当前位置:文档之家› 椭圆练习题(经典归纳)

椭圆练习题(经典归纳)

椭圆练习题(经典归纳)
椭圆练习题(经典归纳)

椭圆练习题(经典归纳)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

初步圆锥曲线

感受:已知圆O 以坐标原点为圆心且过点12? ??

,,M N 为平面上关于原点对称的两点,已知N 的坐

标为0,?

??

,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围

二. 曲线方程和方程曲线

(1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程

例题:教材 A 组.T3 T4 B 组 T2

练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3

,则动点P 的轨迹方程是____

练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系

(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程

设直线方程:若直线方程未给出,应先假设.

(1)若已知直线过点00(,)x y ,则假设方程为00()y

y k x x ;

(2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y +=

【注】以上三种假设方式都要注意斜率是否存在的讨论;

(4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设

直线为x my t 。【反斜截式,1

m

k

】不含垂直于y 轴的情况(水平线) 例题:圆C 的方程为:.0222=-+y x

(1)若直线过点)(4,0且与圆C 相交于A,B 两点,且2=AB ,求直线方程. (2)若直线过点)(3,1且与圆C 相切,求直线方程. (3)若直线过点)

(0,4且与圆C 相切,求直线方程. 附加:4)4(3:22

=-+-y x C )(

. 若直线过点)

(0,1且与圆C 相交于P 、Q 两点,求CPQ S ?最大时的直线方程.

椭 圆

1、椭圆概念

平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离c 2叫椭圆的焦距。若M 为椭圆上任意一点,则有

21||||2MF MF a +=.

注意:212F F a >表示椭圆;212F F a =表示线段21F F ;212F F a <没有轨迹; 2、椭圆标准方程

椭圆方程为12

2

222=-+c a y a x ,设2

2c a b -=,则化为()012222>>=+b a b

y a x 这就是焦点在x 轴上的椭圆的标准方程,这里焦点分别是1F ()0,c -,2F ()0,c ,且22c a b -=.

类比:写出焦点在y 轴上,中心在原点的椭圆的

标准方程()22

2210y x a b a b

+=>>.

椭圆标准方程:22

221x y a b +=(0a b >>)(焦点在x 轴上)

或122

22=+b

x a y (0a b >>)(焦点在y 轴上)。 注:(1)以上方程中,a b 的大小0a b >>,其中222b a c =-;

(2)要分清焦点的位置,只要看2x 和2y 的分母的大小,“谁大焦点在谁上”

一、求解椭圆方程

1已知方程1232

2=-++k y k x 表示椭圆,则k 的取值范围为__________.

2.椭圆63222=+y x 的焦距是( )

A .2

B .)23(2-

C .52

D .)23(2+

3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)2

3,2

5(-,则椭圆方程是 ( )

A .14

822=+x y B .16

102

2=+x y C .18

42

2=+x y D .16

102

2

=+y x

4.过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是 ( )

A.

2211510x y += B.221510x y += C.2211015x y += D.22

12510

x y += 5.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是. ( ) A. 16x 2+9y 2=1 B. 16x 2+12y 2=1 C. 4x 2+3y 2=1 D. 3x 2

+4y 2=1

二、椭圆定义的应用

1.椭圆

116

252

2=+y x 上的一点P,到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7

2.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a a

a PF PF ,则点P 的轨迹是

( )

A .椭圆

B .线段

C .不存在

D .椭圆或线段

3.过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点

2F 构成2ABF ?,那么2ABF ?的周长是( )

A . 22

B . 2

C . 2

D . 1

4.椭圆

22

1259

x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为 ( ) A. 4 B . 2 C. 8 D .

23

5.椭圆13

122

2=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是

2PF 的

A .4倍

B .5倍

C .7倍

D .3倍

三、求椭圆轨迹方程

1.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 A .椭圆 B .直线 C .线段 D .圆

2.设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为

4

9

-,求点M 的轨迹方程 3.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为

是椭圆592

2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹方程为 A 、159422=+y x B 、154922=+y x C 、12092

2=+y x D 、5

3622y x +=1

5.动圆与圆O :122=+y x 外切,与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:

A.抛物线

B.圆

C.椭 圆

D.双曲线一支 6.设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数4

5

,求点M 的轨迹方程.

四、焦点三角形

1.椭圆

19

252

2=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )

A .9

B .12

C .10

D .8

2.21,F F 是椭圆17

92

2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积

为 A .7 B .

47 C .2

7

D .257

3.若点P 在椭圆12

22

=+y x 上,1F 、2F 分别是椭圆的两焦点,且 9021=∠PF F ,则21PF F ?的面积

A. 2

B. 1

C.

23 D. 2

1

4.若P 为椭圆22143x y +=上的一点,12,F F 为左右焦点,若123F PF π∠=,求点P 到x 轴的距离 . 5.设P 是椭圆2

214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 . 6. 若P 在椭圆

2221(50)25x y b b +=>>上的一点,12,F F 为左右焦点,若12F PF ∠的最大值为2

π

,则椭圆的方程为 .

7. P 为椭圆22194

x y +=上一点, 12,F F 为焦点,满足1290F PF ?∠=的点的个数为 .

五、椭圆的简单几何性质

①范围;②对称;③顶点; ④离心率:(10<

把椭圆的焦距与长轴的比c e a =()10<

222221?

??

??-=-===a b a b a a c a c e

1. 椭圆10025422=+y x 的长轴长等于____________,短半轴长等于____________,焦距_________,左焦点坐标____________,离心率________,顶点坐标_________.

求离心率(构造a c ,的齐次式,解出e )

1.已知椭圆的对称轴是坐标轴,离心率为3

1,长轴长为12,则椭圆方程为( )

A .

112814422=+y x 或114412822=+y x B . 14

62

2=+y x C .

1323622=+y x 或1363222=+y x D . 16422=+y x 或14

62

2=+y x

2.已知椭圆()22550mx y m m +=>的离心率为e =

m = . 3.已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是

4.若椭圆)0(,122

22>>=+b a b y a x 短轴端点为P 满足21PF PF ⊥,则椭圆的离心率为=e .

5.已知)0.0(12

1>>=+n m n

m 则当mn 取得最小值时,椭圆12222=+n y m x 的离心率为=e .

6.椭圆12222=+b

y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等于21

∣AF

∣,则椭圆的离心率为=e .

7.以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率为=e .

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

高中数学椭圆经典例题(学生+老 师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设 条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,, 有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方 程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知:·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

椭圆经典例题讲解

椭圆 1.椭圆的两种定义 (1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在. (2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程 (1) 焦点在x 轴上,中心在原点的椭圆标准方程是: 12 22 2=+ b y a x ,其中( > >0,且 =2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12 22 2=+ b x a y , 其中a ,b 满足: .(3)焦点在哪个轴上如何判断 3.椭圆的几何性质(对 12 22 2=+b y a x ,a > b >0进行讨论) (1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 . (3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: . (4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ; e 越接近 0,椭圆越接近于 . (5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则 =1PF ,122PF a PF -== 。 4.焦点三角形应注意以下关系(老师补充画出图形):(1) 定义:r 1+r 2=2a (2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c ) 2 (3) 面积:21F PF S ?=2 1 r 1r 2 sin θ=2 1·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)基础过关

(完整版)椭圆常见题型总结

椭圆常见题型总结 1、椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决; 椭圆 22 2 21(0)x y a b a b +=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PF F ?中,12F PF α=∠,则当P 为短轴端点时α最大,且 ① 122PF PF a +=; ②22 2 12122cos 4c PF PF PF PF α=+-; ③12 121 sin 2PF F S PF PF α?= =2tan 2 b α?(b 短轴长) 2、直线与椭圆的位置关系:直线y kx b =+与椭圆22 221(0)x y a b a b +=>>交于 1122(,),(,)A x y B x y 两点,则12AB x =-=3、椭圆的中点弦:设1122(,),(,)A x y B x y 是椭圆22 221(0)x y a b a b +=>>上不同两点, 00(,)M x y 是线段AB 的中点,可运用点差法可得直线AB 斜率,且20 20 AB b x k a y =-; 4、椭圆的离心率 范围:01e <<,e 越大,椭圆就越扁。 求椭圆离心率时注意运用:c a e = ,222c b a += 5、椭圆的焦半径 若00(,)P x y 是离心率为e 的椭圆22 221(0)x y a b a b +=>>上任一点,焦点 为1(,0)c F -,2(,0)c F ,则焦半径10PF a ex =+,10PF a ex =-; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定2 a ,2 b 值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出2 a ,2 b ,从而求出标准方程; ⑶在不知道焦点的情况下可设椭圆方程为221Ax By +=;

高中理科椭圆的典型例题

典型例题一 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331-= e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点, OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x ,

由?????=+=-+1012 22y a x y x ,得()0212 22=-+x a x a , ∴222112a a x x x M +=+=,211 1a x y M M +=-=, 41 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF = -12 ,∴115 4 5x ex a AF -=-=. 同理2545x CF -=.∵BF CF AF 2=+,且5 9 =BF , ∴51854554521=??? ??-+??? ? ? -x x ,即821=+x x . (2)因为线段AC 的中点为??? ??+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得() 212 2 21024x x y y x --=-

椭圆常见题型总结

椭圆常见题型总结 1椭圆中的焦点三角形: 通常结合定义、正弦定理、余弦定理、勾股定理来解决; 0)上一点P(x 0, y 0)和焦点F i ( c,0) , F 2(C ,0)为顶点的 ① PF [ PF 2 2a ; 人任孑),B(X 2, y 2)两点,贝U AB| J i|x 1 x 2| J ik 2J (x 1 X 2)24x 1x 2 2 2 3、椭圆的中点弦: 设A(X i , yj, B(X 2,y 2)是椭圆 务% 1(a b 0)上不同两点, a b M(x °,y °)是线段AB 的中点,可运用 点差法可得直线 AB 斜率,且k AB 4、椭圆的离心率 求椭圆离心率时注意运用: e C , a 2 b 2 C 2 a 2 2 若P(x 0, y 0)是离心率为e 的椭圆^2 1(a a b 椭圆 x 2 y2 !(a b a b PF i F 2 中,F 1PF 2 ,则当P 为短轴端点时 最大,且 ②4C 2 2 PF i 2 PF 2 2 PF 1 PF 2 COS ③ S PF 1F 2 1 1|PF i |PF 2 sin 2 =b tan ( b 短轴长) 2 2、直线与椭圆的位置关系: 直线y 2 kx b 与椭圆笃 a 2 b 1(a b 0)交于 b 2X o ; ~2~ ; a y 。 范围:0 e 1, e 越大,椭圆就越扁。 5、椭圆的焦半径 b 0)上任一点,焦点

为 F i ( c,0) , F 2C O ),则焦半径 PF i a ex o , PR a ex o ; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定 a 2, b 2值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出 准方程; ⑶在不知道焦点的情况下可设椭圆方程为 Ax 2 By 2 1; 椭圆方程的常见题型 2 x 2、已知x 轴上一定点 A (1,0),Q 为椭圆 y 2 1上的动点,贝U AQ 中点M 的轨迹方程 4 的轨迹方程是( ) 2 x 2 “ C y 1 4 6、设一动点P 到直线x 3的距离与它到点 A (1,0)的距离之比为-.3,则动点P 的轨迹方 2 2 a , b ,从而求出标 1、点P 到定点F (4,0)的距离和它到定直线 10的距离之比为 1:2,则点P 的轨迹方程 3、平面内一点 M 到两定点F 2(0, 5)、F 2(0,5)的距离之和为 10,则M 的轨迹为( A 椭圆 B 圆 4、经过点(2, 3)且与椭圆9x 2 4y 2 2 2 2 2 A 乞匕1 B x L 1 15 10 10 15 C 直线 D 线段 36有共冋焦点的椭圆为 ( ) 2 2 2 2 C0匕1 x D — 工1 5 10 10 5 2 2 5、已知圆x y 1,从这个圆上任意一点 P 向y 轴做垂线段 PR ,则线段PR 的中点M A 4x 2 y 2 1 B x 2 4y 2 1

椭圆常考题型汇总及练习进步

椭圆常考题型汇总及练习 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距 ()c 2. 椭圆的几何性质:以 ()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用 于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a Θ (2)22F OB Rt ?, 2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且 22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -= 越小, 椭圆越扁;当e 接近于0时,c 越接近于0,从而2 2c a b -=越大,椭圆越接近圆。

椭圆知识点总结及经典习题.docx

圆锥曲线与方程--椭圆 知识点 一?椭圆及其标准方程 1椭圆的定义:平面内与两定点Fι, F2距离的和等于常数2a ■ F1F21J的点的轨迹叫做椭圆,即点集M={P∣∣PF ι∣+∣PF 2∣=2a,2a>∣F1F2∣=2c}; 这里两个定点F i, F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。 (2a = F1F2时为线段F i F2, 2a C RF?无轨迹)。 2 2 2 2?标准方程:c= a- b 2 2 χ+y _ 1 ①焦点在X轴上:盲TT = 1( a> b> 0);焦点F(± C, 0) a b 2 2 y X ②焦点在y轴上:—2 = 1(a>b>0);焦点F (0, ±C) a b 注意:①在两种标准方程中,总有a> b> 0,并且椭圆的焦点总在长轴上; 2 2 ②两种标准方程可用一般形式表示:X y =1或者mχ2+ny2=1 m n 二?椭圆的简单几何性质: 1. 范围 2 2 (1)椭圆X- y- =1 (a> b> 0)横坐标-a ≤x≤a ,纵坐标-b ≤X≤b a2b2 2 2 (2)椭圆-y2x2 =1 (a>b>0) 横坐标-b ≤X≤b,纵坐标-a ≤x≤a a2b2 2. 对称性 椭圆关于X轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心 3. 顶点 (1)椭圆的顶点:A (-a , 0), A (a, 0), B (0, -b), B- (0, b) (2)线段AA, BB分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭

圆的长半轴长和短半轴长。 4 .离心率 (1) 我们把椭圆的焦距与长轴长的比 2c ,即E 称为椭圆的离心率, 2a a e = O 是圆; e 越接近于O (e 越小),椭圆就越接近于圆 e 越接近于1 ( e 越大),椭圆越扁; 注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关 小结一:基本元素 (1) 基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2) 基本点:顶点、焦点、中心(共七个点) (3) 基本线:对称轴(共两条线) 5 ?椭圆的的内外部 2 2 x 2 y 2 亠 —x o + y o W 1 (1) 点 P(X O , Y O )在椭圆-2 -每=1(a b - 0)的内部 J 2 U2 1 a b a b 2 2 x 2 y 2 亠 X O * y O 彳 (2) 点 P(x 0, y 0)在椭圆-2 =1(a b 0)的外部 2 TT 1. a b a b 6. 几何性质 (1) 点P 在椭圆上, 最大角? F 1PF 2 max =∕F 1 B 2F 2, (2) 最大距离,最小距离 7. 直线与椭圆的位置关系 (1) 位置关系的判定:联立方程组求根的判别式; (2) 弦长公式: ________________________ (3) 中点弦问题:韦达定理法、点差法 记作 e ( 0 < e < 1),

椭圆经典例题分类汇总

椭圆经典例题分类汇总 1.椭圆第一定义的应用 例1椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由2 1= e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ???-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆.

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳 一、知识总结 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形, 可设方程为221(0,0)mx ny m n +=>>不必考虑焦点位置,求出方程。 3.范围. 椭圆位于直线x =±a 和y =±b 围成的矩形里.|x|≤a ,|y|≤b . 4.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 5.顶点 椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.。 长轴的长等于2a . 短轴的长等于2b .

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2. 6.离心率 7.椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8.椭圆22 221x y a b +=(a >b >0)的焦半径公式10||MF a ex =+,20 ||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ). 9.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2 OM AB b k k a ?=-,即0 2 02y a x b K AB -=。 )10(<<= e a c e

椭圆经典练习题两套(带答案)

椭圆练习题1 A组基础过关 一、选择题(每小题5分,共25分) 1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ). A.1 2 B. 2 2 C. 2 D. 3 2 解析由题意得2a=22b?a=2b,又a2=b2+c2 ?b=c?a=2c?e= 2 2 . 答案B 2.(2012·长沙调研)中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x2 81 + y2 72 =1 B. x2 81 + y2 9 =1 C. x2 81 + y2 45 =1 D.x2 81+ y2 36 =1

解析 依题意知:2a =18,∴a =9,2c =1 3×2a ,∴c =3, ∴b 2 =a 2 -c 2 =81-9=72,∴椭圆方程为x 2 81 + y 2 72 =1. 答案 A 3.(2012·长春模拟)椭圆x 2+4y 2=1的离心率为( ). A. 32 B.34 C.22 D.23 解析 先将 x 2+4y 2=1 化为标准方程x 21+y 214 =1,则a =1,b =12,c =a 2-b 2=3 2 . 离心率e =c a =3 2. 答案 A 4.(2012·佛山月考)设F 1、F 2分别是椭圆x 24+y 2 =1的左、右焦点,P 是第一象 限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ). A .1 B.83 C .2 2 D.26 3 解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24 +y 2=1在第一象限的交点, 解方程组???? ? x 2+y 2=3,x 24+y 2 =1,得点P 的横坐标为 26 3 . 答案 D 5.(2011·惠州模拟)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 3 2 ,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为( ).

椭圆题型归纳大全

椭圆题型归纳大全

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆2 2:(4)100 C x y ++=相内切,且 过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 例2. 方程 2 x =++所表示的曲线是 练习: 1.方程 6 =对应的图形是 ( ) A.直线 B. 线段 C. 椭圆 D. 圆 2. 10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 3.方程 10 =成立的充要条件是 ( ) A. 2 2 12516x y += B.2 2 1 259 x y += C. 22 11625 x y += D. 22 1925 x y +=

4. 1 m =+表示椭圆,则 m 的取值范围是 5.过椭圆2 2941 x y +=的一个焦点1 F 的直线与椭圆相 交于,A B 两点,则,A B 两点与椭圆的另一个焦点2 F 构成的2 ABF ?的周长等于 ; 6.设圆2 2(1) 25 x y ++=的圆心为C ,(1,0)A 是圆内一定点, Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点 M ,则点M 的轨迹方程 为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例 1.方程 22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例 2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例 3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点 1 P 、2 (P ,求椭圆的方程;

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型归纳 题型一:弦的垂直平分线问题 弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点, 在x 轴上是否存在一点E(0 x ,0),使得ABE ?是等边三角形,若存在,求出0 x ;若不存在,请说明理由。 分析:过点T(-1,0)的直线和曲线N :2 y x =相交A 、B 两点, 则直线的斜率存在且不等于0,可以设直线的方程,联立方程组,消元,分析类一元二次方程,看判别式,运用韦达定理,得弦的中点坐标,再由垂直和中点,写出垂直平分线的方程,得出E 3 倍。运用弦长公式求弦长。 解:依题意知,直线的斜率存在,且不等于0。设直线:(1)l y k x =+, k ≠,1 1 (,)A x y ,2 2 (,)B x y 。 由2 (1) y k x y x =+?? =? 消y 整理,得2 2 22(21)0 k x k x k +-+= ① 由直线和抛物线交于两点,得2 242(21)4410 k k k ?=--=-+>即2 104 k << ② 由韦达定理,得: 2122 21 ,k x x k -+=-121 x x =。则线段AB 的中点为

22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得0 211 22x k = -,则2 1 1 (,0)22E k -ABE ?Q 为正三角形,∴2 1 1(,0)22 E k -到 直线AB 的距离d 为 32 AB 。 2 2 1212()()AB x x y y =-+-Q 22141k k -= +g 212k d k +=222 23141122k k k k k -+∴+=g 解得39 13 k =± 满足②式此时0 53 x = 。 思维规律:直线过定点设直线的斜率k ,利用韦达定理法,将弦的中点用k 表示出来,再利用垂直关系将弦的垂直平分线方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的 3倍,将k 确定,进而求出0 x 的坐标。 例题2、已知椭圆 12 22 =+y x 的左焦点为F ,O 为坐标原点。 (Ⅰ)求过点O 、F ,并且与2x =-相切的圆的方程; (Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围。

椭圆练习题(经典归纳)

椭圆练习题(经典归纳)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点12? ?? ,,M N 为平面上关于原点对称的两点,已知N 的坐 标为0,? ?? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

椭圆各类题型分类汇总情况

椭圆经典例题分类汇总 1. 椭圆第一定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 例2 已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 例3 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值围. 例4 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值围. 例5 已知动圆P 过定点()03,-A ,且在定圆()64322 =+-y x B :的部与其相切,求动圆圆心P 的轨迹方程.

2.焦半径及焦三角的应用 例1 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由. 例2 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 3.第二定义应用 例1 椭圆112162 2=+y x 的右焦点为F ,过点() 31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.

例2 已知椭圆1422 22=+b y b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离. 例3 已知椭圆15 92 2=+y x 有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点. (1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求22 3PF PA + 的最小值及对应的点P 的坐标. 4.参数方程应用 例1 求椭圆13 22 =+y x 上的点到直线06=+-y x 的距离的最小值.

特别解析:椭圆经典例题分类

特别解析:椭圆经典例题分类 题型一 .椭圆定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02, A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:1142 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆 19822=++y k x 的离心率2 1 =e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12 -=k c .由2 1 =e ,得4=k . 当椭圆的焦点在y 轴上时,92 =a ,82 +=k b ,得k c -=12 . 由21= e ,得4191=-k ,即4 5-=k . ∴满足条件的4=k 或4 5 -=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程 1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ? ??-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2 =-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

椭圆常见题型与典型方法归纳 考点一 椭圆的定义 椭圆的第一定义:我们把平面内与两个定点12,F F 的距离的和等于常数 1.22(2)a a F F >的点的轨迹叫做椭圆.这两 定点12,F F 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距. 椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e= a c (0>焦点的坐标分别为 (,0),(,0)c c - 2焦点在y 轴上 标准方程是:22 221y x a b +=(其中222,0).b a c a b =->>焦点的坐标分别为 (0,),(0,)c c - 3焦点位置判断 哪项分母大焦点就在相应的轴上 如 求22 179 x y + =的焦点坐标 4 椭圆过两定点,焦点位置不确定时可设椭圆方程为221mx ny +=(其中0,0m n >>) 例 已知椭圆过两点1),(2)42 A B --,求椭圆标准方程 5 与122 22=+b y a x (a >b >0)共焦点的椭圆为12222=+++k b y k a x 二 重难点问题探析: 1.要有用定义的意识

高考椭圆题型总结

椭圆题型总结 一、 椭圆的定义和方程问题 (一) 定义:PA+PB=2a>2c 1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( ) A.椭圆 B.圆 C.直线 D.线段 3. 已知1F 、2F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得 2PF PQ =,那么动点Q 的轨迹是( ) A.椭圆 B.圆 C.直线 D.点 4. 已知1F 、2F 是平面α内的定点,并且)0(221>=c c F F ,M 是α内的动点,且a MF MF 221=+,判断动点M 的轨迹. 5. 椭圆19 252 2=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。 (二) 标准方程求参数范围 1. 若方程13 52 2=-+-k y k x 表示椭圆,求k 的范围.(3,4)U (4,5) 2. 轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( )

A.充分而不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 3. 已知方程11 252 2=-+-m y m x 表示焦点在Y 轴上的椭圆,则实数m 的范围是 . 4. 已知方程222=+ky x 表示焦点在Y 轴上的椭圆,则实数k 的范围是 . 5. 方程2 31y x -=所表示的曲线是 . 6. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。 7. 已知椭圆06322=-+m y mx 的一个焦点为)2,0(,求m 的值。 8. 已知方程222=+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 . (三) 待定系数法求椭圆的标准方程 1. 根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为 26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3(),1,6(21--P P ,求 椭圆方程. 2. 以)0,2(1-F 和)0,2(2F 为焦点的椭圆经过点)2,0(A 点,则该椭圆的方程 为 。 3. 如果椭圆:k y x =+224上两点间的最大距离为8,则k 的值为 。 4. 已知中心在原点的椭圆C 的两个焦点和椭圆3694:222=+y x C 的两个焦点一个正方 形的四个顶点,且椭圆C 过点A (2,-3),求椭圆C 的方程。 5. 已知P 点在坐标轴为对称轴的椭圆上,点P 到两焦点的距离为 354和3 52,过点P 作长轴的垂线恰过椭圆的一个焦点,求椭圆方程。 6. 求适合下列条件的椭圆的标准方程

相关主题
文本预览
相关文档 最新文档