当前位置:文档之家› 基于双电机驱动系统的间隙消除技术研究

基于双电机驱动系统的间隙消除技术研究

基于双电机驱动系统的间隙消除技术研究
基于双电机驱动系统的间隙消除技术研究

单片机基于80C51单片机的步进电机控制系统

中国地质大学长城学院 本科课程设计题目:基于80C51单片机的步进电机控制系统 系别信息工程系 学生姓名 专业电气工程及其自动化 学号 指导教师 职称讲师 2014 年6 月11 日

摘要 本文研究基于51系列单片机的步进电机控制系统设计,该系统包括以下几个部分:数据采集、数据处理、终端接收,该系统以汇编语言为单片机的驱动程序语言,单片机控制步进电机,主要任务是把二进制数变成脉冲序列,按相序输入脉冲以实现电机转动方向控制,利用单片机实现对步进电机的远距离实时监控,从而达到高效、节能的控制步进电机工作的目的,该系统具有成本低、控制方便的特点。使用单片机驱动四相步进电机,控制步进电机以四相八拍的方式运行,来实现步进电机正向/反向旋转,P1.0~P1.3分别控制步进电机;P1.5~P1.7分别控制步进电机的停止、正转、反转。 关键词:51单片机;步进电机;数据采集;汇编语言;

目录 摘要 0 1 设计目的 (1) 2设计内容与要求 (1) 3 总体设计方案 (1) 3.1整体方案 (1) 3.2具体方案实现 (1) 4系统硬件设计 (2) 4.1复位电路 (2) 4.2晶振电路 (2) 4.3按键电路 (3) 4.4指示灯电路 (3) 4.5驱动电路 (4) 4.6步进电机 (4) 5程序软件设计 (5) 5.1程序流程图 (5) 5.2源程序 (6) 6系统调试与仿真 (7) 7总结 (8)

1设计目的 1.掌握单片机控制步进电机的硬件接口电路。 2.掌握步进电机驱动程序的设计和调试方法。 3.熟悉步进电动机的工作特性。 2设计内容与要求 1.查阅资料,了解步进电机的工作原理。 2.通过单片机给定参数控制电机转动。 3.通过按钮控制正转、反转和停止。 3总体设计方案 3.1整体方案 本系统主要是由AT89C51,步进电机控制器ULN2004,步进电机,通过单片机编程,实现步进电机控制的脉冲分配,使电机实现正转,反转以及停止等功能 3.2具体实现方案 根据系统要求画出单片机控制步进电机的控制框图,见下图。系统包括单片机、按键、驱动电路和步进电机。 键盘80c51单片机 步进电机 驱动电路

电动汽车直接驱动车轮的原因

电动汽车直接驱动车轮的原因 电力驱动是未来汽车的发展方向,但以特斯拉为代表的纯电动汽车也仅仅是将引擎替换为电机,依然使用齿轮变速箱进行动力传递。为何不采用四个电机直接驱动四个车轮呢?再结合计算机控制技术对每个车轮的精准控制,这样岂不比四驱、双离合等技术强太多? 我们知道对传统汽车而言离合器、变速器、传动轴、差速器乃至分动器都是必不可少的,而这些部件不但重量不轻、让车辆的结构更为复杂,同时也存在需要定期维护和故障率的问题,如果采用电机直接驱动轮毂,那就可以大大减少整个传动、制动等系统部件,使车辆结构更加简单,同时也提供了整车的传动效率。针对这一设想其实早在20世纪70年代就有汽车厂商提出轮毂电机技术,只是当时整个汽车领域主要还是以内燃机驱动,并且因为内燃机体积的缘故很难集成到轮毂中,所以也限制了轮毂电机技术的发展。那么什么是轮毂电机技术? 轮毂电机技术又称车轮内装电机技术,它的最大特点就是将动力、传动和制动装置都整合到轮毂内,因此将电动车辆的机械部分大大简化。轮毂电机具备单个车轮独立驱动的特性,因此无论是前驱、后驱还是四驱形式,都可以比较轻松地实现,同时轮毂电机可以通过左右车轮的不同转速甚至反转实现类似履带式车辆的差动转向,大大减小车辆的转弯半径,在特殊情况下几乎可以实现原地转向。 随着新能源汽车的发展,不少汽车都是采用电驱动的方式,因此轮毂电机驱动技术也就派上大用场,不仅可以使用轮毂电机作为主要驱动力,而且可以用于提供起步、急加速的助力以及刹车时的制动力,并且在新能源汽车领域的能量回收技术也可以轻松实现,在控制方面可以通过针对每个轮毂电机单独控制,轻松实现四驱,并且可以对四轮进行差速控制实现不同的抓地力分配,提高电动汽车效率。

轮毂电机驱动技术解析20161031

高功率密度盘式轮毂电机集成技术 实能高科 一、轮毂技术国内外现状 轮毂电机技术又称车轮内装电机技术,它的最大特点就是将动力、传动和制动装置都整合到轮毂内,因此将电动车辆的机械部分大大简化。早在1900年,就已经制造出了前轮装备轮毂电机的电动汽车,在20世纪70年代,这一技术在矿山运输车等领域得到应用。作为比较先进的驱动技术,国外有很多研究所和公司都对轮毂电机进行了专项研究,并已经开始将其应用到实际产品中。位于美国加州的通用汽车高级技术研发中心成功地将自行研制的轮毂电机应用到雪弗兰s210皮卡车中。该电机给车轮增加的重量只有约15kg,却可产生约25kW的功率,产生的扭矩比普通的雪弗兰s210四缸皮卡车高出60%,加速性能也有所提高。 通用开发的为150吨的重型卡车设计的轮毂电机(内燃动力电传动)

典型内转子结构的轮毂电机驱动系统结构示意图 日本对轮毂电机研究起步早,技术在世界上处于领先。日本庆应义塾大学清水浩教授领导的电动汽车研究小组在过去10年中,研制的IZA、ECO、KAZ等电动汽车均采用轮毂电机驱动技术。其中后轮驱动电动汽车ECO采用的永磁无刷直流电机,额定功率618kW,峰值功率可达20kW。 本田研发的轮毂电机实物

日本包含丰田在内的各大公司在2003年东京汽车展上纷纷推出自己的轮毂驱动产品,如:普利司通公司的动力阻尼型车轮内装式电机系统、丰田公司的燃料电池概念车FINE2N等等。法国的TM4公司设计的一体化电动轮,采用外转子永磁无刷直流电动机,额定功率为1815kW,额定转矩为950r/min,额定工况下的平均效率可达96.13%,峰值功率可达80kW,峰值扭矩为670N?m,最高转速为1385r/min。 目前国内也有自主品牌汽车厂商开始研发此项技术,在2011年上海车展展出的瑞麒X1增程电动车就采用了轮毂电机技术。 米其林研发的将轮毂电机和电子主动悬挂都整合到轮内的驱动/悬挂系统结构图 轮毂电机驱动系统根据电机的转子型式主要分成两种结构型式:内转子式和外转子式。其中外转子式采用低速外传子电机,电机的最

步进电机驱动控制系统设计(有程序)

目录 一前言 (1) 二总体方案设计 (1) 1工作原理 (1) 2方案选择 (1) 2.1时钟脉冲 (1) 2.2脉冲分配器 (1) 2.3驱动器 (1) 3 总的框架 (2) 三单元模块设计 (2) 1单片机模块 (2) 1.1复位控制 (3) 1.2单片机频率 (3) 2接口 (3) 3驱动器ULN2003 (4) 4按键模块 (5) 5步进电机 (5) 5.1工作原理 (5) 5.2 28BYJ48型四相八拍 (7) 四整机调试与技术指标测量 (8) 五设计总结 (8) 参考文献 (9) 附录1电路原理图 (10) 附录2 源程序 (11)

一、前言 步进电动机是一种将电脉冲信号转换成机械位移的机电执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。 二、总体方案设计 1、工作原理 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2、方案选择 (1)时钟脉冲 通常有两种方法实现: 方案一直接有硬件组成如:多谐振荡器 LC 等。 方案二用软件的方式形成优点便于随时更改,调整。 为了方便我们选用软件方式有单片机实现。 (2)脉冲分配器 方案一硬件环形分配器:由计数器等数字电路组成的。有较好的响应速度,且具有直观、维护方便等优点。 方案二软件环分:由计算机接口电路和相应的软件组成的。受到微型计算机运算速度的限制,有时难以满足高速实时控制的要求。由软件完成脉冲分配工作,不仅使线路简化,成本下降,而且可根据应用系统的需要,灵活地改变步进电机的控制方案。 考虑到硬件设备的有限和对步进电机的控制我们选择软件环分可以有单片机实现。 (3)驱动器 方案一使用功率场效应管的单电压功放电路。

直线电机资料20110302

直线电机基础 编辑本段直线电机也称线性电机,线性马达,直线马达 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。下面简单介绍直线电机类型和他们与旋转电机的不同. 最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换相.图示直线电机用HALL换相的相序和相电流. 该图直线电机明确显示动子(forcer, rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。而且,磁轨是把磁铁固定在钢上。 直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer, rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 直线电机的控制和旋转电机一样。象无刷旋转电机,动子和定子无机械连接(无刷),不象旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。用推力线圈运动的电机,推力线圈的重量和负载比很小。然而,需要高柔性线缆及其管理系统。用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。 相似的机电原理用在直线和旋转电机上。相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。因此,直线电机使用和旋转电机相同的控制和可编程配置。直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。 编辑本段圆柱形动磁体直线电机 圆柱形动磁体直线电机动子是圆柱形结构。沿固定着磁场的圆柱体运动。这种电机是最初发现的商业应用但是不能使用于要求节省空间的平板式和U 型槽式直线电机的场合。圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以增加行程。典型的线圈绕组是三相组成

第13章 步进电动机传动控制系统

第13章步进电动机传动控制系统 教学内容 13.1 步进电动机 13.2 步进电动机的环形分配器 13.3 步进电动机的驱动电路 13.4 步进电动机的运行特性及选用中应注意的问题 教学安排 本章安排2个学时,采用多媒体授课。 知识点及其基本要求 1.掌握步进电动机步矩角和步进电动机转速的数学表达式及其物理意义; 2.掌握步进电动机的结构、运行特性及影响因素。 重点和难点 重点 掌握步进电动机的通电方式和主要性能指标。 难点 步进电动机的矩角特性和矩频特性。 教学设计 1.了解步进电动机的结构和工作原理,掌握步进电动机的通电方式和求解步距角与转速的公式。 步进电机是将电脉冲信号转变为角位移 或线位移的机电执行元件。在非超载的情况 下,电机的转速、停止的位置只取决于脉冲信 号的频率和脉冲数,而不受负载变化的影响, 即给电机加一个脉冲信号,电机则转过一个步 距角。 (1)步进电动机的结构 右图所示为一台三相反应式步进电动机的 结构示意图,定子有6个磁极,每两个相对 的磁极上绕有一相控制绕组。转子上装有四个 凸齿。 图13-1 步进电动机结构图 (2)步进电动机的基本工作原理 步进电机的工作原理同电磁铁的工作原理,磁通具有力图沿磁阻最小路径通过的特点。

图13-2 三相反应式步进电动机的工作原理图 通电顺序A-B-C-A,转子便按顺时针方向一步步转动。每换接一次,转子前进一个步距角。通电顺序改为A-C-B-A便可反向旋转。 (3)步进电机的通电方式 三相单三拍 通电顺序:A-B-C-A或A-C-B-A,步距角30度(齿距90度) 特点:每次只有一相控制绕组通电吸引转子,易引起在平衡位置振荡,稳定性差,绕组通电换极时易失步。 双三拍 通电顺序:AB-BC-CA-AB或反过来,步距角30度(齿距90度) 特点:始终有两相通电,感应力矩大,静态误差小,定位精度高,工作稳定,不易失步。 三相六拍 通电顺序:A-AB-B-BC-C-CA-A步,距角15度(齿距90度)或A-AB-B-BC-C-CA-A 特点:单、双相轮流通电,通电状态增加一倍、步距角减少一半,但具有双三拍的特点。 (4)小步距角步进电动机 步距角步进电机的一般要求:转子齿数Z必须满足当一相磁极下定子与转子齿数相对时,下一磁极下定子与转子齿的位置错开齿距的1/m,m为相数。

步进电机工作原理、驱动控制系统与选型

步进电机工作原理、驱动控制系统与选型 一、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A 相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,

电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力 F与(dФ/dθ)成正比 其磁通量Ф=Br*S ;Br为磁密;S为导磁面积; F与L*D*Br成正比;L为铁芯有效长度;D为转子直径;Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 (二)感应子式步进电机

电机驱动及控制模块

电机驱动及控制模块

3.3电机驱动及控制模块 331 电机特性 —小车前进的动力是通过直流电机来驱动的,直流电机是最早出现的电动机, 也是最早能实现调速的电动机。长期以来,直流电动机一直占据着调速控制的 统治地位。它具有良 图7主、从单片机小系统应用电路 好的线性调速特性,简单的控制性能, 较高的效率,优异的动态特性。系统 选用的大谷基础车的260马达作为驱动电机。其额定电压为 3-12V ,额定功率 0.02KW 额定转速 3000r/min 。 近年来,直流电动机的结构和控制方式都发生了很大变化, 随着计算机进入 控制领域,以及新型的电力电子功率元件的不断出现,使采用全控制型的开关 功率元件进行脉冲调制(Pulse Width Modulation 简称PWM 控制方式已经成 为主流,这种控制方式容易在单片机控制中实现。 BE yr CAPCAP 2+ CAP + CiP I * EP Z CAP b HT-OVTl rr-xrr: T-m TDU rae.-[tfi E-C'UTL 化UT2 H 山习4 F21TF 匸曲 ~IF P22 vcc P22 m 酯T KX1WXI Pi - ? TTCZ'JPJL Pl? YT 11 T m 電 XTALi P14 nffo/pss F13 D1TLJP3J P12 JP34 P1J PLD PA 回■! P 討TCAO PM 时 ow P 禹 PIO Vcc P]1 FOCUADQ P32 POL/ADL E>JJ ! Plfl Pt3(AD3 P]5 P 】6 f :^AD5 P17 P0*'AD6 PB7/AD7 RST Tmjpsi EX LVD^ fiZRST2 AL&FI 5 曲朗 卜⑷PJ 4 wwu TflrP34 ri 郴 PIT PM 廻p 北 F35 FiZiiP]! F24 F33 xrAi.3 P]3 j^TALL P.3L Pin tr 空【 时 LED T 级, 厂:1巧处4打"卜单怜机 VCC 鱼T Z? 1. P ■ ■ ?一 ■■ ■ ■ b w 1 ? 3 *?!>rr ? .1 L I I I I r —PF p p Lp

基于单片机的步进电机驱动控制系统的设计

基于单片机的步进电机驱动控制系统的设计 发表时间:2017-06-13T14:46:19.210Z 来源:《电力设备》2017年第6期作者:李广军[导读] 摘要:步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。 (天津松正电动汽车技术股份有限公司, 天津 300308) 摘要:步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。因此,研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。本设计是采用AT89C51单片机对步进电机的控制,利用单片机自身的定时中断,来达到对步进电机的连续调速进行分析,并采用优化合理的步进电机驱动电路,以实现将外围器件有机结合。 关键词:单片机,步进电机,控制系统 1 引言 步进电机作为一种优秀的动力给予设备可以说在当今社会的各个领域中无处不在。随着工业生产水平的不断发展,以步进电机作为控制核心的传动设备在工业控制等领域得到了广泛的应用,包含机器人、工业电子自动化设备、医疗器件、广告器材、计算机外部应用设备等领域,步进电机的影子无处不在。中国作为一个制造业大国,生产车间中的流水线是企业完成产品组装和产品加工的重要场所,而步进电机在流水线设备中起到的动力作用至今仍然无法替代。 本课题的研究思路即为:采用单片机作为控制核心,实现对步进电机的精确控制。并将这种控制系统应用在生产车间的流水线传动设备中,增加了该控制系统的实效性和操作性。同时,由于单片机的高速性和精确性使得系统的设计在大为简化的同时又能实现精确控制,且应用成本低廉,因此可广泛应用在各行各业领域中。 2 步进电机驱动控制系统框图 步进电机控制系统有着精确控制、运行稳定的特性,这一其他电机不能比拟的优势使得步进电机得到了广泛的应用。而一般对步进电机控制系统的驱动必须要包含脉冲信号发生部分,功放部分和驱动控制部分等几个模块电路,我们根据这些通过的模块电路,可将步进电机控制系统的通用框图绘制如下: 在图2-1的步进电机驱动控制系统方框图中,控制步进电机运行状态的脉冲信号一般由集成芯片产生,可以是单片机、PLC等智能芯片,也可以是一般的数字电路集成芯片。信号分配环节则要根据步进电机的型号来选择,如四相步进电机有四相四拍和四相八拍2种信号分配的方式;两相步进电机有两相四拍和八拍等脉冲加载形式。功放部分在驱动环节上显得尤为重要。动态平均电流是步进电机转矩大小的决定因素,前提条件是电机的速度。电机力矩与平均电流成正比,驱动系统对电机的反电势消弱越多,则平均电流就越大。 我们一般可以用恒压和恒压串电阻的方法来驱动,或者在条件允许的情况下我们可以用高低压驱动、恒流和细分数等方法来驱动.实际的应用过程种,多采用数字集成驱动芯片作为步进电机的驱动手段。 由于步进电机是典型的脉冲控制运转设备,而8051系列单片机以其I/O口多,体积小,成本低廉,外围电路连接方便,可编程控制等综合优势越来越多的被引入到步进电机控制系统中使用,逐渐成为国内外控制步进电机的主流方式。本文所设计的步进电机驱动控制系统也是以8051单片机为核心的嵌入式开发控制系统。 3 步进电机驱动控制系统功能 基于单片机的步进电机驱动控制系统是一个实际应用与工业生产的系统。本设计在综合考虑系统设计等各方面因素后,明确该系统应具备如下功能: 硬件部分(1)单片机和步进电机运行所需的平稳电压;(2)液晶显示模块;(3)控制步进电机运行状态的键盘;(5)时钟电路与复位电路;(6)步进电机运行的驱动和功率放大电路设计;(7)用PROTEUS对整个系统进行硬件设计、仿真和对系统输出进行测试。 软件部分(1)系统复位初始化;(2)键盘扫描与处理;(3)液晶显示器初始化扫描程序;(4)定时器中断服务程序;(5)步进电机正转控制程序;(6)步进电机反转控制程序;(7)步进电机加速控制程序;(8)步进电机减速控制程序;(9)步进电机停转控制程序;(10)步进电机运行节拍控制程序。 4 步进电机驱动控制系统原理 本系统以AT89C51单片机作为核心,通过外部扩展其他硬件完成对步进电机运行状态的显示。AT89C51单片机有40个引脚,我们用P1 口的P1.0-P1.4引脚扩展步进电机运行状态控制键盘,设计完成后,包括停止、正转、反转、加速、减速一共五个按键。P0.0,P0. 1, P0.2,P0. 3四个引脚分别和与非门芯片7404的输入端相连用于扩展步进电机运行的驱动控制芯片-ULN2003A。P2口所有引脚和P3口的部分引脚用于外接AMPIRE128*64液晶显示模块。P2口连接AMPIRE128*64液晶显示模块的DB0-DB7,用于单片机和液晶显示模块的数据传输,P3. 2,P3. 4, P3. 5分别与AMPIRE128*64液晶显示模块的RS,R/W, E相连完成数据的显示,具体来说:。R/W为读写信号线,RS为数据指令选择端,E端为使能端子。在实际工作时,当R/W为低电平,E为信号下降沿时锁存DB0-DB7的数据;R/W为高电平,E为信号上升沿时,DDRAM的数据读到DB0-DB7中。P3.0,P3. 1分别与液晶显示模块的CS1 (左半屏片选端)和CS2 (右半屏片选端)相连用于对液晶模块的显示进行编程设置。 步进电机驱动控制部分采用专用芯片ULN2003A进行控制,其输出管脚1C一4C连接四相六线步进电机的相序控制端。COM端连接+12V 电源用于对其工作进行供电。当然IJLN2003A在接入单片机控制脉冲时必须连接限流电阻,。由于单片机和步进电机的供电电压分别是+5V 和+12V,因此本系统电源部分采用的是双电源供电电路,即釆用一套供电电路,分别输出+5V和+12V电压给系统供电。具体设计上采用从220V 市电引入交流电,通过变压器降压得到约15V的交流信号,再通过二极管进行桥式整流得到直流信号,通过滤波电路先与LM7812芯片相连得到+12V电压,再经过滤波处理与LM7805芯片相连得到+5V电压。在实际制作电源PCB电路板的时候,由于电源部分釆用双电源供电且含有较强的交流信号,干扰较大,考虑到步进电机控制系统的稳定性,因此对电源部分单独成板。

电动车用轮毂电机研究现状与发展趋势

电动车用轮毂电机研究现状与发展趋势 褚文强, 辜承林 (华中科技大学电气与电子工程学院,湖北武汉 430074) 摘 要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能。阐述了轮毂电机的不同驱动方式及其国内外研究与应用现状。无位置传感器控制技术、转矩脉动的抑制、弱磁扩速、电机本体的设计及永磁材料等将是今后轮毂电机的研究热点。 关键词:电动汽车;驱动系统;轮毂电机 中图分类号:T M384∶U469.72 文献标识码:A 文章编号:167326540(2007)0420001205 Appli ca ti on St a tus and D evelop i n g Tend of I n2W heel M otors Used for Electr i c Auto m ob ile CHU W en2qiang, G U Cheng2lin (College of Electrical and Electr onic Engineering,Huazhong University of Science and Technol ogy,W uhan430074,China) Abstract:The advantages of in2wheel mot or compared with the driving syste m of traditi onal mot ors are de2 scribed.Then t w o different driving methods and their app licati on status at home and abr oad are intr oduced.The qual2 itative analysis of several kinds of typ ical driving mot or is made next.Their perf or mances are compared and their ad2 vantages/disadvantages are als o point out.Finally the devel op ing trend of wheeled mot or technol ogy is p resented. Key words:electr i c auto m ob ile;dr i v i n g syste m;i n2wheel m otor 0 概 述 早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。近年来,随着电动汽车的兴起,轮毂电机重新引起了重视。轮毂电机驱动系统的布置非常灵活,可以使电动汽车成为两个前轮驱动、两个后轮驱动或四轮驱动。与内燃机汽车和单电机集中驱动电动汽车相比,使用轮毂电机驱动系统的汽车具有以下几方面优势: (1)动力控制由硬连接改为软连接型式。通过电子线控技术,实现各电动轮从零到最大速度的无级变速和各电动轮间的差速要求,从而省略了传统汽车所需的机械式操纵换档装置、离合器、变速器、传动轴和机械差速器等,使驱动系统和整车结构简洁,有效可利用空间大,传动效率提高。 (2)各电动轮的驱动力直接独立可控,使其动力学控制更为灵活、方便;能合理控制各电动轮的驱动力,从而提高恶劣路面条件下的行驶性能。 (3)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。 (4)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。 (5)若在采用轮毂电机驱动系统的四轮电动汽车上导入线控四轮转向技术(4W S),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。 1 驱动系统 1.1 驱动方式 轮毂电机的驱动方式可以分为减速驱动和直接驱动两大类[1]。 在减速驱动方式下(见图1),电机一般在高 — 1 —

步进电机 驱动器 控制器三者的关系

电机行业专业求职平台 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况 下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机、交流电机在常规下使用。步进电机必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。它涉及到机械、电机、电子及计算机等许多专业知识。 提及此知识,希望能给予正在对电机选型的客户有所帮助。 2.力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度,则产生力 F与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径 力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 一、混合式步进电机

电机行业专业求职平台1、特点: 混合式(又称感应子式步进电机)与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 混合式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运 行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= A ,D=B . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相, 而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,更可以作二相电机绕组串联或并联使用。 2、分类 混合式步进电机可分二相、三相、四相、五相等,我公司混合式步进电机以相数可分为:二相电机、三相电机: TEB20H,TEB28H,TEB35H,TEB39H,TEB42H,TEB57H,TEB86H,TEB110 H,TEC57H,TEC86H,TEC110H,TEC130H. 3、步进电机的静态指标术语 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半 步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

电机驱动系统效率优化控制技术研究现状

1.2 电机驱动系统效率优化控制技术研究现状 电动汽车的动力由电动机提供,电机驱动系统(简称驱动系统)的性能直接影响了电动汽车的性能。电动汽车系统需要能够满足频繁停车启动、加速、大负载爬坡以及紧急制动等要求,也需要考虑到汽车行驶路况复杂多变,存在雨天、酷热、下雪等恶劣天气,以及颠簸、泥泞等复杂路况。另外,在满足行驶条件的情况下还应最大限度地保证驾驶人员和乘坐人员的舒适安全。作为电动汽车的核心部分,驱动系统应满足宽调速范围、宽转矩输出范围、良好的加减速(起动、制动)性能、运行效率高(提高续航里程)以及高可靠性等要求。 针对永磁同步电机驱动系统的效率优化,总体来说可分为以下三个方向: 1)从电机本体的电磁设计、制造工艺以及电机的材料着手,开发高效电机。 2)改进脉宽调制(Pulse Width Modulation,PWM)技术,降低功率开关器件上的损耗从而提高逆变器的整体效率;降低变频器输出电压的谐波含量,如采取空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)技术和软开关技术,减小谐波含量从而提高驱动系统的整体效率。 3)研究合适的控制策略,在保证电机满足运行条件的情况下减小直流侧的功率输入,提高驱动系统的效率。 目前,针对永磁同步电机驱动系统效率优化所提出的控制策略很多,总体来说可以分为两大类:第一类是基于损耗模型的效率优化控制(Loss Model Control,LMC)策略;第二类是基于搜索法的效率优化控制(Search Control,SC)策略。下面分别进行概述。 1.2.1 基于损耗模型的效率优化控制策略 该控制策略作为一种基于前馈式的控制方法,基本原理是:在充分考虑电机各部分损耗的基础上,建立较为精确的损耗模型,根据电机运行状况(负载转矩和实际转速)计算出该运行状况下最优的控制变量(一般为磁场、电压或者电流)以减小驱动系统的损耗。若控制变量为电枢电流,对永磁电机驱动系统来讲一般选择最优的直轴电流i d和交轴电流i q,对混合励磁电机驱动系统来讲包括i d、i q以及励磁电流I f。这种控制策略目前已被广泛应用到了闭环传动系统中,可以保障电机驱动系统在全局运行范围内都能实现效优化。基于损耗模型的同步电机效率优化控制基本框图如图1.1所示。 基于损耗模型的驱动系统效率优化策略最早由T.M.Rowan和T.A.Lipo[1],以及H.G.Kim [2]等人提出并进行研究;1987年Bose[3][4]等人将该策略运用到永磁同步电机驱动系统中。美国学者X.Wei和R.D.Lorenz已将基于损耗模型控制策略结合直接转矩控制(Direct Torque Control,DTC)中,以提高永磁同步电机在瞬态过程中的效率[5]。针对同步电机而言,基于损耗模型的效率优化策略总共可以分为五种类型:考虑铁损的损耗模型控制策略[6][7]、考虑铜损的损耗模型控制策略[8][9]、考虑铁损和铜损的损耗模型控制策略[10][11]、基于电机精确损耗模型损耗模型控制策略[12][13]和约束条件下的损耗模型控制策略[14][15]。

步进电机在控制系统中的应用

步进电机在控制系统中的应用 摘要:步进系统无需反馈就形成了开环控制系统, 使系统结构大大简化、使用维护更加方便、工作可靠, 在一般使用场合具有足够高的精度等特点步进系统无需反馈就形成了开环控制系统, 使系统结构大 大简化、使用维护更加方便、工作可靠, 在一般使用场合具有足够高的精度等特点步进电动机有上述特点和优点而广泛应用在机械、治金、电力、纺织、电信、电子、仪表、化工、轻工、办公自动化设备、医疗、印刷以及航空航天、船舶、兵器、核工业等国防工业等领 一、步进电机工作原理 步进电机是将给定的电脉冲信号转变为角位移或线位移的开环 控制元件。给定一个电脉冲信号,步进电机转子就转过相应的角度,这个角度就称作该步进电机的步距角。连续给定脉冲信号,步进电机就可以连续运转。由于电脉冲信号与步进电机转角存在的这种线性关系,使得步进电机在速度控制、位置控制等方面得到了广泛的应用。 步进电机的使用至少需要三个方面的配合,一是电脉冲信号发生器,它按照给定的设置重复为步进电机输送电脉冲信号,这种信号大多数由可编程控制器或单片机来完成;二是驱动器(信号放大器),它除了对电脉冲信号进行放大、驱动步进电机转动以外,还可以通过它改善步进电机的使用性能;三是步进电机,它有多种控制原理和型号,现在常用的有反应式、感应子式、混合式等。 步进电机的速度控制是通过输入的脉冲频率快慢实现的。当发生脉冲的频率减小时,步进电机的速度就下降;反之,速度就加快。还

可以通过频率的改变而提高步进电机的速度或位置精度。步进电机的位置控制是靠给定的脉冲数量控制的。给定一个脉冲,转过一个步距角,当停止的位置确定以后,也就决定了步进电机需要给定的脉冲数。二,步进电机的应用 随着新材料、新技术的发展及电子技术和计算机的应用, 步进电动机及驱动器的研制和发展进入了新阶段。步进电机除了结构简单、使用维护方便、工作可靠, 在精度高等特点。还有下列优点: ①步距值不受各种干扰因素的影响。转子运动的速度主要取决于脉冲信号的频率。转子运动的总位移量则取决于总的脉冲信号数。②误差不积累。步进电动机每走一步所转过的角度与理论步距值之间总有一定的误差, 走任意步数以后, 也总有一定的误差。但每转一圈的累积误差为零, 所以步距的误差不积累。③控制性能好。起动、转向及其他任何运行方式的改变, 都在少数脉冲内完成。在一定的频率范围内运行时, 任何运行方式都不会丢一步的。 由于步进电动机有上述特点和优点而广泛应用在机械、治金、电力、纺织、电信、电子、仪表、化工、轻工、办公自动化设备、医疗、印刷以及航空航天、船舶、兵器、核工业等国防工业等领域。 1.步进电机在物料计量方面的应用 1.粉状物料的计量 螺杆计量是常用的容积式计量方式,它是通过螺杆旋转的圈数多少来达到计量的多少,为了达到计量大小可调和提高计量精度的目

新能源汽车轮毂电机直驱技术发展趋势【最新版】

新能源汽车轮毂电机直驱技术发展趋势 随着国内石油能源紧张以及环境污染的日益加剧,采用新能源汽车替代传统燃油车成为今后国内汽车行业主要的发展方向。随着政府政策的大力支持和各大主机厂的广泛宣传,近些年新能源汽车特别是纯电动汽车和插电式混合动力汽车受到了大量消费者的青睐。同时,分布式驱动系统作为区别于中央驱动的另外一种驱动方式,也受到了广泛关注。 其实早在1900年,费迪南德保时捷就把轮毂电机技术应用到了汽车制造上,首先制造出了前轮装备轮毂电机的电动汽车。但是受制于当时的电池寿命等原因,该技术并未得到广泛应用。直到20世纪70年代,轮毂电机技术逐步在矿山运输车等专业领域得到应用。目前市面上生产销售的电动自行车,多采用轮毂电机直驱方案,但该电机功率小、扭矩低,并不能满足乘用车的动力要求。 图1:早期装载轮毂电机的汽车 随着电机技术的不断发展,国外已有几家企业,如Protean、Elaphe 和e-Traction等设计了适用于乘用车和商用车的轮毂电机产品。但笔者认为乘用车应用门槛高、产品验证周期长,对系统的安全性、可靠性和耐久性等要求高,同时采用轮毂电机直驱系统对现有底盘平台的

颠覆太大,短期内轮毂电机并不会在乘用车上首先实现批量生产。但其高效的驱动形式、紧凑的结构设计和灵活的控制方式,在商用车、专用车和无人驾驶等领域应该会先于乘用车得到广泛的应用。本文主要针对商用车、专用车和无人驾驶平台,阐述和分析采用轮毂电机直驱系统的优势和目前还需克服的技术难题,也希望和大家共同探讨分布式驱动系统的应用前景。 一.商用车和物流车领域 现代物流业作为国民经济的基础产业,也间接推动了物流车行业的发展。物流配送主要可分为城际物流和同城物流:由于受到续航里程和充电时间的限制,目前用于城际配送的物流车基本采用传统的柴油车,今后可以重点发展串联式混合动力或者燃料电池物流车来解决里程焦虑和充电问题,不论哪种形式均可采用轮毂电机后驱方案;但对同城物流来说,国内很多大城市都限制燃油物流车进入市区,故同城物流配送采用纯电动物流车替换如依维柯、全顺、海狮等车型将成主要趋势。 目前市面上大部分的纯电动物流车都是在传统柴油车的基础上改装而来,采用中央电机替换柴油发动机,整车质量重、底盘离地间隙高、载重量和装载空间有限、能耗高,不能满足物流行业对于车辆大装载空间、高载重比和长续航的需求。如采用分布式驱动系统,可

直线电机驱动技术

直线电机驱动技术 直线电动机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起“直线电动机热”。 在机床进给系统中,采用直线电动机直接驱动与原旋转电动机传动的最大区别是取消了从电动机到工作台(拖板)之间的一切机械中间传动环节,把机床进给传动链的长度缩短为零。这种传动方式被称为“零传动”。正由于这种“零传动”方式,带来了原旋转电动机驱动方式无法达到的性能指标和一定优点。 (1)高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 (2)精度直线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。 (3)动刚度高由于“直接驱动”,避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 (4)速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述零传动的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达(2~10)g(g=9.8m/s2),而滚珠丝杠传动的最大加速度只有(0.1~0.5) (5)行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

(6)动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 (7)效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。科尔摩根PLATINNM DDL系列直线电机和SERVOSTAR CD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、高的定位精度和平滑的无差运动。

MSP430单片机对步进电机的驱动控制设计

MSP430单片机对步进电机的驱动控制设计 单片机实现的步进电机控制系统具有成本低、使用灵活的特点,广泛应用于数控机床、机器人,定量进给、工业自动控制以及各种可控的有定位要求的机械工具等应用领域。步进电机是数字控制电机,将脉冲信号转换成角位移,电机的转速、停止的位置取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,非超载状态下,根据上述线性关系,再加上步进电机只有周期性误差而无累积误差,因此步进电机适用于单片机控制。步进电机通过输入脉冲信号进行控制,即电机的总转动角度由输入脉冲总数决定,而电机的转速由脉冲信号频率决定。步进电机的驱动电路是根据单片机产生的控制信号进行工作。因此,单片机通过向步进电机驱动电路发送控制信号就能实现对步进电机的控制。 1 系统设计原理 步进电机控制系统主要由单片机、键盘LED、驱动/放大和PC上位机等4个模块组成,其中PC机模块是软件控制部分,该控制系统可实现的功能:1)通过键盘启动/暂停步进电机、设置步进电机的转速和改变步进电机的转向;2)通过LED管显示步进的转速和转向等工作状态;3)实现三相或四相步进电机的控制:4)通过PC上位机实现对步进电机的控制(启停、转速和转向等)。为保护单片机控制系统硬件电路,在单片机和步进电机之间增加过流保护电路。图l为步进电机控制系统框图。 2 系统硬件电路设计 2.1 单片机模块 单片机模块主要由MSP430FG4618单片机及外围滤波、电源管理和晶振等电路组成。MSP430FG4618单片机内部的8 KB RAM和116 KB Flash满足控制系统的存储要求,P1和P2端口在步进电机工作过程中根据按键状态判断是否跳入中断服务程序来改变步进电机的工作状态,USART模块实现单片机和PC上位机之间的通信,实现PC机对步进电机控制。电源管理电路提供稳定的3.3 V和5 V电压,分别给单片机、晶振电路和驱动和功率放大电路供电。32 kHz晶振给单片机、键盘/显示接口器件8279和脉冲分配器

相关主题
文本预览
相关文档 最新文档