当前位置:文档之家› 基于马尔可夫模型的手势识别算法

基于马尔可夫模型的手势识别算法

基于马尔可夫模型的手势识别算法
基于马尔可夫模型的手势识别算法

模式识别-参考

认知第一次作业 刘春华学号:53 以汉字识别为例,说明模式识别的四个模型各自的主要观点,以及这些模型之间有何区别。 1、模板匹配模型 刺激的视网膜图像传递到大脑,并与大脑存储的各种模式直接比较。 长时记忆中存储了各种与过去生活中形成的外部模式相对应的袖珍副本(模板),内在模板与客观事物的刺激模式之间存在着一一对应的关系。模式识别是将刺激提供的信息与相应的模板进行匹配的过程,是一种自下而上的加工模型。精确匹配 优点:模板说可以在一定程度上解释人在知觉过程中如何进行模式识别,并在实现具有人工智能的机器模式识别中得到了实际运用。 缺点:模板说在解释人的模式识别方面仍然有许多缺陷。①按照该理论的假设,每一个有千变万化现象的同一个事物,记忆系统中都要储备与之一一对应的模板才能识别,需要在记忆中存储大量模板②这种理论对模式识别的解释比较刻板和生硬,缺乏人们在实际知觉中对模式识别的灵活性和变通性③没有明确阐释模板匹配的机制,尤其难以解释人们迅速识别一个新的、不熟悉模式的现象。 2、原型模型(Prototype Models) 一类相关的物体或模式抽象的、理想化的样例,允许微小的变化,不需要精确匹配。 记忆中储存的不是与刺激模式一一对应的模板,而是一类刺激模式的原型(有关某一类事物或刺激模式的概括性表征,反映一类客观事物所具有的共同基本特性)。模式识别是在记忆中找到与当前的刺激模式最相似的原型的过程,不需要严格匹配,只要存在相应的原型,新的、不熟悉的模式也可以得到识别。 优点:原型匹配理论大大减少了模板的数量,不仅减轻了记忆负担,而且使模式识别的过程具有灵活性和变通性。这种识别过程基本与日常生活经验相符。 缺点:理论不够清晰直观;匹配过程只强调自上而下的加工,而缺少自下而上的加工。 3、区别性特征模型(Distinctive-Features Models) 将模式的特征同存储在记忆中的特征相匹配,而不是将整个模式同模板或原型相匹配。刺激被看成是一些基本特征(如水平、垂直或斜线、曲线等)模式识别通过特征分析来完成。每一种刺激模式都能被分解成一些基本特征,同一类别模式的刺激物具有共同的基本特征。刺激信息的特征和对这些特征的分析在模式识别过程中起着关键性的作用。 人已有的知识经验中的客观事物,以各种基本特征的方式储存在记忆系统中,模式识别的过程首先是对刺激信息的特征加以分析,抽取有关特征并加以合并,再与长时记忆系统中已储存的各种相应的特征比较,一旦获得二者特征之间最佳匹配,刺激就被识别。

5最标准全面的马尔可夫模型例题(以中天会计事务所为例)

中天会计事务所马尔可夫模型例题一、问题分析 中天会计事务所由于公司业务日益繁忙,常造成公司事务工作应接不暇,解决该公司出现的这种问题的有效办法是要实施人力资源的供给预测技术。根据对该公司材料的深入分析,可采用马尔可夫模型这一供给预测方法对该事务所的人力资源状况进行预测。 马尔可夫分析法是一种统计方法,其方法的基本思想是:找出过去人力资源变动的规律,用以来推测未来人力变动的趋势。马尔可夫分析法适用于外在环境变化不大的情况下,如果外在环境变化较大的时候这种方法则难以用过去的经验情况预测未来。马尔可夫分析法的分析过程通常是分几个时期来收集数据,然后在得出平均值,利用这些数据代表每一种职位的人员变动频率,就可以推测出人员的变动情况。 二、项目策划 (一)第一步是编制人员变动概率矩阵表。 根据公司提供的内部资料:公司的各职位人员如下表1所示。 表1:各职位人员表 职位代号人数 合伙人P 40 经理M 80 高级会计师S 120 会计员 A 160 制作一个人员变动概率矩阵表,表中的每一个元素表示从一个时期到另一个时期(如从某一年到下一年)在两个工作之间调动的雇员数量的历年平均百分比(以小数表示)。(注:一般以3—5年为周期来估计年平均百分比。周期越长,根据过去人员变动所推测的未来人员变动就越准确。) 表2:历年平均百分比人员变动概率矩阵表 职位合伙人 P 经理M 高级会计师S 会计员A 职位年度离职升为 合伙 人 离职升为经 理 降为 会计 员 离职升为高级 会计师 离职 2005 0.20 0.08 0.13 0.07 0.05 0.11 0.12 0.11 2006 0.23 0.07 0.27 0.05 0.08 0.12 0.15 0.29 2007 0.17 0.13 0.20 0.08 0.03 0.10 0.17 0.20 2008 0.21 0.12 0.21 0.03 0.07 0.09 0.13 0.19 2009 0.19 0.10 0.19 0.02 0.02 0.08 0.18 0.21 平均0.20 0.10 0.20 0.05 0.05 0.10 0.15 0.20

手势识别技术综述

手势识别技术综述 作者单位:河北工业大学计算机科学与软件学院 内容摘要: 手势识别是属于计算机科学与语言学的一个将人类手势通过数学算法针对人们所要表达的意思进行分析、判断并整合的交互技术。一般来说,手势识别技术并非针对单纯的手势,还可以对其他肢体动作进行识别,比如头部、胳臂等。

但是这其中手势占大多数。本文通过对手势识别的发展过程、使用工具、目的与市场等进行综述,梳理出手势识别发展的思路,让读者对手势识别有一个总体上的认识,同时也可以让读者在此基础上进行合理想象,对手势识别的未来有一个大体印象。 Abstract: Gesture recognition is an interactive technology using mathematical arithmetic to the analysis,judge and assembly meaning that people want to convey which belongs to computer science and Linguistics.In general, gesture recognition technology is not for simple gestures expressed by hands ,it can also aim to other body movement recognition, such as the head, arm and so on. But the gesture accounted for most of the analysis. In this paper, by describing the development process, tools used , objective and market of gesture recognition , we can sort out the ideas of the development of gesture recognition, and let readers have an overall understanding of gesture recognition. At the same time, it can let the reader imagine that on hand gesture recognition based on reason ,and have a general impression of its future. 1.定义 说到手势识别,首先要对手势识别中的手势有一个清晰的认知。手势在不同的学科中有不同含义,而在交互设计方面,手势与依赖鼠标、键盘等进行操控的区别是显而易见的,那就是手势是人们更乐意接受的、舒适而受交互设备限制小的方式,而且手势可供挖掘的信息远比依赖键盘鼠标的交互模式多。在学术界,人们试图对手势定义一个抽象、明确而简洁的概念以为手势及其应用的研究提供依据。1990年Eric Hulteen和Gord Kurtenbach曾发表的题为“Gestures in Human-Computer Communication”中定义:“手势为身体运动的一部分,它包括一部分信息,而且是一种能被观察到的有意义的运动。挥手道别是一种手势,而敲击键盘不是一种手势,因为手指的运动没有被观察,也不重要,它只表示键盘

论文:马尔科夫链模型

市场占有率问题 摘要 本文通过对马尔科夫过程理论中用于分析随机过程方法的研究,提出了将转移概率矩阵法应用于企业产品的市场占有率分析当中,并给出了均匀状态下的市场占有率模型。单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。 通过转移概率求得八月份的各型号商品的市场占有率为……稳定状态后,通过马尔科夫转移矩阵,计算出各商品的市场占有率为…… 关键词马尔科夫链转移概率矩阵

一、问题重述 1.1背景分析 现代市场信息复杂多变,一个企业在激烈的市场竞争环境下要生存和发展就必须对其产品进行市场预测,从而减少企业参与市场竞争的盲目性,提高科学性。然而,市场对某些产品的需求受多种因素的影响,普遍具有随机性。为此,利用随机过程理论的马尔科夫模型来分析产品在市场上的状态分布,进行市场预测,从而科学地组织生产,减少盲目性,以提高企业的市场竞争力和其产品的市场占有率。 1.2问题重述 已知六月份甲,乙,丙,三种型号的某商品在某地有相同的销售额。七月份甲保持原有顾客的60%,分别获得乙,丙的顾客的10%和30%;乙保持原有顾客的70%,分别获得甲,丙的顾客的10%和20%;丙保持原有顾客的50%,分别获得甲,乙顾客的30%和20%。求八月份各型号商品的市场占有率及稳定状态时的占有率。 二、问题分析 单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。题目给出七月份甲、乙、丙三种型号的某商品的顾客转移率,转移率的变化以当前的状态为基准而不需要知道顾客转移率的过去状态,即只要掌握企业产品目前在市场上的占有份额,就可以预测将来该企业产品的市场占有率。概括起来,若把需要掌握过去和现在资料进行预测的方法称为马尔科夫过程。 马尔科夫预测法的一般步骤: (1)、调查目前本企业场频市场占有率状况,得到市场占有率向量A ; (2)、调查消费者的变动情况,计算转移概率矩阵B ; (3)、利用向量A 和转移概率矩阵B 预测下一期本企业产品市场占有率。 由于市场上生产与本企业产品相同的同类企业有许多家,但我们最关心的是本企业产品的市场占有率。对于众多消费者而言,够不够买本企业的产品纯粹是偶然事件,但是若本企业生产的产品在质量、价格、营销策略相对较为稳定的情况下,众多消费者的偶然的购买变动就会演变成必然的目前该类产品相对稳定的市场变动情况。因为原来购买本企业产品的消费者在奖励可能仍然购买本企业的产品,也可能转移到购买别的企业的同类产品,而原来购买其他企业产品的消费者在将来可能会转移到购买本企业产品,两者互相抵消,就能形成相对稳定的转移概率。 若已知某产品目前市场占有率向量A ,又根据调查结果得到未来转移概率矩阵B ,则未来某产品各企业的市场占有率可以用A 乘以B 求得。即: 111212122212312*()*n n n n n nn a a a a a a A B p p p p a a a ????????????=????????????????????? 三、模型假设 1、购买3种类型产品的顾客总人数基本不变; 2、市场情况相对正常稳定,没有出现新的市场竞争; 3、没有其他促销活动吸引顾客。

模式识别(K近邻算法)

K 近邻算法 1.算法思想 取未知样本的x 的k 个近邻,看这k 个近邻中多数属于哪一类,就把x 归于哪一类。具体说就是在N 个已知的样本中,找出x 的k 个近邻。设这N 个样本中,来自1w 类的样本有1N 个,来自2w 的样本有2N 个,...,来自c w 类的样本有c N 个,若c k k k ,,,21 分别是k 个近邻中属于c w w w ,,,21 类的样本数,则我们可以定义判别函数为: c i k x g i i ,,2,1,)( == 决策规则为: 若i i j k x g max )(=,则决策j w x ∈ 2.程序代码 %KNN 算法程序 function error=knn(X,Y ,K) %error 为分类错误率 data=X; [M,N]=size(X); Y0=Y; [m0,n0]=size(Y); t=[1 2 3];%3类向量 ch=randperm(M);%随机排列1—M error=0; for i=1:10 Y1=Y0; b=ch(1+(i-1)*M/10:i*M/10); X1=X(b,:); X(b,:)=[]; Y1(b,:)=[]; c=X; [m,n]=size(X1); %m=15,n=4 [m1,n]=size(c); %m1=135,n=4 for ii=1:m for j=1:m1 ss(j,:)=sum((X1(ii,:)-c(j,:)).^2); end [z1,z2]=sort(ss); %由小到大排序 hh=hist(Y1(z2(1:K)),t); [w,best]=max(hh); yy(i,ii)=t(best); %保存修改的分类结果 end

什么是模式识别

什么是模式识别 1 模式识别的概念 模式识别[8]是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分析、化学模式识别等等。计算机模式识别实现了部分脑力劳动自动化。 模式识别--对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。 模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下4种方法进行分析处理。 统计模式识别方法:统计模式识别方法是受数学中的决策理论的启发而产生的一种识别方法,它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。统计模式识别中个应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。 人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。 句法结构模式识别:句法结构模式识别着眼于对待识别对象的结构特征的描述。 在上述4种算法中,统计模式识别是最经典的分类识别方法,在图像模式识别中有着非常广泛的应用。 2 模式识别研究方向 模式识别研究主要集中在两方面,即研究生物体(包括人)是如何感知对象的,属于认知科学的范畴,以及在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作着近几十年来的努力,已经取得了系统的研究成果。 一个计算机模式识别系统基本上事有三部分组成的[11],即数据采集、数据处理和分类决策或模型匹配。任何一种模式识别方法都首先要通过各种传感器把被研究对象的各种物理变量转换为计算机可以接受的数值或符号(串)集合。习惯上,称这种数值或符号(串)所组成的空间为模式空间。为了从这些数字或符号(串)中抽取出对识别有效的信息,必须对它进行处理,其中包括消除噪声,排除不相干的信号以及与对象的性质和采用的识别方法密切相关的特征的计算(如表征物体的形状、周长、面积等等)以及必要的变换(如为得到信号功率谱所进行的快速傅里叶变换)等。然后通过特征选择和提取或基元选择形成模式的特

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

马尔科夫决策过程MDPs

数学模型-MATLAB工具箱-马尔可夫决策过程-MDPs 前言: MDPs提供了一个数学框架来进行建模,适用于结果部分随机部分由决策者控制的决策情景。由于其在数学建模或学术发表中经常被用到,这里我们从实用的角度对其做一些归纳整理,案例涉及到大数据应用方面的最新研究成果,包括基本概念、模型、能解决的问题、基本算法(基于MATLAB或R工具箱)和应用场景。最后简单介绍了部分可观察马尔可夫决策过程(POMDP)。 由于相关的理论和应用研究非常多,这里我们只介绍最基本的东西(但是提供了必要而丰富的展开),并提供相应的参考文献和工具箱链接,以期帮助读者更快上手,至于更加深入的研究和更加细致的应用,则需要参照相关研究领域的学术文献。 一、基本概念 (1)序贯决策(Sequential Decision)[1]: 用于随机性或不确定性动态系统的最优化决策方法。 (2)序贯决策的过程是: 从初始状态开始,每个时刻作出最优决策后,接着观察下一时刻实际出现的状态,即收集新的信息,然后再作出新的最优决策,反复进行直至最后。 (3)无后效性 无后效性是一个问题可以用动态规划求解的标志之一。 某阶段的状态一旦确定,则此后过程的演变不再受此前各种状态及决策的影响,简单的说,就是“未来与过去无关”,当前的状态是此前历史的一个完整总结,此前的历史只能通过当前的状态去影响过程未来的演变。 (4)马尔可夫决策过程 系统在每次作出决策后下一时刻可能出现的状态是不能确切预知的,存在两种情况: ①系统下一步可能出现的状态的概率分布是已知的,可用客观概率的条件分布来描述。对于这类系统的序贯决策研究得较完满的是状态转移律具有无后效性的系统,相应的序贯决策称为马尔可夫决策过程,它是将马尔可夫过程理论与决定性动态规划相结合的产物。 ②系统下一步可能出现的状态的概率分布不知道,只能用主观概率的条件分布来描述。用于这类系统的序贯决策属于决策分析的内容。 注:在现实中,既无纯客观概率,又无纯主观概率。 客观概率是根据事件发展的客观性统计出来的一种概率。主观概率与客观概率的主要区别是,主观概率无法用试验或统计的方法来检验其正确性。 客观概率可以根据历史统计数据或是大量的试验来推定。 客观概率只能用于完全可重复事件,因而并不适用于大部分现实事件。 为什么引入主观概率:有的自然状态无法重复试验。如:明天是否下雨,新产品销路如何。 主观概率以概率估计人的个人信念为基础。主观概率可以定义为根据确凿有效的证据对个别事件设计的概率。这里所说的证据,可以是事件过去的相对频率的形式,也可以是根据丰富的经验进行的推测。比如有人说:“阴云密布,可能要下一场大雨!”这就是关于下雨的可能性的主观概率。主观概率具有最大的灵活性,决策者可以根据任何有效的证据并结合自己对情况的感觉对概率进行调整。 二、和马尔可夫链的联系

模式识别关于男女生身高和体重的神经网络算法

模式识别实验报告(二) 学院: 专业: 学号: 姓名:XXXX 教师:

目录 1实验目的 (1) 2实验内容 (1) 3实验平台 (1) 4实验过程与结果分析 (1) 4.1基于BP神经网络的分类器设计 .. 1 4.2基于SVM的分类器设计 (4) 4.3基于决策树的分类器设计 (7) 4.4三种分类器对比 (8) 5.总结 (8)

1)1实验目的 通过实际编程操作,实现对课堂上所学习的BP神经网络、SVM支持向量机和决策树这三种方法的应用,加深理解,同时锻炼自己的动手实践能力。 2)2实验内容 本次实验提供的样本数据有149个,每个数据提取5个特征,即身高、体重、是否喜欢数学、是否喜欢文学及是否喜欢运动,分别将样本数据用于对BP神经网络分类器、SVM支持向量机和决策树训练,用测试数据测试分类器的效果,采用交叉验证的方式实现对于性能指标的评判。具体要求如下: BP神经网络--自行编写代码完成后向传播算法,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算可以基于平台的软件包); SVM支持向量机--采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判; 决策树--采用平台提供的软件包进行分类器的设计以及测试,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。 3)3实验平台 专业研究方向为图像处理,用的较多的编程语言为C++,因此此次程序编写用的平台是VisualStudio及opencv,其中的BP神经网络为自己独立编写,SVM 支持向量机和决策树通过调用Opencv3.0库中相应的库函数并进行相应的配置进行实现。将Excel中的119个数据作为样本数据,其余30个作为分类器性能的测试数据。 4)4实验过程与结果分析 4.1基于BP神经网络的分类器设计 BP神经网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。其学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。 在独自设计的BP神经中,激励函数采用sigmod函数,输入层节点个数为5,

马尔可夫决策基础理论

马尔可夫决策基础理论 内容提要 本章介绍与研究背景相关的几类决策模型及算法。模型部分,首先是最基本的马尔可夫决策模型,然后是在此基础上加入观察不确定性的部分可观察马尔可夫决策模型,以及进一步加入多智能体的分布式部分可观察马尔可夫决策模型和部分可观察的随机博弈模型。算法部分,针对上述几类模型,我们均按照后向迭代和前向搜索两大类进行对比分析。最后,我们介绍了半马尔可夫决策模型及Option理论,这一理论为我们后面设计分等级的大规模多智能体系统的决策模型及规划框架提供了重要基础。 2.1 MDP基本模型及概念 马尔可夫决策过程适用的系统有三大特点:一是状态转移的无后效性;二是状态转移可以有不确定性;三是智能体所处的每步状态完全可以观察。下面我们将介绍MDP基本数学模型,并对模型本身的一些概念,及在MDP模型下进行问题求解所引入的相关概念做进一步解释。 2.1.1 基本模型 马尔科夫决策过程最基本的模型是一个四元组S,A,T,R(Puterman M, 1994): ?状态集合S:问题所有可能世界状态的集合; ?行动集合A:问题所有可能行动的集合; ?状态转移函数T: S×A×S’→[0,1]: 用T(s, a, s’)来表示在状态s,执行动作 P s s a; a,而转移到状态s’的概率('|,) ?报酬函数R: S×A→R:我们一般用R(s,a)来表示在状态s执行动作a所能得到的立即报酬。 虽然有针对连续参数情况的MDP模型及算法,然而本文在没有特殊说明的情况都只讨论离散参数的情况,如时间,状态及行动的参数。 图2.1描述的是在MDP模型下,智能体(Agent)与问题对应的环境交互的过程。智能体执行行动,获知环境所处的新的当前状态,同时获得此次行动的立即

数学建模马氏链模型

马氏链模型 教学目的: 通过教学,使学生掌握马尔可夫链的基本知识,掌握建立马氏链模型的基本方法,能用马氏链模型解决一些简单的实际问题。 教学重点和难点: 建立马氏链模型的基本思想和基本步骤。 教学内容: 马尔可夫预测法是应用概率论中马尔可夫链(Markov chain)的理论和方法来研究分析时间序列的变化规律,并由此预测其未来变化趋势的一种预测技术.这种技术已在市场预测分析和市场管理决策中得到广泛应用,近年来逐步被应用于卫生事业管理和卫生经济研究中.下面扼要介绍马尔可夫链的基本原理以及运用原理去进行市场预测的基本方法. (1)马尔可夫链的基本原理 我们知道,要描述某种特定时期的随机现象如某种药品在未来某时期的销售情况,比如说第n季度是畅销还是滞销,用一个随机变量X n便可以了,但要描述未来所有时期的情况,则需要一系列的随机变量 X1,X2,…,X n,….称{ X t,t∈T ,T是参数集}为随机过程,{ X t }的取值集合称为状态空间.若随机过程{ X n}的参数为非负整数, X n 为离散随机变量,且{ X n}具有无后效性(或称马尔可夫性),则称这一随机过程为马尔可夫链(简称马氏链).所谓无后效性,直观地说,就是如果把{ X n}的参数n看作时间的话,那么它在将来取什么值只与它现在的取值有关,而与过去取什么值无关. 对具有N个状态的马氏链,描述它的概率性质,最重要的是它在n时刻处于状态i下一时刻转移到状态j的一步转移概率: 若假定上式与n无关,即,则可记为(此时,称过程是平稳的),并记 (1)称为转移概率矩阵. 例1 设某抗病毒药销售情况分为“畅销”和“滞销”两种,

人工智能 多种模式识别的调研报告

郑州科技学院 本科毕业设计(论文) 题目多种模式识别的调研报告 姓名闫永光 专业计算机科学与技术 学号201115025 指导教师 郑州科技学院信息工程系 二○一四年六月

摘要 信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。 模式识别(Pattern Recognition)是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;人工智能;多种模式识别的应用;模式识别技术的发展潜力

引言 随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造。但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。这时,能够提高计算机外部感知能力的学科——模式识别应运而生,并得到了快速的发展。人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知 1、模式识别 什么是模式和模式识别? 模式可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。 模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。

机器学习在模式识别中的算法研究

机器学习在模式识别中的算法研究 摘要:机器学习是计算机开展智能操作的基础,人工智能的发展依靠机器学习 技术,而机器学习、模式识别与当前人工智能的发展密切相关。本文通过概述机 器学习机制,围绕神经网络、遗传算法、支持向量机、K-近邻法等算法研究当前 机器学习在模拟识别中的应用,为今后模拟识别与人工智能开发与研究提供借鉴。关键词:机器学习;模式识别;人工神经网络 前言: 机器学习技术覆盖了人工智能的各个部分,如自动推理、专家系统、模式识别、智能机器人等。模式识别是将计算机的不同事物划分成不同的类别。人工智 能的模式识别可以利用机器学习算法完善分类能效。因此,机器学习与模式识别 密不可分,本文就机器学习在模式识别领域的学习算法中的应用展开研究。 1、机器学习机制与系统设计 在机器学习模型中,环境可以向系统的学习部件中提供信息,学习部件根据 这些信息调整和修改知识库,提升系统内部执行文件的性能。执行文件再将获得 的信息向学习部件反馈,此过程就是机器学习系统结合外部与内部的环境信息自 动获取知识的过程。机器学习系统设计的构建过程应包含两部分:其一,模型的 选择和构建。其二,学习算法的选择与设计。不同种类的模型具有不同的目标函数,涉及到不同的学习机制,算法的复杂性与能力决定着学习系统的效率与学习 能力。此外,训练样本集的特征与大小的问题也与机器学习系统的性能相关。 2、机器学习在模式识别中的应用 2.1 遗传算法 在机器学习中,特征维数是一大难题,每一种模式中的特征反映出的事物本 质权重均不一致。部分对于分类结果并无积极作用,甚至属于冗余,因此选择特 征尤为关键。遗传算法实际上是寻优算法,可以有效的解决特征选择问题。遗传 算法可以筛选出准确反映出原模式相关信息、影响分类的结果、相互关联性较小 的特征。遗传算法实际是利用达尔文的生物进化思想,在运算领域中巧妙生成一 种寻优算法。该算法是1975年由美国Michigan大学的Holland教授提出的,遗 传算法的主要方法如下:首先,将种群中的个体作为对象,进行一系列的变异、 交叉、选择等操作。其次,利用遗传操作促进群体不断的进化,最终产生最优的 个体,最后,结合个体对于环境的适应程度选择最优良的个体,为其创造机会繁 衍后代。遗传算法程序如下:选择合适的编码策略,确定遗传策略和适应度函数。遗传策略包含种群的选择、大小、交叉概率、变异方法、变异概率等遗传参数; 利用编码策略,将特征集变为位串结构;构建初始化群体;计算整个群体的个体 适应度;结合遗传策略,将交叉、选择等作用在群体中,产生下一代群体;判别 群体性能是否到达某一标准,假若不满足将回到遗传策略阶段。 2.2 k-近邻法 k-nearest neighbor(k-近邻法)被广泛运用在无指导、基于实例的学习方法中, 可以实现线性不可分的样本识别,在之前并不了解待分样本的分布函数。当前被 广泛应用的k-近邻法主要是将待分类样本为重点形成超球体,同时扩展超球的半 径一直到球内包含着K个已知模式的样本,判别k个邻近样本属于哪一种。其主 要分类算法如下:设有c个类别,分别是w1,w2,w3,...,wc,i=1,2,3,...,c.测试样本x

部分可观察马尔可夫决策过程研究进展.

0引言 部分可观察马尔可夫决策过程 (partially observable Markov decision processes , POMDP 描述的是当前世界模型部分可知的情况下,智能体 Agent Agent 的例如, 足球运动员在球场上踢足球, 每个球员并不完全清楚他周围的所有状态, 当他向前带球的过程中, 他可能知道在他前面人的位置和状态, 但是可能不知道在他后面的其他队友的位置和状态, 此时他观察到的信息是不完整的, 但是一个优秀的足球运动员往往靠着一种感觉传给他身后的最有利的队员, 使其进行最有利的进攻, 过程就是部分可观察马尔可夫决策过程。在部分可感知模型中, 不仅要考虑到状态的不确定性, 同时还要考虑到动作的不确定性,这种世界模型更加能够客观的描述真实世界, 因此应用十分广泛。 本文综述了目前在 POMDP 领域的研究情况, 介绍了 MDP 的数学理论基础和决策模型, 以及一种典型的 POMDP 决策算法-值迭代算法, 介绍了目前现有的几种经典的决策算法, 并分析它们之间的优点和不足, 列举了一些 POMDP 常见的应用领域, 并进行了总结和展望。 1马尔可夫决策过程 Agent 每一个时刻都要做一些决策, 做决策时不仅要考虑甚至是其它 Agents (Markov decision process , MDP 的最优解, MDP 可以用一个四元组 < , >来描述 [1] :

:Agent 的行为集; , : ×:当 Agent 在状态 , 可能转移到状态的概率, 使用 | :→ 情况下 采用动作 -2116- -2117 - , Agent 使 Agent 选择的动作能够获得

图像模式识别的方法介绍

2.1图像模式识别的方法 图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。 从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。 2.1.1句法模式识别 对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干

较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。 句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。 2.1.2统计模式识别 统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。 统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

马尔科夫决策解决方案

马尔科夫决策解决方案 篇一:马尔可夫决策过程模型 3。马尔可夫决策过程模型 本节介绍了MDP模型来确定相互制约的服务商到客户系统调度策略,分配区分服务器优先级的客户。医药科学的MDP模型作为一个线性规划模型,以至于考虑与约束不可以添加扩展马尔可夫状态空间,从而允许有效的线性规划算法标识最佳相互制约政策。消费者要求达到的服务,都有一个关联的位置和分为高优先级或低优先级。服务器救护车所分化他们的答复和服务时间。我们可以捕捉时间从一个服务器是派去当它到达现场,捕捉的总时间和服务时间为客户服务,包括响应客户时间,对待客户现场,运输一个客户去医院,并返回到服务。目标是确定哪些服务器调度到达客户最大化平均水平.总奖励每阶段给予最低标准股本。回复一个电话的奖励是解释作为高优先级客户的可能性是对一个固定的时间内一个RTT目标函数已经成为最好的效率的性能的措施,在EMS系统。在模型中,客户根据到达泊松过程的速度。当一个客户到达时,其位置和优先级评估,和一家派往它可用的服务器。的模型使得几个假设: 1.如果客户和服务器可用,到达服务器必须派遣。 2。只有服务器-服务器位于他们家庭基站可以被派往客

户。 3。一个服务器分配给每个客户。 4。然后服务器返回服务客户。 5。服务时间不依赖于客户优先权和指数分布。 6。有一个零长度队列为客户。 我们将讨论如何修改模型 电梯的假设和假设一个强大的影响产生的政策。需要服务器被派往客户如果服务器是可用非理想的政策合理,因为这里的模型是出于EMS体系中,为所有客户提供服务是一个主要的公共服务系统的目标。此外,由于担忧的责任,而不是保留是一种能力,嵌入在EMS调度和政策实践,约束的服务提供者。为了简单起见,所有服务器维修后返回本国驻地客户,当他们说为其他客户服务可用,服务器不能动态改航。在实践中,服务器可以从以外的地点派遣他们家电台,当服务器完整的服务。以允许救护车被派遣本国驻地以外的位置,可以扩大到包括状态空间辅助服务器的位置相对应服务器完成服务。同样地,可以将状态空间扩大到包括辅助客户地点,对应一个服务器是谁前往客户允许服务器动态改航,直到它到达服务客户和位置,相对应的服务器正在接近尾声与另一个客户的服务。关于第五假设,尽管它将琐碎包含服务时间依赖于客户优先级,指数提升,因为我们假设是更难了必须扩大状态方程考虑non-Markov模型。我们承认这是一个强

手势识别技术原理及解决方案

手势识别对于我们来说并不陌生,手势识别技术很早就有,目前也在逐渐成熟,现在大部分消费类应用都在试图增加这一识别功能,无论是智能家居,智能可穿戴以及VR 等应用领域,增加了手势识别控制功能,必能成为该应用产品的一大卖点。手势识别可以带来很多的好处,功能炫酷,操作方便,在很多应用场合都起到了良好的助力功能。 手势识别技术的发展 说起手势识别技术的发展,可以粗略分为两个阶段:二维手势识别以及三维手势识别。 早期的手势识别识别是基于二维彩色图像的识别技术,所谓的二维彩色图像是指通过普通摄像头拍出场景后,得到二维的静态图像,然后再通过计算机图形算法进行图像中内容的识别。二维的手型识别的只能识别出几个静态的手势动作,而且这些动作必须要提前进行预设好。 相比较二维手势识别,三维手势识别增加了一个Z轴的信息,它可以识别各种手型、手势和动作。三维手势识别也是现在手势识别发展的主要方向。不过这种包含一定深度信息的手势识别,需要特别的硬件来实现。常见的有通过传感器和光学摄像头来完成。 手势识别的关键技术 手势识别中最关键的包括对手势动作的跟踪以及后续的计算机数据处理。关于手势动作捕捉主要是通过光学和传感器两种方式来实现。手势识别推测的算法,包括模板匹配技术(二维手势识别技术使用的)、通过统计样本特征以及深度学习神经网络技术。 根据硬件实现方式的不同,目前行业内所采用的手势识别大约有三种: 1、结构光(Structure Light),通过激光的折射以及算法计算出物体的位置和深度信息,进而复原整个三维空间。结构光的代表产品有微软的Kinect一代。不过由于以来折射光的落点位移来计算位置,这种技术不能计算出精确的深度信息,对识别的距离也有严格的要求。 2、光飞时间(TI me of Flight),加载一个发光元件,通过CMOS传感器来捕捉计算光子的飞行时间,根据光子飞行时间推算出光子飞行的距离,也就得到了物体的深度信息。代表作品为Intel带手势识别功能的三维摄像头。 3、多角成像(Mul TI-camera),现在手势识别领域的佼佼者Leap Mo TI on使用的就是这种技术。它使用两个或者两个以上的摄像头同时采集图像,通过比对这些不同摄像头在同一时刻获得的图像的差别,使用算法来计算深度信息,从而多角三维成像。

相关主题
文本预览
相关文档 最新文档