当前位置:文档之家› 第2章 过程特性及其数学模型

第2章 过程特性及其数学模型

被控过程的数学模型

第5章思考题与习题 5-1 什么是被控过程的数学模型 解答: 被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 5-2 建立被控过程数学模型的目的是什么过程控制对数学模型有什么要求解答: 1)目的:○1设计过程控制系统及整定控制参数; ○2指导生产工艺及其设备的设计与操作; ○3对被控过程进行仿真研究; ○4培训运行操作人员; ○5工业过程的故障检测与诊断。 2)要求:总的原则一是尽量简单,二是正确可靠。阶次一般不高于三阶,大量采用具有纯滞后的一阶和二阶模型,最常用的是带纯滞后的一阶形式。 5-3 建立被控过程数学模型的方法有哪些各有什么要求和局限性解答:P127 1)方法:机理法和测试法。 2)机理法: 测试法: 5-4 什么是流入量什么是流出量它们与控制系统的输入、输出信号有什么区别与联系 解答: 1)流入量:把被控过程看作一个独立的隔离体,从外部流入被控过程的物质或能量流量称为流入量。 流出量:从被控过程流出的物质或能量流量称为流出量。 2)区别与联系: 控制系统的输入量:控制变量和扰动变量。 控制系统的输出变量:系统的被控参数。

5-5 机理法建模一般适用于什么场合 解答:P128 对被控过程的工作机理非常熟悉,被控参数与控制变量的变化都与物质和能量的流动与转换有密切关系。 5-6 什么是自衡特性具有自衡特性被控过程的系统框图有什么特点 解答: 1)在扰动作用破坏其平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性,称为自衡特性。 2)被控过程输出对扰动存在负反馈。 5-7 什么是单容过程和多容过程 解答: 1)单容:只有一个储蓄容量。 2)多容:有一个以上储蓄容量。 5-8 什么是过程的滞后特性滞后又哪几种产生的原因是什么 解答: 1)滞后特性:过程对于扰动的响应在时间上的滞后。 2)容量滞后:多容过程对于扰动的响应在时间上的这种延迟被称为容量滞 后。 纯滞后:在生产过程中还经常遇到由(物料、能量、信号)传输延迟引 起的纯滞后。 5-9 对图5-40所示的液位过程,输入量为1Q ,流出量为2Q 、3Q ,液位h 为被控参数,水箱截面为A ,并设2R 、3R 为线性液阻。 (1)列写液位过程的微分方程组; (2)画出液位过程的框图; (3)求出传递函数)()(1s Q s H ,并写出放大倍数K 和时间常数T 的表达式。 解答:

交通流理论第二章

第二章 交通流特性 第一节 交通调查 交通调查:在道路系统的选定点或选定路段,为了收集有关车辆(或行人)运行情况的数据而进行的调查分析工作。 意义:交通调查对搞好交通规划、道路设施建设和交通管理等都是十分重要的。 调查方法: (1)定点调查; (2)小距离调查(距离小于10m ); (3)沿路段长度调查(路段长度至少为500m ); (4)浮动观测车调查; (5)ITS 区域调查。 图2—1中,纵坐标表示车辆在行驶方向上距离始发点(任意选定)的长度,横坐标表示时间。图中的斜线代表车辆的运行轨迹,斜率为车速,直线相交表示超车。 穿过车辆运行轨迹的水平直线代表定点调查; 两条非常接近的水平平行直线表示小距离调查; 一条竖直直线表示沿路段长度调查(瞬时状态,例如空拍图片); 车辆的轨迹之一就可代表浮动车调查; ITS 区域调查类似于在不同时间、不同地点进行大量的浮动车调查。 图2—1 几种调查方法的时间—距离图示 时间(s ) 距离(m ) 高速公路车道

一、定点调查 定点调查包括人工调查和机械调查两种。 人工调查方法即选定一观测点,用秒表记录经过该点的车辆数。 机械调查方法常用的有自动计数器调查、雷达调查、摄像机调查等。 自动计数器调查法使用的仪器有电感式、环形线圈式、超声波式等检测仪器,它几乎适用于各种交通条件,特别是需要长期连续性调查的路段。 雷达调查法适用于车速高、交通量密度不大的情况。 摄像机调查法一般将摄像机安装在观测点附近的高空处,将镜头对准观测点,每隔一定的时间,如15s、30s、45s或60s,自动拍照一次,根据自动拍摄的照片上车辆位置的变化,清点出不同流向的交通量。这种方法可以获得较完全的交通资料,如流量、流向、自行车流及行人流和行驶速度、车头时距及延误等。 除这些方法以外,还有航空摄影调查法、光电管调查法等。 定点调查能直接得到流量、速度和车头时距的有关数据,但是无法测得密度。 二、小距离调查 这种调查使用成对的检测器(相隔5m或6m)来获得流量、速度和车头时距等数据。 目前常用的点式检测器,如感应线圈和微波束。调查地点车速时,将前后相隔一定距离(如5m)的检测器埋设地下,车辆经过两个检测器时发出信号并传送给记录仪,记录仪记录车辆通过两个检测器所使用的时间,那么用相隔的距离除以时间就得到地点车速。 这种调查方法还能得到占有率,占有率是指检测区域内车辆通过检测器的时间占观测总时间的百分比。由于占有率与检测区域的大小、检测器的性质和结构有关,因此同样的交通状态下,不同位置测得的占有率可能不同。 小距离调查同样无法测得密度,但可获得流量、速度、车头时距和占有率等数据。 三、沿路段长度调查 沿路段长度调查主要是指摄像调查法,适用于500m以上的较长路段。 摄像调查法首先对观测路段进行连续照像,然后在所拍摄的照片上直接点数车辆数,因此这种方法是调查密度的最准确途径。但是,由于拍摄

第二章教育管理的特点

第一章 ●管理:就是合理组织人力、物力、财力、时间、信息协调各种关系和各项工作,高效益 地实现预定目标的活动过程。管理包括领导、指挥活动和协调、组织、运筹的活动。 ●教育管理是社会管理的更重要组织部分。教育管理包括国家教育的行政管理,即宏观管 理,和学校内部的管理,即学校管理,亦称微观管理。 ●教育管理是管理者通过组织协调教育队伍,充分发挥教育人力、财力、物力和信息的作 用,利用教育内部各种有利条件,高效率地实现教育管理目标的活动过程。教育管理的二重性即自然属性和社会属性。 ●教育管理学包括(教育行政学)和学校管理两大分支。 ●20世纪初,泰勒的科学管理运动及其在教育行政中的运用,推动了教育管理学科的发 展。 ●现代教育管理学科研究的对象,大体有以下几种观点:1、主张研究教育管理现象,以 教育管理现象为其研究对象;2、以教育管理过程发展的规律为研究对象;3、以教育管理既不是研究对象,也不是研究规律,而是研究教育管理中的问题。争论虽多,但大家比较认同的是,教育管理学是研究教育管理现象及其发展规律的学说。 ●教育管理学的学习方法:首先要认真读一点书;其次,要认真研究问题;再次要认真总 结教育管理实践的经验。 第二章教育管理的特点 ●什么是一般意义上的管理呢?学术办的认识并不一致,有些专家认为,管理的特点就是 安排;有些专家认为,管理的特点就是处理关系;有些专家认为,管理的特点就是确立目标;有些专家认为,管理的特点就是讲效率;此外,还有一些认识,如认为管理就是一种系统工程,就是信息的输入、存贮和输出,就是一种信息的控制,等等。 ●管理包括三层意思:正确的目标(核心);有合理的组织措施(主体);要讲效率(生命 力所在) ●教育管理的特点:管理内容的教育性;管理对象和“产品”的主体性;管理过程的复杂 性 ●教育管理的主要矛盾:在教育管理过程中,管理者是人,管理的主要对象和培养目标都 是人,处理人与人之间的矛盾关系,是教育管理的主要矛盾。 ●教育管理的基本范畴:(1)主体与客体;(2)共性和个性;(3)质量与数量;(4)有效 与无效;(5)集权与分权;(6)权威与服从。 ●共性:即事物共同具有的性质,它反映了事物及其发展过程矛盾的普遍性;个性:即事 物的特性,它反映了事物及其发展过程矛盾的特殊性。 ●有效管理(放大效应):科学的教育管理,能使教育的人、财、物形成合理的结构,能 发挥人的潜能,能提高物的使用效率,能使时、空、信息得到充分运用….这就是管理的系统功能和放大效应。 ●无效管理:投入大量人力、财力、物力,付出辛勤劳动而达不到预期管理效果的管理, 叫无效管理。 ●集权:就是大权独揽,统一管理,集中指挥;分权:就是小权分散,向下级科室授权, 充分发挥下级和基层的主动性和积极性。 ●教育权威:指教育管理过程中使全体教育人员信服的力量和威望。服从:指教育管理中 遵照和听从教育权威意见的行力。 第三章教育管理目标 ●目标:是人们的行力想要达到的目的和标准。由于目标是在人们行动之前确定的,具有

过程控制系统第2章对象特性习题与解答

过程控制系统第二章(对象特性)习题 2-1.什么是被控过程的数学模型 2-1解答: 被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 2-2.建立被控过程数学模型的目的是什么过程控制对数学模型有什么要求 2-2解答: 1)目的:○1设计过程控制系统及整定控制参数; ○2指导生产工艺及其设备的设计与操作; ○3对被控过程进行仿真研究; ○4培训运行操作人员; ○5工业过程的故障检测与诊断。 2)要求:总的原则一是尽量简单,二是正确可靠。阶次一般不高于三阶,大量采用具有纯滞后的一阶和二阶模型,最常用的是带纯滞后的一阶形式。 2-2.简述建立对象的数学模型两种主要方法。 2-2解答: 一是机理分析法。机理分析法是通过对对象内部运动机理的分析,根据对象中物理或化学变化的规律(比如三大守恒定律等),在忽略一些次要因素或做出一些近似处理后推导出的对象特性方程。通过这种方法得到的数学模型称之为机理模型,它们的表现形式往往是微分方程或代数方程。 二是实验测取法。实验测取法是在所要研究的对象上,人为施加一定的输入作用,然后,用仪器测取并记录表征对象特性的物理量随时间变化的规律,即得到一系列实验数据或实验曲线。然后对这些数据或曲线进行必要的数据处理,求取对象的特性参数,进而得到对象的数学模型。 5-12 何为测试法建模它有什么特点 2-3解答: 1)是根据工业过程输入、输出的实测数据进行某种数学处理后得到数学模型。

2)可以在不十分清楚内部机理的情况下,把被研究的对象视为一个黑匣子,完全通过外部测试来描述它的特性。 2-3.描述简单对象特性的参数有哪些各有何物理意义 2-3解答: 描述对象特性的参数分别是放大系数K 、时间常数T 、滞后时间τ。 放大系数K 放大系数K 在数值上等于对象处于稳定状态时输出的变化量与输入的变 化量之比,即 输入的变化量 输出的变化量=K 由于放大系数K 反映的是对象处于稳定状态下的输出和输入之间的关系,所以放大系数是描述对象静态特性的参数。 时间常数T 时间常数是指当对象受到阶跃输入作用后,被控变量如果保持初始速度变 化,达到新的稳态值所需的时间。或当对象受到阶跃输入作用后,被控变量达到新的稳态值的63.2%所需时间。 时间常数T 是反映被控变量变化快慢的参数,因此它是对象的一个重要的动态参数。 滞后时间τ滞后时间τ是纯滞后时间0τ和容量滞后c τ的总和。 输出变量的变化落后于输入变量变化的时间称为纯滞后时间,纯滞后的产生一般是由于介质的输送或热的传递需要一段时间引起的。容量滞后一般是因为物料或能量的传递需要通过一定的阻力而引起的。 滞后时间τ也是反映对象动态特性的重要参数。 5-6 什么是自衡特性具有自衡特性被控过程的系统框图有什么特点 2-3解答: 1)在扰动作用破坏其平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性,称为自衡特性。 2)被控过程输出对扰动存在负反馈。

建立数学模型的方法步骤特点及分类

§16.3 建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理 性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份

过程特性与数学模型

第四章过程特性与数学模型 教学要求:了解过程特性的类型的四种类型 掌握描述过程特性的参数的物理意义及对控制通道、扰动通道的影响 学会一阶对象、二阶对象的建模 掌握机理分析法建模的一般步骤 了解实验测试法 重点:描述过程特性的参数的物理意义及对控制通道、扰动通道的影响 运用机理分析法建模 难点:时间常数的物理意义 过程特性的参数对控制通道、扰动通道的影响 过程控制系统的品质是由组成系统的各个环节的结构及其特性所决定。过程即为被控对象,它是否易于控制,对整个系统的运行情况有很大影响。 §4.1过程特性 被控过程的种类常见的有:换热器、锅炉、精馏塔、化学反应器、贮液槽罐、加热炉 等。这些被控过程的特性是由工艺生产过程和工艺设备决 定的。 被控过程特性-----指被控过程输入量发生变化时,过程输出量的变化规律。通道------被控过程的输入量与输出量之间的信号联系 控制通道-----操纵变量至被控变量的信号联系 扰动通道-----扰动变量至操纵变量的信号联系 一、过程特性的类型 多数工业过程的特性可分为下列四种类型: 1.自衡的非振荡过程 2. 无自衡的非振荡过程 3. 有自衡的振荡过程 4. 具有反向特性的过程 二、描述过程特性的参数 用放大系数K、时间常数T、滞后时间τ三个物理量来定量的表示过程特性。(主要针对自衡的非振荡过程) 1.放大系数K ⑴K的物理意义 K的物理意义:如果有一定的输入变化量ΔQ作用于过程,通过过程后被放大了K倍,变为输出变化量ΔW。

⑵放大系数K对系统的影响 对控制通道的影响 对扰动通道的影响 2. 时间常数T ⑴时间常数T的物理意义 时间常数是被控过程的一个重要的动态参数,用来表征被控变量的快慢程度。 时间常数T的物理意义还可以理解为:当过程受到阶跃输入作用后,被控变量保持初始速度变化,达到新的稳态值所需要的时间就是时间常数T。 ⑵时间常数T对系统的影响 对控制通道的影响 对扰动通道的影响 3. 滞后时间τ ⑴纯滞后τ0(P142) ⑵容量滞后τn ⑶滞后时间τ对系统的影响 对控制通道的影响 对扰动通道的影响 §4.2 过程数学模型的建立 过程的(动态)数学模型---是指表示过程的输出变量与输入变量间动态关系的数学描 述。 过程的输入是控制作用u(t)或扰动作用f(t), 输出是被控变量y(t). 数学模型:非参数模型,即用曲性或数据表格来表示,如阶跃响应曲线、脉冲响应曲线 和频率特性曲线;另一种是 参数模型,即用数学方程式来表示,如微分方程(差分方程)、传递函数、 状态空间表达式等。本节所涉及的模型均为用微分方程描述的 线性定常动态模型。 建立数学模型的基本方法 机理分析法-----通过对过程内部运动机理的分析,根据其物理或化学变化规律, 在忽略一些次要因素或做出一些近似处理后得到过程特性方 程,用微分方程或代数方程。这种方法完全依赖于足够的先验 知识,所得到的模型称为机理模型。机理分析法一般只能用于 简单过程的建模。机理分析法 实验测试法-----由过程的输入输出数据确定模型的结构和参数。 4.2.1机理分析法 微分方程建立的步骤归纳如下: ⑴根据实际工作情况和生产过程要求,确定过程的输入变量和输出变量。 ⑵依据过程的内在机理,利用适当的定理定律,建立原始方程式。 ⑶确定原始方程式中的中间变量,列写中间变量与其他因素之间的关系。 ⑷消除中间变量,即得到输入、输出变量的微分方程。 ⑸若微分方程是非线性的,需要进行线性化处理。

建立数学模型方法步骤特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法

为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

交通工程第二章pptConvertor

第二章交通特性分析The Analysis of Traffic Characteristics 1交通特性分析是交通工程学的一个基本部分,是进行合理的、科学的交通规划、设计、运营、管理的前提和基础。主要包括两部分:交通系统各要素自身特性和交通流特性。2 1.驾驶员的任务和要求任务:实现人员和货物空间上的转移;要求:高度的社会责任感,良好的职业道德、身体素质、心理素养,熟练的驾驶技术。 2.驾驶员的信息处理过程 第一节道路交通三要素特性 驾驶员的交通特性 3 第一节道路交通三要素特性 驾驶员的交通特性 4 第一节道路交通三要素特性 驾驶员的交通特性 3.驾驶员的生理、心理特性 (1)视觉特性:视力、视野、色感。 (2)反应特性:从感知-判断-开始制动,到制动发生效力全部时间通常按2.5~3.0s计算。(3)心理特点和个性特点:动机、素养、注意力、智力、情绪、成熟性、知识性、条件反应等 4.疲劳驾驶与酒后驾驶 5 第一节道路交通三要素特性 乘客交通特性 1.乘客的交通需求心理 省时、省钱、省力、安全、方便、舒适 2.乘客反应 (1)横向力系数:最小圆曲线半径和缓和曲线长度; (2)路面状况:产生晕车(头晕、恶心); (3)道路美学:消除时间长产生的烦躁情绪; (4)时间和空间:乘车拥挤和出行时间。 6 第一节道路交通三要素特性 乘客交通特性 1.乘客的交通需求心理 省时、省钱、省力、安全、方便、舒适 2.乘客反应 (1)横向力系数:最小圆曲线半径和缓和曲线长度; (2)路面状况:产生晕车(头晕、恶心); (3)道路美学:消除时间长产生的烦躁情绪; (4)时间和空间:乘车拥挤和出行时间。 7 第一节道路交通三要素特性 乘客交通特性 3.社会影响

交通工程第二章.ppt.Convertor

第二章交通特性分析 The Analysis of Traffic Characteristics 1 交通特性分析是交通工程学的一个基本部分,是进行合理的、科学的交通规划、设计、运营、管理的前提和基础。主要包括两部分:交通系统各要素自身特性和交通流特性。 2 1.驾驶员的任务和要求 任务:实现人员和货物空间上的转移; 要求:高度的社会责任感,良好的职业道德、身体素质、心理素养,熟练的驾驶技术。 2.驾驶员的信息处理过程 第一节道路交通三要素特性 驾驶员的交通特性 3 第一节道路交通三要素特性 驾驶员的交通特性 4 第一节道路交通三要素特性 驾驶员的交通特性 3.驾驶员的生理、心理特性 (1)视觉特性:视力、视野、色感。 (2)反应特性:从感知-判断-开始制动,到制动发生效力全部时间通常按2.5~3.0s计算。(3)心理特点和个性特点:动机、素养、注意力、智力、情绪、成熟性、知识性、条件反应等 4.疲劳驾驶与酒后驾驶 5 第一节道路交通三要素特性 乘客交通特性 1.乘客的交通需求心理 省时、省钱、省力、安全、方便、舒适 2.乘客反应 (1)横向力系数:最小圆曲线半径和缓和曲线长度; (2)路面状况:产生晕车(头晕、恶心); (3)道路美学:消除时间长产生的烦躁情绪; (4)时间和空间:乘车拥挤和出行时间。 6 第一节道路交通三要素特性 乘客交通特性 1.乘客的交通需求心理 省时、省钱、省力、安全、方便、舒适 2.乘客反应 (1)横向力系数:最小圆曲线半径和缓和曲线长度; (2)路面状况:产生晕车(头晕、恶心); (3)道路美学:消除时间长产生的烦躁情绪; (4)时间和空间:乘车拥挤和出行时间。

当前交通的特点分析

当前交通的特点分析集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

当前我国交通的特点分析道路交通安全受到人-车-路以及交通环境这四位一体的因素影响,而中国的交通安全环境虽有所改善,但也不容乐观。具体表现在: (1)混合交通状态严重 对交通事故产生的交通特点分析可知,混合交通条件下发生的交通事故占总数的5.9%,同时还是主要的死亡原因(占67.2%);当混合交通且缺少交通控制时,造成的交通事故占总数的50.8%,死亡人数占62.4%(1998)。 (2)车辆性能差

车辆是现代道路交通得以实现的主要因素,车况的好坏、车辆的性能等直接影响着道路交通的安全。与发达国家相比,我国交通运输中的车辆总体特征表为:耐用好修,适应炎热、严寒的气候,无装饰,车辆只具备基本性能。目前国内车辆普遍不适应持续高速行驶的工况,因此在高速公路上表现不佳;机动车的性能不佳、机件失灵或零部件损坏,均可成为直接导致交通事故的因素。 (3)机动车辆组成结构畸形 国内机动化水平低但交通事故率高。国际经济合作和发展组织(OECD)的研究报告还表明,发达国家(这里指OECD成员国)的交通事故和机动化水平与亚洲和其他发展中国家相比较,亚洲国家的机动化水平最低,但交通事故率最高。2002年,全国在用机动车保有量为79756763辆,其中,汽车21417279辆,占机动车保有量的26.85%,而农用运输车、拖拉机、挂车等则占73.15%,因此,车辆整体性能较差。而由这些车辆组成的混合交通流将对交通安全构成致命的威胁。对各种交通方式责任事故的分析可知,驾驶摩托车、拖拉机、农用运输车等肇事比率占总数的21.15%,事故死亡率占总数的27.79%。

第二章 道路交通特性分析

第二章道路交通特性分析 §2-1 道路交通三要素特性 一、道路使用者的特性分析 1.1 驾驶员的交通特性 1.驾驶员的职责和要求 2.驾驶员的反应操作过程 3.驾驶员生理、心理特征 1)视觉特性 在行车过程中,驾驶员需要及时感知各种交通信息。根据统计分析,各种感觉器官给驾驶员提供交通信息数的比例分布如下:视觉占80%,听觉占14%,触觉占2%,味觉占2%,嗅觉占2%。可见,视觉是最重要的。因此,对视觉机能的考核和研究是驾驶员交通特性研究的重要内容。 (1)视觉 人的眼睛注视目标时,由目标反射出来的光进入眼内,经过眼中间物质的屈折,投射于眼睛黄斑中心窝,结成物像,再由视神经经过视路传至大脑的枕叶视中枢,激起心理反应,形成视觉。也就是说,所谓视觉,就是外界光线经过刺激视觉器官在大脑中所引起的生理反应。视觉在辨别外界物体明暗、颜色、形状等待性以及对物体空间属性加大小、远近等的区分上起着重要作用。 (2)视力 视力是人的眼睛分辨物体形状、大小的能力。视觉敏锐度的基本特征就在于辨别两物点之间距离的大小。视力有静视力、动现力和夜视力之分。 ①静视力是待检人员站在视力图表前面,距视力表5m,依次辨认视标测定的视力。 ②动视力汽车行驶时,驾驶员同车体一起按一定的速度前进,也就是说驾驶员与道路环境中的物体是相对运动的。驾驶员观察物体运动的视力,称为动视力。动视力与汽车行驶速度有关,随着车速的提高,视力明显下降。此外,动视力随驾驶员年龄的不同而有所差异,年龄越高,动视力低落的幅度越大。 车辆以60km/h的速度行驶时,车内驾驶员能看清车前20m的标志,而以80km/h 的速度行驶时,则在接近10m处才能看清。为保证驾驶员在发现前方有障碍物时,能有足够的时间辨认和采取相应的措施,希望车速提高时,视认距离能相应增加,可是由于生理条件的限制,结果恰恰相反。 ③夜视力在黑暗环境中的视力称为夜视力。据研究,照度与视力成线性关系,即照度减小,视力下降。 太阳落山前,公路上的照度较高,日落后的黄昏时刻照度明显降低,在由明转暗的情况下,眼睛看东西主要靠视杆细胞起作用。而视杆细胞的感受性增加缓慢,需要30~40min的时间,才能稳定在一个水平上。由于天黑得较快,而暗适应还没充分形成,加之打开前灯,恰与周围的光度相等,不能形成对比,因此黄昏时最难驾驶并易出事故。 入夜光线更暗,在天然照明情况下,视力可降至白天视力的4%~10%,这是全靠视杆细胞活动的结果。下面介绍一下与夜间驾驶有关的视觉规律: ⅰ夜间对颜色的感知在车灯照明的条件下,能发现各种颜色的距离,如表2—1所示。 m

过程特性与数学模型

过程特性与数学模型 过程控制系统的品质是由组成系统的各个环节的结构及其特性所决定。过程即为被控对象,它是否易于控制,对整个系统的运行情况有很大影响。 §4.1过程特性 被控过程的种类常见的有:换热器、锅炉、精馏塔、化学反应器、贮液槽罐、加热炉 等。这些被控过程的特性是由工艺生产过程和工艺设备决 定的。 被控过程特性-----指被控过程输入量发生变化时,过程输出量的变化规律。通道------被控过程的输入量与输出量之间的信号联系 控制通道-----操纵变量至被控变量的信号联系 扰动通道-----扰动变量至操纵变量的信号联系 一、过程特性的类型 多数工业过程的特性可分为下列四种类型: 1.自衡的非振荡过程 2. 无自衡的非振荡过程 3. 有自衡的振荡过程 4. 具有反向特性的过程 二、描述过程特性的参数 用放大系数K、时间常数T、滞后时间τ三个物理量来定量的表示过程特性。(主要针对自衡的非振荡过程) 1.放大系数K ⑴K的物理意义 K的物理意义:如果有一定的输入变化量ΔQ作用于过程,通过过程后被放大了K倍,变为输出变化量ΔW。 ⑵放大系数K对系统的影响 对控制通道的影响 对扰动通道的影响 2. 时间常数T ⑴时间常数T的物理意义 时间常数是被控过程的一个重要的动态参数,用来表征被控变量的快慢程度。 时间常数T的物理意义还可以理解为:当过程受到阶跃输入作用后,被控变量保持初始速度变化,达到新的稳态值所需要的时间就是时间常数T。 ⑵时间常数T对系统的影响 对控制通道的影响

对扰动通道的影响 3. 滞后时间τ ⑴纯滞后τ0(P142) ⑵容量滞后τn ⑶滞后时间τ对系统的影响 对控制通道的影响 对扰动通道的影响 §4.2 过程数学模型的建立 过程的(动态)数学模型---是指表示过程的输出变量与输入变量间动态关系的数学描 述。 过程的输入是控制作用u(t)或扰动作用f(t), 输出是被控变量y(t). 数学模型:非参数模型,即用曲性或数据表格来表示,如阶跃响应曲线、脉冲响应曲线 和频率特性曲线;另一种是 参数模型,即用数学方程式来表示,如微分方程(差分方程)、传递函数、 状态空间表达式等。本节所涉及的模型均为用微分方程描述的 线性定常动态模型。 建立数学模型的基本方法 机理分析法-----通过对过程内部运动机理的分析,根据其物理或化学变化规律, 在忽略一些次要因素或做出一些近似处理后得到过程特性方程, 用微分方程或代数方程。这种方法完全依赖于足够的先验知识, 所得到的模型称为机理模型。机理分析法一般只能用于简单过 程的建模。机理分析法 实验测试法-----由过程的输入输出数据确定模型的结构和参数。 4.2.1机理分析法 微分方程建立的步骤归纳如下: ⑴根据实际工作情况和生产过程要求,确定过程的输入变量和输出变量。 ⑵依据过程的内在机理,利用适当的定理定律,建立原始方程式。 ⑶确定原始方程式中的中间变量,列写中间变量与其他因素之间的关系。 ⑷消除中间变量,即得到输入、输出变量的微分方程。 ⑸若微分方程是非线性的,需要进行线性化处理。 ⑹标准化。即将与输入有关的各项放在等号右边,与输出有关的各项放在等号左边,并按将幂排序。 例4.1 试列写图4.13所示RC无源网络的动态数学模型。设u i为输入变量,u o为输出变量。例4.2 图4.14所示为一测温热电偶,它可将被测温度转换为热电势E。图中介质的温度为T i,热电偶热端温度为T o。试列写热电偶的微分方程。 例4.3 一个串联液体贮槽,通过改变贮槽2的流出量Q out来控制其液位h2在一定高度。图中A1 、A2分别为两贮槽的截面积;R1、R2分别为阀1、阀2的阻力系数。是建立串联液体贮槽

相关主题
文本预览
相关文档 最新文档