数均为1,因此,这是扭矩和功率的基本公式。 五单位转换

最大气泡法测表面张力实验报告

最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 W=A σ-?g 如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称 为比表面吉布斯自由能,其单位为J·m -2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 (4)由于表面张力的存在,产生很多特殊界面现象。 3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

最大气泡法测定表面张力

【目的要求】 1. 了解表面自由能、表面张力的意义及表面张力与吸附的关系。 2. 掌握最大气泡法测定表面张力的原理和技术。 3. 通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横载面积。 4. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 5. 求正丁醇分子截面积和饱和吸附分子层厚度。 【基本原理】 在液体的内部任何分子周围的吸引力是平衡的。可 是在液体表面层的分子却不相同。因为表面层的分子, 一方面受到液体内层的邻近分子的吸引,另一方面受到 液面外部气体分子的吸弓I,而且前者的作用要比后者大。 因此在液体表面层中,每个分子都受到垂直于液面并指 向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液 体的最小面积。要使液体的表面积增大就必须要 图1分子间作用力示意图 反抗分子的内向力而作功增加分子的位能。所以 说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值ΔG称为单位表面的表面能其单位为J. m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力, 其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗 的可逆功A为: -A= ΔG= σΔS 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体 不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降 低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的 表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(GibbS)表示: ⑴式 式中,Γ为表面吸附量(mol.m-2); σ为表面张力(J.m-2); T为绝对温度(K) ;C为溶液浓度(mol/L ); 表示在一定温度下表面张力随浓度的改变率。

拧紧力矩的计算方法

拧紧力矩的计算方法-CAL-FENGHAI.-(YICAI)-Company One1

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

张力计算方法

张力控制资料 张力计算方法: 在彩涂线上,带钢在通过悬垂式固化炉和卷取机在卷绕带钢时,必须具有一定的张力。卷取张力的大小取决于产品规格和生产工序。带钢张力值选取得不合适,直接影响带钢的质量和生产操作。张力过大,使电机容量增大,而且易发生断带;张力过小,易引起带钢跑偏而影响产品质量。(1)卷取张力 卷取张力T为: (1-1) 式中——单位张应力,MPa; ——带钢宽度,mm; ——带钢厚度,mm。 卷取机卷取张力由电动机力矩产生,电动机力矩为: (1-2) 式中——电动机结构常数; ——电动机磁通; ——电动机电枢电流。 卷取张力T与电动机力矩M的关系如下: (1-3) 式中——带卷直径。 带钢的线速度为: (1-4) 式中——电动机转速,r/min; ——电动机至卷筒的速比。 电动机电枢电势E为: (1-5) 将式1-2、式1-4和式1-5代入式1-3,得: 式中——常数。(1-6) 若电枢电势E不变,v也不变,则带钢张力T与电动机电枢电流I枢成正比。 卷取张力控制的实质是,若卷取时带钢线速度不变,采用电流调节器使电枢电流I枢保持恒定,就可以保证张力恒定。 实际上,随着带钢卷径的变化,卷取带钢的线速度是变化的。生产中,怎样才能保持线速度不变呢?一般采用电势调节器来调整电动机的磁通Ф,以改变电动机转速,是带钢线速度不变。或者,当磁通一定时,通过电流调节器调节电机电流,以保持带钢张力恒定。 (2)张力辊张力 在S辊上,带钢与辊子是面接触。张力是通过带钢与辊子之间的摩擦力形成的。带钢通过张力辊的辊子数目越多,产生的张力越大。为了增加带钢的张力,有时在带钢进口辊子处,增加压辊装置。 根据张力辊在机组中安装位置和作用不同,张力辊可以处在电动机工作状态或发电机工作状态。如图所示,a所示的张力辊,待岗入口处张力T1大于出口处张力T2,张力辊处于电动机工作状态。B所示的张力辊,带钢出口处张力T2大于入口处张力T1,张力辊处于发电机工作状态。当张力辊处于电动机工作状态时,带钢入口端的T1可按下式计算:

相关主题
文本预览
相关文档 最新文档