当前位置:文档之家› 实数典型例题(培优)

实数典型例题(培优)

实数典型例题(培优)
实数典型例题(培优)

相交实数典型问题精析(培优)

例1.(2009

A . B

C

D

. 分析:本题考查实数的概念――相反数,要注意相反数与倒数的区

别,实数a 的相反数是-a ,选A.要谨防将相反数误认为倒数,错选D.

例2.(2009年江苏省中考题)下面是按一定规律排列的一列数:

第1个数:11122-??-+ ???;第2个数:2311(1)(1)1113234????---??-+++ ??? ???????; 第3个数:234511(1)(1)(1)(1)11111423456????????-----??-+++++ ??????? ???????????; ……第n 个数:232111(1)(1)(1)111112342n n n -??????----??-++++ ??? ? ?+????????.

那么,在第10个数、第11个数、第12个数、第13个数中,最大的数

是(A )

A .第10个数

B .第11个数

C .第12个数

D .第13个

解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住

了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数

都是21,只要比较被减数即可,即比较141131121111、、、的大小,答案一目了然. 例3(荆门市)定义a ※b =a2-b ,则(1※2)※3=___.

解 因为a ※b =a2-b ,所以(1※2)※3=(12-2)※3=(-1)※3=(-

4=1+3 9=3+6 16=6+10

1)2-3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算符号转化成有理数的运算符号.

例4(河北省)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从如图所示中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()

=3+10 =9+16 =15+21 =18+31

解因为15和21是相邻的两个“三角形数”,且和又是36,刚好符合“正方形数”,所以36=15+21符合题意,故应选C.(说明本题容易错选B,事实上,25虽然是“正方形数”,而9和16也是“正方形数”,并不是两个相邻“三角形数”).

例5.(2009

2

()

x y

=+,则x-y的值为()

A.-1 B.1 C.2 D.3

分析:因为x-1≥0,1-x ≥0,所以x≥1,x ≤1,即x=1.

而由

2

()

x y

=+,有1+y=0,所以y=-1,x-y=1-(1)=2.

例6.(2009年宜宾市中考题)已知数据:

1

3

,π,-2.其中无理数出现的频率为( )

A.20% B.40% C.60% D.80%

分析:,

2和开方开不尽的数,所以2

都是无理数;л是无

限不循环小数,也是无理数;而31,-2都是有理数,所以无理数出现的频率为53

==60%,选C .

例7.(2009年鄂州市中考题)为了求2008322221++++ 的值,可令S

=2008322221++++ ,则2S =20094322222++++ ,因此2S-S =12

2009-,所以2008322221++++ =12

2009-.仿照以上推理计算出20093255551+++++ 的值是( )

A .152009- B.152010

- C.4152009- D.41

52010- 解析:本题通过阅读理解的形式介绍了解决一类有理数运算问题的方

法,利用例题介绍的方法,有:设S =20093255551+++++ ,则5S =

201020093255555+++++ ,因此5S-S =20105-1,所以S =4152010-,选D.

说明:你能从中得到解决这类问题的一般性规律吗试一试.

例8. (2009年枣庄市中考题)a 是不为1的有理数,我们把1

1a -称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知

113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2009a = .

解析:首先要理解差倒数的概念,再按照要求写出一列数,从中找出规

律,再应用规律来解决问题.根据题意可得到:113a =-,2a =433111=--)(,3

a =4311

-=4,4a =31411-=-,…,可见这是一个无限循环的数列,其循环周期

为3,而2009=669×3+2,所以a2009与a2相同,即

2009a =34. 典型例题的探索

(利用概念)例 3. 已知:

是的算术数平方根,

是立方根,求的平方根。 分析:由算术平方根及立方根的意义可知

><=+-><=-+2342,122b a b a 联立<1><2>解方程组,得:

代入已知条件得:

,所以

故M +N 的平方根是±

。 练习:1. 已知

,求的算术平方根与立方根。

2. 若一个正数a 的两个平方根分别为和,求的值。 (大小比较)例4. 比较的大小。

分析:要比较

的大小,必须搞清a 的取值范围,由知,由知

,综合得,此时仍无法比较,为此可将a 的取值分别为①;②;③三种情况进行讨论,各个击破。当时,取

,则,显然有

当时,,当时,仿①取特殊值可得

(利用取值范围)例5. 已知有理数a 满足

,求的值。

分析:观察表达式

中的隐含条件,被开方数应为非负数即,亦即,故原已知式可化为: ()2005

200420042005200420052005200422=-∴=-∴=-∴=-+--a a a a a a 练习: 若x 、y 、m 适合关系式

y x y x m y x m y x --++-=-++--+2005200532353,试求m

的值。

(思路:x-2005+y 与2005-x-y 互为相反数,且均有算术平方根,故二

者分别为0)

(规律探索)例6. 借助计算器计算下列各题:

(1)(2)(3)(4)

仔细观察上面几道题及其计算结果,你能发现什么规律你能解释这一规

律吗

分析:利用计算器计算得:(1)

,(2) (3),(4)

观察上述各式的结果,容易猜想其中的规律为:

个1与n 个2组成的数的差的算术平方根等于n 个3组成的数。即

实数思想方法小结 实数是整个数学学科的基础,对于初学者来讲,有些概念比较抽象、难

懂,但是,如果我们运用数学的思想方法来指导本章的学习,却会收到良好的效果.那么,在本章中有哪些重要思想方法呢

一、估算思想

估算能力是一种重要的数学思维方法,估算思想就是在处理问题时,采

用估算的方法达到问题解决的目的,在遇到无理数的大小比较或确定无理数的范围等问题时,常用到估算的方法进行解决。

例1估计10+1的值是( ) (A )在2和3之间

(B )在3和4之间 (C )在4和5之间 (D )在5和6之间

分析:此题主要考查学生的估算能力,首先要确定10的取值范围,在

估算10+1的取值范围。因为9<10<16,所以9<10<16,即3<10<4,4<10+1<5,从而可确定10+1的取值范围。

解:选C.

二、数形结合思想

所谓数形结合就是抓住数与形之间本质上的联系,将抽象的数学语言与

直观的图形结合起来的一种方法。通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到优化解题的目的。在数轴上表示实数,根据数轴上的数进行有关的计算等都能体现数形结合思想的重要作用。

例2如图1,数轴上点A 表示2,点A 关于原点的对称点为B ,设点B

所表示的数为x ,求

()022x x -+的值.

分析:此题是与数轴有关的数形结合的问题,要求()022x x -+的值,

需要先根据数轴确定x 的值,由数轴易得2x =-. 从而可求出代数式的值。

解:点A 表示的数是2,且点B 与点A 关于原点对称,

∴点B 表示的数是2-,即2x =-.

00(2)2(22)2(2)121x x -+=--+?-=-=-.

三、分类思想

所谓分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几

个部分或几种情况,然后逐个加以解决,最后予以总结做出结论的思想方法。按照不同的标准,实数会有一些不同的分类方法。

例3在所给的数据:,57.0,,31,5,232π-…(相邻两个5之间8的个数逐

次增加1个)其中无理数个数( ).

(A)2个 (B)3 (C)4个 (D)5个

解析:作此类题需要掌握实数的分类.判断一个数是哪类数,可以化简

后再判断,但是对于代数式分类判断,则不能化简后再判断,如x x 2

是分式,对

于数、式分类时,常用策略是:“数看结果,式看形式”.2422==;

3355-=-;显然22、31、都是有理数;所以无理数的个数为3.选B. 解释理由如下: ()

3

1211121121233311191101111111011122211110111222111个个个个个个个个个个…………………………n n n n n n n n n n n n n =?=-?=-?=-+?=-《平方根》典例分析

平方根是学习实数的准备知识,是以后学习一元二次方程等知识的必备

基础,也是中考的必考内容之一.现以几道典型题目为例谈谈平方根问题的解法,供同学们学习时参考.

一、基本题型

例1 求下列各数的算术平方根

(1)64;(2)2)3(-;(3)4915

1

. 分析:根据算术平方根的定义,求一个数a 的算术平方根可转化为求一

个数的平方等于a 的运算,更具体地说,就是找出平方后等于a 的正数.

解:(1)因为6482=,所以64的算术平方根是8,即864=;

(2)因为93)3(22==-,所以2)3(-的算术平方根是3,即3)3(2=-;

(3)因为496449151

=,又4964)78(2=,所以49151的算术平方根是78,即7849151=.

点评:这类问题应按算术平方根的定义去求.要注意2)3(-的算术平方根

是3,而不是3.另外,当这个数是带分数时,应先化为假分数,然后再求其算术平方根,不要出现类似

74149161=的错误. 想一想:如果把例1改为:求下列各数的平方根.你会解吗请试一试.

例2 求下列各式的值

(1)81±; (2)16-; (3)259

; (4)2)4(-.

分析:±81表示81的平方根,故其结果是一对互为相反数;-16表

示16的负平方根,故其结果是负数;259表示259

的算术平方根,故其结果是正

数;2)4(-表示2)4(-的算术平方根,故其结果必为正数.

解:(1)因为8192=,所以±81=±9.

(2)因为1642=,所以-416-=.

(3)因为2

53??? ??=259,所以259=53.

(4)因为22)4(4-=,所以4)4(2=-. 点评:弄清与平方根有关的三种符号±a 、a 、-a 的意义是解决

这类问题的关键.±a 表示非负数a 的平方根.a 表示非负数a 的算术平方根,-a 表示非负数a 的负平方根.注意a ≠±a .在具体解题时,符与“”的前面是什么符号,其计算结果也就是什么符号,既不能漏掉,也不能多添.

例3 若数m 的平方根是32+a 和12-a ,求m 的值.

分析:因负数没有平方根,故m 必为非负数,故本题应分两种情况来解.

解: 因为负数没有平方根,故m 必为非负数.

(1)当m 为正数时,其平方根互为相反数,故(32+a )+(12-a )

=0,解得3=a ,故32+a =9332=+?,912312-=-=-a ,从而

8192==a . (2)当m 为0时,其平方根仍是0,故032=+a 且0433=-a ,此时两

方程联立无解.

综上所述,m 的值是81.

二、创新题型

例4 先阅读所给材料,再解答下列问题:若1-x 与x -1同时成立,

则x 的值应是多少有下面的解题过程:1-x 和x -1都是算术平方根,故两者的被开方数x x --1,1都是非负数,而1-x 和x -1是互为相反数. 两个非负数互

为相反数,只有一种情形成立,那就是它们都等于0,即1-x =0,x -1=0,故1=x . 问题:已知,21221+-+-=x x y 求y x 的值.

解:由阅读材料提供的信息,可得,012=-x 故21

=x . 进而可得2=y .故y x =41212

=??

? ??. 点评:这是一道阅读理解题.解这类问题首先要认真阅读题目所给的材

料,总结出正确的结论,然后用所得的结论解决问题.

(穿墙术)例5 请你认真观察下面各个式子,然后根据你发现的规律

写出第④、⑤个式子. ①

44141411611622=?=?=?=?=; ②244242421623222=?=?=?=?=;

③344343431634822=?=?=?=?=.

分析:要写出第④、⑤个式子,就要知道它们的被开方数分别是什么,

为此应认真观察所给式子的特点.通过观察,发现前面三个式子的被开方数分别是序数乘以16得到的,故第④、⑤个式子的被开方数应该分别是64和80. 解:④84244441646422=?=?=?=?=; ⑤544545454516580222=?=?=?=?=?=.

点评:这是一个探究性问题,也是一道发展数感的好题,它主要考查观

察、归纳、概括的能力.解这类题需注意分析题目所给的每个式子的特点,然后从特殊的例子,推广到一般的结论,这是数学中常用的方法,同学们应多多体会,好好掌握!

平方根概念解题的几个技巧

平方根在解题中有着重要的应用.同学们想必已经知到.但是,今天要告

诉同学们的是它的几个巧妙的应用.希望对大家的学习有所帮助.

一、巧用被开方数的非负性求值.

大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数.

例1、若,622=----y x x 求yx 的立方根.

分析 认真观察此题可以发现被开方数为非负数,即2-x ≥0,得x ≤

2;x -2≥0,得x ≥2;进一步可得x=2.从而可求出y=-6.

解 ∵???≥-≥-0202x x , ∴???≥≤22x x x=2; 当x=2时,y=-=(-

6)2=36.

所以yx 的立方根为3

36.

二、巧用正数的两平方根是互为相反数求值.

我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a

例2、已知:一个正数的平方根是2a -1与2-a ,求a 的平方的相反数

的立方根.

分析 由正数的两平方根互为相反得:(2a -1)+(2-a)=0,从而可求出

a=-1,问题就解决了.

解 ∵2a -1与2-a 是一正数的平方根,∴(2a -1)+(2-a)=0, a=-1. a 的平方的相反数的立方根是.113-=-

三、巧用算术平方根的最小值求值.

我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.

例3、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的

值.当y 最小时,求ba 的非算术平方根.(即负的平方根) 分析 y=)1(32++-b a ,要y 最小,就是要2-a 和)1(3+b 最小,

而2-a ≥0,)1(3+b ≥0,显然是2-a =0和)1(3+b =0,可得a=2,b=

-1.

解 ∵2-a ≥0,)1(3+b ≥0,y=)1(32++-b a ,∴2-a =0和

)1(3+b =0时,y 最小.由2-a =0和)1(3+b =0,可得a=2,b=-1.

所以ba 的非算术平方根是.11-=-

四、巧用平方根定义解方程.

我们已经定义:如果x2=a (a ≥0)那么x 就叫a 的平方根.若从方程的

角度观察,这里的x 实际是方程x2=a (a ≥0)的根.

例4、解方程(x+1)2=36.

分析 把x+1看着是36的平方根即可.

解 ∵(x+1)2=36 ∴x+1看着是36的平方根. x+1=±6.

∴x1=5 , x2=-7.

例4实际上用平方根的定义解了一元二次方程(后来要学的方程).你能

否解27(x+1)3=64这个方程呢不妨试一试.

利用平方根的定义及性质解题

如果一个数的平方等于a(a≥0),那么这个数是a的平方根.根据这个概念,我们可以解决一些和平方根有关的问题.(例1与例2区别)例1 已知一个数的平方根是2a-1和a-11,求这个数.

分析:根据平方根的性质知:一个正数的平方根有两个,它们互为相反数.互为相反数的两个数的和为零.

解:由2a-1+a-11=0,得a=4,所以2a-1=2×4-1=7.

所以这个数为72=49.

例2 已知2a-1和a-11是一个数的平方根,求这个数.

分析:根据平方根的定义,可知2a-1和a-11相等或互为相反数.

当2a-1=a-11时,a=-10,所以2a-1=-21,这时所求得数为(-21)2=441;

当2a-1+a-11=0时,a=4,所以2a-1=7,这时所求得数为72=49.

综上可知所求的数为49或441.

(区别:类似3是9的平方根,但9的平方根不是3,是+3、-3.)

例3 已知2x-1的平方根是±6,2x+y-1的平方根是±5,求2x-3y+11的平方根.

分析:因为2x-1的平方根是±6,所以2x-1=36,所以2x=37;因为2x+y -1的平方根是±5,所以2x+y-1=25,所以y=26-2x=-11,

所以2x-3y+11=37-3×(-11)+11=81,

因为81的平方根为±9,所以2x-3y+11的平方根为±9.

例4 若2m-4与3m-1是同一个数的平方根,则m为()

(A)-3 (B)1 (C)-3或1 (D)-1

分析:本题分为两种情况:(1)可能这个平方相等,即2m-4=3m-1,此时,m=-3;(2)一个数的平方根有两个,它们互为相反数,所以(2m-4)+(3m-1)=0,解得m=1.所以选(C).

练一练:

已知x的平方根是2a-13和3a- 2,求x的值.

已知2a-13和3a-2是x的平方根,求x的值

3.已知x+2y=10,4x+3y=15, 求x+y的平方根.

.

答案:;2. 49或1225; 3.5

从被开方数入手

二次根式中被开方数的非负性,时常是求解二次根式问题的重要隐含条件。从被开方数入手,将会使很多问题迎刃而解。

一、确定二次根式有意义

例1.下列各式中一定是二次根式的是()

A. B. C. D.

分析:二次根式的两个基本特征是①带二次根号“”,②被开方数必为非负数。A中被开方数为负数;B中不带“”,而是“”;D中被开方数的正负无法确定;所以A、B、D都不是或不一定是二次根式。只有C中的被开方数恒大于0,且带“”,故选(C)。

例取何值时,下列各式在实数范围内有意义。

⑴⑵⑶⑷

分析:使二次根式在实数范围内有意义,必有被开方数大于等于0。如果式子中含有分母,分母不能为0。

解:⑴由2-x≥0,x-1≥0,∴1≤x≤2,∴当1≤x≤2时,

⑴式有意义;

⑵由2x—1>0 (∵分母2x—1≠0)∴x>,∴当x>时,⑵式有意义;

⑶由x—1≥0,x—2≠0,∴x≥1且x≠2 ,∴当x≥1且x≠2时,⑶式

有意义; ⑷由于( x —3)≥0,∴x 取任何实数时,⑷式都有意义。

二、含有相反数的被开方数根式的化简与求值

例3.已知y=,求(xy —64)的算术平方根。

分析:由被开方数x —7,7—x 互为相反数,且均需满足被开方数大于

等于0。故x —7=7—x=0,由此求出x 、y 。

解:由

∴x —7=7—x =0,得x=7,∴y =9 ∴

===1 例 4.设等式在实数范围内成

立。其中,m 、x 、y 是互不相等的三个实数,求代数式

的值。

解:由m ≠x ≠y ,∴x —m ≠0, y —m ≠0

又被开方数 x —m ≥0 , m —y ≥0即y —m ≤0

即有x —m >0,y —m <0 而被开方数 ∴ ∴m =0

将m=0代入等式,得0x y --= ∴x =-y >0

∴===

下面两道练习题,同学们不妨试试。

取何值时,下列各式在实数范围内有意义。

⑵⑶ ⑷ 2.若y=,试求(4x -2y )2010的值。

实数大小进行比较的常用方法

实数的大小比较是中考及数学竞赛中的常见题型,不少同学感到困难。

“实数”是初中数学的重要内容之一,也是学好其他知识的基础。为帮助同学们掌握好这部分知识,本文介绍几种比较实数大小的常用方法,供同学们参考。

方法一:差值比较法 差值比较法的基本思路是设a ,b 为任意两个

实数,先求出a 与b 的差,再根据当a -b ﹥0时,得到a ﹥b 。当a -b ﹤0时,得到a ﹤b 。当a -b =0,得到a=b 。

例1:(1)比较513-与51

的大小。 (2)比较1-2与1-3的大

小。

解 ∵513--51=523-<0 , ∴513-<51

解 ∵(1-2)-(1-3)=23->0 , ∴1-2>1-3。

方法二:商值比较法 商值比较法的基本思路是设a ,b 为任意两个

正实数,先求出a 与b 得商。当b a <1时,a <b ;当b a >1时,a >b ;当b a

=1时,a=b 。来比较a 与b 的大小。

例2:比较513-与51

的大小。 解:∵513-÷51=13-<1 ∴513-<51

方法三:倒数法 倒数法的基本思路是设a ,b 为任意两个正实数,先分别求出a 与b 的倒数,再根据当a 1>b 1

时,a <b 。来比较a 与b 的大小。

例3:比较2004-2003与2005-2004的大小。

解∵200320041-=2004+2003 ,

200420051-=2005+2004

又∵2004+2003<2005+2004

∴2004-2003>2005-2004

(超纲,不作要求)方法四:平方法 平方法的基本是思路是先将要

比较的两个数分别平方,再根据a >0,b >0时,可由2a >2

b 得到a >b 来比较大小,这种方法常用于比较无理数的大小。

例5:比较62+与53+的大小 解:1228)62(2+=+, 2)53(+=8+215。 又∵8+212<8+215 ∴62+<53+。

方法五:估算法

估算法的基本是思路是设a ,b 为任意两个正实数,先估算出a ,b 两数

或两数中某部分的取值范围,再进行比较。

例4:比较83

13-与81的大小

解:∵3<13<4 ∴13-3<1 ∴8313-<81

方法六:移动因式法(穿墙术)

移动因式法的基本是思路是,当a >0,b >0,若要比较形如a d

b c 与的大小,可先把根号外的因数a 与c 平方后移入根号内,再根据被开方数的大小进行比较。

例6:比较27与33的大小 解:∵27=722?=28,33=

332?=27。 又∵28>27, ∴27>33。

方法七:取特值验证法

比较两个实数的大小,有时取特殊值会更简单。

例7:当10 x 时,2x ,x ,x 1

的大小顺序是______________。

解:(特殊值法)取x =21,则:2x =41,x 1

=2。 ∵41<21<2,∴2x <x <x 1

例(常德市)设a =20,b =(-3)2,c

d =1

12-?? ???,则a 、b 、c 、

d 按由小到大的顺序排列正确的是( )

<a <d <b <d <a <c <c <d <b <c <a <d

分析 可以分别求出a 、b 、c 、d 的具体值,从而可以比较大小. 解 因为a =20=1,b =(-3)2=9,

c

d =1

12-?? ???=2,

1<2<9,所以c <a <d <b.故应选A. 除以上七种方法外,还有利用数轴上的点,右边的数总比左边的数大;

以及绝对值比较法等比较实数大小的方法。对于不同的问题要灵活用简便合理的方法来解题。能快速地取得令人满意的结果。

无限循环小数可以化成分数

我们知道小数分为两大类:一类是有限小数,一类是无限小数.而无限

小数又分为两类:无限循环小数和无限不循环小数.有限小数都可以表示成十分之几、百分之几、千分之几……,很容易化为分数.无限不循环小数即无理数,它是不能转化成分数的.但无限循环小数却可以化成分数,下面请看:

探索(1):把……(即0.3·2·

)化成分数.

分析:设x=3·2·=+++…… ①

上面的方程两边都乘以100得

100x=32++++…… ②

②-①得100x-x=32 99x=32 x= 32

99

所以0323232……=

32

99

用同样方法,我们再探索把0.5·,3·2·化为分数.可知0.5·= 5

9

,3·2·=

302

999

我们把循环节从小数点后第一位开始循环的小数叫做纯循环小数,通过上面的探索可以发现,纯循环小数的循环节最少位数是几,化成分数的分母就有几个9组成,分子恰好是一个循环节的数字.

探索(2):把……和……化成分数

分析:把小数乘以10得

……×10=……①

再把小数乘以100得

……×100=……②

②-①得……×100-……×10=47- 4

……×90=43 ……= 43

90

所以……=

43

90

再分析第二个数……化成分数.把小数乘以100得

……×100=……①

把小数×10000得

……×10000=……②

②-①得

……×(10000-100)=3256-32

……×9900=3224 ∴……=3224 9900

同样的方法,我们可化2·5·=1708

9900

,0. 32·9·=

326

990

我们把循环节不从小数点后第一位开始循环的小数叫做混循环小数.混循环小数化分数的规律是:循环节的最少位数是n,分母中就有n个9,第一个

循环节前有几位小数,分母中的9后面就有几个0,分子是从小数点后第一位直到第一个循环节末尾的数字组成的数,减去一个循环节数字的差,例如2·5·化成分数的分子是1725-17=1708,0. 32·9·

化成分数的分子是329-3=326.

用数形结合思想解实数中问题

数形结合思想是一种重要的解题思想方法,它可以使较繁杂或难解的题

目由繁变简,化难为易,出奇制胜,下面举例说明用数形结合思想解实数中的问题。

例1 实数a 、b 在数轴上的位置如图1所示,那么化简|a+b|+2)(a b -的结果是( )

A 、2b

B 、2a

C 、-2a

D 、-2b

分析:由图1可观察出b >0,a <0,a+b <0,b -a >0然后可化简。

解:观察图1实数a 、b 在数轴上的位置可判定b >0,a <0,a+b <0,b

-a >0,然后化简|a+b|+2)(a b -=-(a+b )+b -a=-2a ,故选C 。

点评:借用数轴判断出某些字母(数)的大小,然后化简是实数化简经

常用的一种方法。

例2 如图2,数轴上表示1、2的对应点为A 、B ,点B 关于点A 的对

称点为C ,则点C 所表示的数是( )(也可用中点坐标公式

=x +x B C x 中点A )

A 、2-1

B 、1-2

C 、2-2

D 、2-2

a 0 b

图1 图2

分析:通过A 、B 两点所表示的数求出C 点坐标

解:我们知道实数和数轴上的点一一对应,由图2知,|OA|=1,|OB|=2,

从而|AB|=|OB|-|OA|=2-1

又点B 、点C 关于点A 对称∴|AC|=|AB|=2-1

这时|OC|=|OA|-|AC|=1-(2-1)=2-2

即点C 所表示的点为2-2,故选C 。

点评:本题借用数轴和点的对称性求出C 点坐标。

例 3 某种零件的合格品规格为(φ04.003.050+

-)mm ,其中有一个不合格零

件与合格品的要求相差,这个不合格零件的直径其最大的可能值与最小的可能值的差是 mm 。 (分析:本题已知中不合格品的取值范围不明确,若构作数轴图3,选用原点O 表示直径为50mm 的合格品,A 、B 分别表示合格品波动的上、下限,则C 、D 分别表示不合格品波动的上、下限,易得答案)

解 依题意作数轴如图3,选用原点O 表示直径为50mm 的合格品,A 、B

分别表示合格品波动的上、下限,则C 、D 分别表示不合格品波动的上、下限,则|CD|=|-(-)=(mm )。

点评:有些实际问题不好解决时,借用数轴可出奇制胜。

化简:|a+2|-|2a -3|(零点分段讨论法)

分析:-2、23

将数轴分为三部分,应讨论化简 解:依题意作图如4所示,

图3

人教版八年级数学下册二次根式典型例题讲解+练习及答案(提高).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 二次根式(提高) 责编:常春芳 【学习目标】 1、理解二次根式的概念,了解被开方数是非负数的理由. 2、理解并掌握下列结论:,,,并利用它们进 行计算和化简. 【要点梳理】 要点一、二次根式及代数式的概念 1.二次根式:一般地,我们把形如(a ≥0)?的式子叫做二次根式,“”称为二次根号. 要点诠释: 二次根式的两个要素:①根指数为2;②被开方数为非负数. 2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质 1、 ; 2.; 3. . 要点诠释: 1.二次根式(a ≥0)的值是非负数。一个非负数可以写成它的算术平方根的形式, 即2()(0a a a =≥). 2.2a 与2()a 要注意区别与联系:1)a 的取值范围不同,2()a 中a ≥0,2a 中a 为任意值. 2)a ≥0时,2()a =2a =a ;a <0时,2()a 无意义,2a =a -. 【典型例题】 类型一、二次根式的概念 1.当x 是__________时, +在实数范围内有意义? 【答案】 x ≥- 且x ≠-1 【解析】依题意,得23010≥①≠②x x +??+?

由①得:x ≥- 由②得:x ≠-1 当x ≥-且x ≠-1时,+在实数范围内有意义. 【总结升华】本题综合考查了二次根式和分式的概念. 举一反三: 【变式】(2015?随州)若代数式11x x +-有意义,则实数x 的取值范围是( ) A .x≠1 B. x ≥0 C. x≠0 D. x ≥0且x≠1 【答案】D 提示:∵代数式 +有意义, ∴, 解得x ≥0且x ≠1. 类型二、二次根式的性质 2.根据下列条件,求字母x 的取值范围: (1) ; (2). 【答案与解析】(1) (2) 【总结升华】二次根式性质的运用. 举一反三: 【:二次根式及其乘除法(上)例1(1)(2)】 【变式】x 取何值时,下列函数在实数范围内有意义? (1)y=x --1 1+x ,___________________;(2)y=222+-x x ,______________________; 【答案】(1)01001x x x x -+≠∴≠-Q ≥,≤且 (2)22 22(1)10,x x x x -+=-+>∴Q 为任意实数. 3. (2016?潍坊)实数a ,b 在数轴上对应点的位置如图所示,化简|a |+ 的结果是( ) A .﹣2a +b B .2a ﹣b C .﹣b D .b 【思路点拨】直接利用数轴上a ,b 的位置,进而得出a <0,a ﹣b <0,再利用绝对值以及二次根式的性质化简得出答案.

实数培优训练含答案

浙教七上数学第三章:实数培优训练 一.选择题: 1.下列各数中无理有( ) 10 π 14159.3 81 3 27 32+ 73 169 121 A. 2个 B. 3个 C. 4个 D. 5个 2.①64的立方根是4±;②x x =33;③64的平方根为8±;④()4832 ±=± 其中正确的有( )个 A. 0 B. 1 C. 2 D. 3 3. 的值等于则若n m n m --==,3,23( ) A. 31 B. 31- C. 332+ D. 332- 4.计算:=---+-π14.35351( ) A.π+-5286.0 B. π-14.5 C. π+-14.752 D. π+-14.1 的整数有而小于大于53.5-( ) A. 2,1,0,1,2-- B. 3,2,1,0,1- C. 3,2,1,0,1,2-- D. 2,1,0,1- 则下列各式正确的是若,0.6>a ( ) A. a a > B. a a >1 C. a a 1 1< D. a a < 的大小关系是则若c b a c b a ,,2,3),3(22.72--=-=-?+-=( ) A. c a b >> B. c a b >> C. c b a >> D. b c a >> =-=+ x x x x 1 ,71.8则已知( ) A. 3 B. 3- C. 3± D. 5± 9.一个自然数的算术平方根是a ,则与这个自然数相邻的后续自然数的平方根是( ) A. 1+a B. 12+a C. 1+±a D. 12+±a 10.若1212=a ,1692 =b ,且0

(完整版)实数知识点及例题

实数习题集 【知识要点】 1.实数分类: 2.相反数:b a ,互为相反数 0=+b a 4.倒数:b a ,互为倒数 0;1=ab 没有倒数. 5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2 ±a . 若a x ,a x a x 33,= =记作的立方根叫做数则数 6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 【课前热身】 1、36的平方根是 ;16的算术平方根是 ; 2、8的立方根是 ;327-= ; 3、37-的相反数是 ;绝对值等于3的数是 4 、的倒数的平方是 ,2的立方根的倒数的立方是 。 5 、2的绝对值是 ,11的绝对值是 。 6、9的平方根的绝对值的相反数是 。 7 +的相反数是 ,-的相反数的绝对值是 。 8 - -+的相反数之和的倒数的平方为 。 【典型例题】 例1、把下列各数分别填入相应的集合里: 2 ,3.0,10,1010010001.0,125,722,0,1223π---?-Λ 有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ }; 例2、比较数的大小 (1)2332与 (2)6756--与 例3.化简: (1)233221-+-+ - 实数 有理数 无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数 负无理数 )0(>a 3.绝对值: =a a a - )0(=a )0(< a

(2 例4.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值. 例5 若|2x+1|与x y 48 1 +互为相反数,则-xy 的平方根的值是多少? 总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用. 例6.已知b a ,为有理数,且3)323(2 b a +=-,求b a +的平方根 例7. 已知实数x 、y 、z 在数轴上的对应点如图 试化简:x z x y y z x z x z ---++++ -。 y x z

实数典型例题(培优)

实数典型问题精析(培优) 例1.(2009的相反数是( ) A . B C .2 - D . 2 分析:本题考查实数的概念――相反数,要注意相反数与倒数的区别,实数a 的相反数是-a ,选A.要谨防将相反数误认为倒数,错选D. 例2.(2009年江苏省中考题)下面是按一定规律排列的一列数: 第1个数:11122-??-+ ???;第2个数:2311(1)(1)1113234????---??-++ + ??? ??????? ; 第3个数:234511(1)(1)(1)(1)11111423456???????? -----??-++ +++ ??????? ??????????? ; ……第n 个数:23 2111(1)(1)(1)111112342n n n -???? ?? ----??-++++ ??? ? ?+?????? ?? . 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是(A ) A .第10个数 B .第11个数 C .第12个数 D .第13个数 解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数都是 21,只要比较被减数即可,即比较14 1 131121111、、、的大小,答案一目了然. 例3(荆门市)定义a ※b =a 2 -b ,则(1※2)※3=___. 解 因为a ※b =a 2 -b ,所以(1※2)※3=(12 -2)※3=(-1)※3=(-1)2 -3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算符号转化成有理数的运算符号. 例4(河北省)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从如图所示中可以发现,任何一个大于

二次根式知识点及典型例题练习

第十六章 二次根式 知识点: 1、二次根式的概念:形如(a ≥0)的式子叫做二次根式。“”= “”,叫做二次根号,简称根号。根号下面的整体“a ”叫做被开方数。 2、二次根式有意义的条件:a ≥0; 二次根式没有意义的条件:a 小于0; 例1、 a +1表示二次根式的条件是______。 例2、已知y=2x -+2x -+5,求x y 的值。 例3、若1a ++1b -=0,求a 2004+b 2004的值。 例4、 当x ______时,12--x 有意义,当x ______时,3 1+x 有意义。 例5、若无意义2+x ,则x 的取值范围是______。 例6、(1)当x 是多少时,31x -在实数范围内有意义? (2)当x 是多少时, 2x 在实数范围内有意义?3x 呢? 3、二次根式的双重非负性: ≥0;a ≥0 。 例1、 已知+ =0,求x,y的值. 例2、 若实数a、b满足 +=0,则2b-a+1=___. 例3、 已知实a满足,求a-2010的值. 例4、 在实数范围内,求代数式 的值. 例5、 设等式=在实数范围内成立,其中a、x、y是两两不同的实数,求的值. 例6、已知9966 x x x x --=--,且x 为偶数,求(1+x )22541x x x -+-的值. 4、二次根式的性质: (3)

例1、(1) ()25.1=________ (2) ()252 =________ (3) ()2 2.0-=________ (4) 272??? ? ??=________ 例2、化简 (1)9=_____ (2)2(4)-=_____ (3)25=_____ (4)2 52??? ??--=_____ (4)2(3)- =_____ 例3.(1)若2a =a ,则a 可以是什么数? (2)若2a =-a ,则a 是什么数? (3)2a >a ,则a 是什么数? 例4.当x>2,化简2(2)x --2(12)x -. 5、积的算术平方根的性质 (a ≥0,b ≥0)即两个非负数的积的算术平方根,等于积中各因式的 算术平方根的积。 , 6、商的算术平方根的性质 (a ≥0,b >0) 商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。 。 例1、计算 (1)57 (2139(3927 (412 6 例2、化简 (1916?(21681?(3229x y (4)54

实数知识点汇总及经典知识讲解

)(无限不循环小数负有理数 正有理数无理数?????????????????--???---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ?????????????实数第二章 实数 一、 平方根、立方根 1..算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。 2.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。 正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。 3.正数的立方根是正数;0的立方根是0;负数的立方根是负数。 4. (1)())0,0(0,0>≥=≥≥=?b a b a b a b a ab b a (2)若b 3=a ,则b 叫做a 的立方根。 (3 (0)(0).a a a a a ≥?==?-

减。运算中有括号的,先算括号内的,同一级运算从左到右依次进行。 3、实数的大小比较 常用方法:数轴表示法、作差法、平方法、估值法。 (1)在数轴上表示两个数的点,右边的点表示的数大,左边的点表示的数小。(2)正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对值大的较小。(3)设a,b是任意两实数, 若a-b>0,则a>b; 若a-b=0,则a=b; 若a-b<0,则a

实数典型例题(培优)

相交实数典型问题精析(培优) 例1.(2009 的相反数是( ) A . B C . D . 分析:本题考查实数的概念――相反数,要注意相反数与倒数的区别,实数a 的相反数是-a ,选A.要谨防将相反数误认为倒数,错选D. 例2.(2009年江苏省中考题)下面是按一定规律排列的一列数: 第1个数:11122-??-+ ???;第2个数:2311(1)(1)1113234????---??-+++ ??? ???????; 第3个数:234511(1)(1)(1)(1)11111423456????????-----??-+++++ ??????? ??????????? ; ……第n 个数:232111(1)(1)(1)111112342n n n -??????----??-++++ ??? ? ?+????????L . 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是(A ) A .第10个数 B .第11个数 C .第12个数 D .第13个 数 解析:许多考生对本题不选或乱选,究其原因是被复杂的运算式子吓住了,不善于从复杂的式子中寻找出规律,应用规律来作出正确的判断.也有一些考生尽管做对了,但是通过写出第10个数、第11个数、第12个数、第13个数的结果后比较而得出答案的,费时费力,影响了后面试题的解答,造成了隐性失分.本题貌似复杂,其实只要认真观察,就会发现,从第二个数开始,减数中的因数是成对增加的,且增加的每一对数都是互为倒数,所以这些数的减数都是21,只要比较被减数即可,即比较141131121111、、、的大小,答案一目了然. 例3(荆门市)定义a ※b =a2-b ,则(1※2)※3=___. 解 因为a ※b =a2-b ,所以(1※2)※3=(12-2)※3=(-1)※3=(-1)2-3=-2.故应填上-2. 说明:求解新定义的运算时一定要弄清楚定义的含义,注意新定义的运算符号与有理数运算符号之间的关系,及时地将新定义的运算

《二次根式》培优专题之(一)难点指导与典型例题(含答案及解析)

《二次根式》培优专题之一 ——难点指导及典型例题 【难点指导】 1、如果a 是二次根式,则一定有a ≥0;当a ≥0时,必有a ≥0; 2、当a ≥0时,a 表示a 的算术平方根,因此有 ()a a =2;反过来,也可以将一个非负数写成 ()2a 的形式; 3、()2a 表示a 2的算术平方根,因此有a a =2,a 可以是任意实数; 4、区别()a a =2和a a =2 的不同: ( 2a 中的可以取任意实数,()2a 中的a 只能是一个非负数,否则a 无意义. 5、简化二次根式的被开方数,主要有两个途径: (1)因式的内移:因式内移时,若m <0,则将负号留在根号外.即: x m x m 2-=(m <0). (2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即: 6、二次根式的比较: (1)若,则有;(2)若,则有. 说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小. < 【典型例题】 1、概念与性质 2、二次根式的化简与计算

例1. 化简a a 1-的结果是( ) A .a - B .a C .-a - D .-a 分析:本题是同学们在做题时常感困惑,容易糊涂的问题.很多同学觉得选项B 形式最简单, 所以选B;还有的同学觉得应有一个负号和原式对应,所以选A 或D;这些都是错误的.本 题对概念的要求是较高的,题中隐含着0a <这个条件,因此原式的结果应该是负值,并 且被开方数必须为非负值. 解:C. 理由如下: { ∵二次根式有意义的条件是1 0a -≥,即0a <, ∴原式= 211 ()()()a a a a a ---=--?-=--.故选C. 例2. 把(a -b )-1 a - b 化成最简二次根式 解: — 例3、先化简,再求值: 11()b a b b a a b ++++,其中a=51+,b=51 -. 3、在实数范围内分解因式 例. 在实数范围内分解因式。(1); (2) ! 4、比较数值 (1)、根式变形法 当0,0a b >>时,①如果a b >a b >a b

浙教版七上数学第三章:实数培优训练试题(附答案)-

一.选择题:(本题共10小题,每小题3分,共30分) 温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来! 1.一个正数的算术平方根是8,则这个数的相反数的立方根是( ) A .4 B .-4 C .±4 D .±8 2.16的平方根为( ) A. 4± B. 4 C. 2 D. 2± 3.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 4.下列说法中不正确的是( ) ①.-1的立方根是-1,-1的平方是1;②.两个有理数之间必定存在着无数个无理数, ③.在1和2之间的有理数有无数个,但无理数却没有;④.如果x 2=6,则x 一定不是有理数 A.②③ B.①④ C.③ D.③④ 5.如果b a ,表示两个实数,那么下列式子正确的是( ) A .若b a =,则b a = B .若b a <,则22b a < C .若33b a =,则b a = D .若b a >,则33b a > 6.如果642 =x ,那么=3x ( ) A. 4± B. 2± C.2 D. 2- 7.一个正奇数的算术平方根是a ,那么与这个正奇数相邻的下一个正奇数的算术平方根是( ) A .2+a B .22 +a C.22+a D .2+±a 8.已知35.703.54=,则005403.0的算术平方根是( ) A . B . C . D . 9.已知实数139-的整数部分为a ,小数部分为b ,则=-b a 32 ( ) A. 39343- B.3937- C.39343+ D.3937+ 10.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是( ) A .点C B .点D C .点A D .点B 二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案! 11.已知一个正数的两个平方根分别为62-m 和m +3,则()2018 m -的值为_________ 12.如果15=,5.1=,那么______00015.0=

二次根式典型例题和练习题

《二次根式》分类练习题 二次根式的定义: 【例1】下列各式 其中是二次根式的是_________(填序号). 举一反三: 1、下列各式中,一定是二次根式的是( ) A B C D 2中是二次根式的个数有______个 【例2 有意义,则x 的取值范围是 .[来源:学*科*网Z*X*X*K] 举一反三: 1、使代数式 4 3 --x x 有意义的x 的取值范围是( ) A 、x>3 B 、x ≥3 C 、 x>4 D 、x ≥3且x ≠4 2x 的取值范围是 3、如果代数式mn m 1+-有意义,那么,直角坐标系中点P (m ,n )的位 置在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限

【例3】若y=5-x +x -5+2009,则x+y= 举一反三: 12()x y =+,则 x -y 的值为( ) A .-1 B .1 C .2 D .3 2、若x 、y 都是实数,且y=4x 233x 2+-+-,求 xy 的值 3、当a 1取值最小,并求出这个最小值。 已知a b 是 1 2 a b + +的值。 若3的整数部分是a ,小数部分是b ,则=-b a 3 。 若17 的整数部分为x ,小数部分为y ,求 y x 1 2+ 的值. 知识点二:二次根式的性质 【例4】若()2 240a c --=,则=+-c b a . 举一反三: 1、若0)1(32=++-n m ,则m n +的值为 。 2、已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ) A .3 B .– 3 C .1 D .– 1 3、已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为______.

实数的混合运算(培优)含答案

2017.10.08实数 1、一组按一定规律排列的式子如下:2 a -,52a ,83a -,11 4a ,…,(0)a ≠,则第n 个式子是________。 2、已知数a ,b ,c 在数轴上的位置如图所示,化简|2||2|a b c b +--的结果是________。 答案:a+c 3、观察下面一列数,1,2,3,4,5,6,7---- 将这列数排成下列形式,按照上述规律排下去,那么第11行从左边第7个数是_____________。 答案:-107 4、下列说法错误的是( ) A 、28是的立方根 B 、464±是的立方根 C 、1139-是 的平方根 D 、4的算术平方根 答案:B 5、2(8)-的立方根是( ) A 、-2 B 、2± C 、4 D 、4± 答案:C 6、若b a -是的立方根,那么下面结论正确的是( ) A 、b a --也是 的立方根 B 、b a 是 的立方根 C 、b a -也是 的立方根 D 、b a ±都是 的立方根 答案:C 7、点A 、B 分别是数3-、12 -在数轴上对应的点,把线段AB 沿数轴向右移动到A'B',且线段A'B'的中点对应的数是3,则点A'对应的数是( ) A 、0 B 、 12 C 、314 D 、144 答案:C 8、已知1101101,,,,mn m n m n n m n n m <->->>+++且那么的大小关系是( )

A 、11m n n n m <<+< B 、11m n n m n <+<< C 、11n m n m n +<<< D 、11m n n m n <+<< 9__________________________。 10、已知一个正数x 的平方根是3225a a +-与,则a =_______,x 的立方根为_______。 11、若,a b 均为正整数,且a b >a b +的最小值是( ) A 、6 B 、7 C 、8 D 、9 答案:B

实数知识点总结及典型例题练习

实数知识点总结 考点一、实数的概念及分类 (3分) 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 整数包括正整数、零、负整数。 正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π+8 等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。正数大于零,负数 小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。 一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ±”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a (a ≥0) 0≥a ==a a 2 -a (a <0) ;注意a 的双重非负性: a ≥0 3、立方根 如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。 考点四、科学记数法和近似数 1、有效数字 一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个

【数学】数学一元二次方程的专项培优 易错 难题练习题含答案解析

一、一元二次方程真题与模拟题分类汇编(难题易错题) 1.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们. (1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答) (2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程 中,“大众点评”网上的购买价格比原有价格上涨5 2 m%,购买数量和原计划一样:“美团”网 上的购买价格比原有价格下降了9 20 m元,购买数量在原计划基础上增加15m%,最终,在 两个网站的实际消费总额比原计划的预算总额增加了15 2 m%,求出m的值. 【答案】(1)120;(2)20. 【解析】 试题分析:(1)本题介绍两种解法: 解法一:设标价为x元,列不等式为0.8x?80≤7680,解出即可; 解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价; (2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评” 网上的购买实际消费总额:120a(1﹣25%)(1+5 2 m%),在“美团”网上的购买实际消费 总额:a[120(1﹣25%)﹣9 20 m](1+15m%);根据“在两个网站的实际消费总额比原计划 的预算总额增加了15 2 m%”列方程解出即可. 试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x?80≤7680,x≤120; 解法二:7680÷80÷0.8=96÷0.8=120(元). 答:每个礼盒在花店的最高标价是120元; (2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得: 120×0.8a(1﹣25%)(1+5 2 m%)+a[120×0.8(1﹣25%)﹣ 9 20 m](1+15m%)=120×0.8a (1﹣25%)×2(1+ 15 2 m%),即72a(1+ 5 2 m%)+a(72﹣ 9 20 m)(1+15m%)=144a (1+ 15 2 m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍), m2=20. 答:m的值是20.

人教版初中数学二次根式经典测试题及答案

人教版初中数学二次根式经典测试题及答案 一、选择题 1.下列各式中,不能化简的二次根式是( ) A B C D 【答案】C 【解析】 【分析】 A 、 B 选项的被开方数中含有分母或小数;D 选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有 C 选项符合最简二次根式的要求. 【详解】 解:A =,被开方数含有分母,不是最简二次根式; B = ,被开方数含有小数,不是最简二次根式; D =,被开方数含有能开得尽方的因数,不是最简二次根式; 所以,这三个选项都不是最简二次根式. 故选:C . 【点睛】 在判断最简二次根式的过程中要注意: (1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式; (2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式. 2.下列各式计算正确的是( ) A 1082 ==-= B . ()() 236= =-?-= C 115236==+= D .54 ==- 【答案】D 【解析】 【分析】 根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断. 【详解】 解:A 、原式,所以A 选项错误;

B 、原式=49?=49?=2×3=6,所以B 选项错误; C 、原式=1336=136 ,所以C 选项错误; D 、原式255164=- =-,所以D 选项正确. 故选:D . 【点睛】 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 3.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( ) A .2a+b B .-2a+b C .b D .2a-b 【答案】B 【解析】 【分析】 根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简. 【详解】 解:由数轴可知:0a <,0b >, ∴0a b -<, ∴()()22a a b a b a a b -=-+-=-+, 故选:B . 【点睛】 本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键. 4.已知实数a 满足20062007a a a --=,那么22006a -的值是( ) A .2005 B .2006 C .2007 D .2008 【答案】C 【解析】 【分析】 先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值. 【详解】 ∵a-2007≥0,

实数的混合运算(培优)含答案

2017、10、08实数 1、一组按一定规律排列得式子如下:,,,,…,,则第个式子就是________。 2、已知数,,在数轴上得位置如图所示,化简得结果就是________。 答案:a+c 3、观察下面一列数,将这列数排成下列形式,按照上述规律排下去,那么第11行从左边第7个数就是_____________。 答案:—107 4、下列说法错误得就是( ) A、得立方根 B、得立方根 C、得平方根D、得算术平方根 答案:B 5、得立方根就是( ) A、-2 B、C、4 D、 答案:C 6、若得立方根,那么下面结论正确得就是( ) A、得立方根 B、得立方根 C、得立方根D、得立方根 答案:C 7、点A、B分别就是数、在数轴上对应得点,把线段AB沿数轴向右移动到A'B’,且线段A'B’得中点 对应得数就是3,则点A'对应得数就是( ) A、0B、C、D、 答案:C 8、已知得大小关系就是( ) A、B、C、D、 9、得算术平方根就是_____________,得平方根就是_____________。

10、已知一个正数得平方根就是,则=_______,得立方根为_______、 11、若均为正整数,且,则得最小值就是( ) A、6 B、7 C、8D、9 答案:B 12、已知:得平方根就是,得立方根就是3,则得算术平方根为_______。 13、已知实数满足,则得立方根为_______。 14、比较大小:(填)

15、将用不等号连接起来为( ) A、B、C、D、 答案:D 16、若得小数部分就是,若得小数部分就是,则___________。 答案:2 17、已知得整数部分就是,小数部分就是,则得平方根为___________。 18、若得小数部分就是,若得小数部分就是,则___________。 19、下图为魔术师在小美面前表演得经过

人教版初中数学二次根式经典测试题附答案

人教版初中数学二次根式经典测试题附答案 一、选择题 1.下列各式成立的是() A.2332 -=B.63 -=3 C. 2 22 33 ?? -=- ? ? ?? D.2 (3) -=3 【答案】D 【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A.原式=3,不符合题意; B.原式不能合并,不符合题意; C.原式=2 3 ,不符合题意; D.原式=|﹣3|=3,符合题意. 故选D. 点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键. 2.二次根式2 a+在实数范围内有意义,则a的取值范围是() A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣2 【答案】B 【解析】 【分析】 分析已知和所求,要使二次根式2 a+在实数范围内有意义,则其被开方数大于等于0;易得a+2≥0,解不等式a+2≥0,即得答案. 【详解】 解:∵二次根式2 a+在实数范围内有意义, ∴a+2≥0,解得a≥-2. 故选B. 【点睛】 本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件; 3.下列计算正确的是() A.+=B.﹣=﹣1 C.×=6 D.÷=3 【答案】D 【解析】 【分析】

根据二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断. 【详解】 解:A 、B 与不能合并,所以A 、B 选项错误; C 、原式= ×=,所以C 选项错误; D 、原式= =3,所以D 选项正确. 故选:D. 【点睛】 本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 4.下列各式中计算正确的是() A 268+= B .233+= C 3515= D 42= 【答案】C 【解析】 【分析】 结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案. 【详解】 解:26不是同类二次根式,不能合并,故本选项错误; B.23 3515= 4,原式计算错误,故本选项错误. 故选: C. 【点睛】 本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键. 5.已知352x x -+-=()()2215x x --的结果是( ) A .4 B .62x - C .4- D .26x - 【答案】A 【解析】 由352x x -+-=可得30{50 x x -≥-≤ ,∴3≤x ≤5()()2215x x --=x-1+5-x=4,故选 A.

实数知识点、典型例题及练习题单元复习

第六章《实数》知识点总结及典型例题练习题 一、平方根 1. 平方根的含义 如果一个数的平方等于a ,那么这个数就叫做a 的平方根。 即a x =2 ,x 叫做a 的平方根。 2.平方根的性质与表示 ⑴表示:正数a 的平方根用a ± 表示,a 叫做正平方根,也称为算术平方 根,a -叫做a 的负平方根。 ⑵一个正数有两个平方根:a ± (根指数2省略) 0有一个平方根,为0,记作00= ,负数没有平方根 ⑶平方与开平方互为逆运算 开平方:求一个数a 的平方根的运算。 a a =2 ==? ??-a a 00<≥a a ()a a =2 (0≥a ) ⑷a 的双重非负性:0≥a 且0≥a (应用较广) 例:y x x =-+-44 得知0,4==y x ⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地 向右或向左移动一位。 区分:4的平方根为____ 4的平方根为____ ____4=4开平方 后,得____ 3.计算a 的方法????? ? ? ??精确到某位小数  =非完全平方类 =完全平方类 773294 *若0>>b a ,则b a > 二、立方根和开立方 1.立方根的定义 如果一个数的立方等于a ,呢么这个数叫做a 的立方根,记作3a 2. 立方根的性质 任何实数都有唯一确定的立方根。正数的立方根是一个正数。负数的立方根是一个负数。0的立方根是0. 3. 开立方与立方 开立方:求一个数的立方根的运算。 ()a a =3 3 a a =3 3 33a a -=- (a 取任何数) 这说明三次根号内的负号可以移到根号外面。 *0的平方根和立方根都是0本身。 三、推广: n 次方根 1. 如果一个数的n 次方(n 是大于1的整数)等于a ,这个数就叫做a 的n 次方根。 当n 为奇数时,这个数叫做a 的奇次方根。 当n 为偶数时,这个数叫做a 的偶次方根。 2. 正数的偶次方根有两个。 n a ± 0的偶次方根为0。00=n 负数没有偶次方根。 正数的奇次方根为正。0的奇次方根为0。负数的奇次方根为负。

中考典型例题精析 实数的运算及大小比较

中考典型例题精析二 考点一 实数的大小比较 例 1 (2015·潍坊)在|-2|, 20 ,2-1,2这四个数中,最大的数是( ) A .|-2| B .20 C .2-1 D.2 考点二 实数非负性的应用 例 2 (2015·绵阳)若a +b +5+||2a -b +1=0,则(b -a)2 015= ( ) A .-1 B .1 C .52 015 D .-5 2 015 考点三 实数的混合运算 例 3 (2015·安顺)计算:? ????-12-2 -(3.14-π)0+|1-2|-2sin 45°. 基础巩固训练: 1.在13,0,-1,2这四个实数中,最大的数是( ) A. 13 B .0 C .-1 D.2 2.计算:3-2×(-1)=( ) A .5 B .1 C .-1 D .6 3.下面计算错误的是( ) A .(-2 015)0 =1 B.3 -9=-3 C. ? ?? ??12-1 =2 D .(32)2=81 4.若(a -2)2+||b +3=0,则(a +b)2 016的值是( ) A .1 B .-1 C .2 016 D .-2 016 5.若a =20 ,b =(-3)2 ,c =3 -9,d =? ?? ??12-1 ,则a ,b ,c ,d 按由小到大的顺序排 列正确的是( )A .c <a <d <b B .b <d <a <c C .a <c <d <b D .b <c <a <d 6.计算: 3-4 -? ?? ??12-2 = . 7.实数m ,n 在数轴上的位置如图所示,则 |n -m|= . 8.计算:3 -27-(-3)÷? ?? ?? -13×3= . 9.计算:(1)(1-2)0 +(-1)2 016 -3tan 30°+? ?? ??13-2 ; (2) (-1) 2 016 +(1-π)0 ×3 -27-? ?? ??17-1 +|-2|. 考点训练 一、选择题 1.(2015·山西)计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-4 2.杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( ) A .19.7千克 B .19.9千克 C .20.1千克 D .20.3千克 3.在实数-1,0,1 2,-3,2 0160中,最小的数是( ) A .- 3 B .-1 C. 1 2 D .0 4.(2015·衡阳)计算()-10+||-2的结果是( ) A .-3 B .1 C .-1 D .3 5.(2015·北海)计算2-1 +12的结果是( ) A .0 B .1 C .2 D .21 2 6.下列计算错误的是( )

《实数》培优专题训练

《实数》培优专题训练1 一.填空题 1 的算术平方根是。 2.已知一块长方形的地长与宽的比为3:2,面积为3174平方米,则这块地的长为米。 3.把下列各数填入相应的集合内: 3.14,л,, ,0.12 , 1.1515515551 。 正整数集合{ } 整数集合{ } 无理数集合{ } 有理数集合{ } 正无理数集合{ } 非负有理数集合{ } 4.将-π,0,23,-3.15,3.5用“>”连接:; 5.如图,则| a |-2a-2b=。 6的数有,绝对值等于的数有。 7A对应数轴上的点是B,则A、B两点的距离为。 8.△ABC的三边长为a、b、c,且a、b满足0 9 6 22= + - + -b b a,则△ABC的周长x的取值范围是; 9.若1 2 )1 ( 2 12- + - + - =x x x y,则代数式2004 ) (y x+= ; 10.已知x为实数,且,则x= 。当x= 时,有最大值是 . 11.若0≤a≤4,的取值范围是 .若a a- = -2 )2 (2,则a的取值范围是;12.已知x、y是有理数,且x、y满足2 2323 x y ++=-x+y= 。 二.选择题 1.和数轴上的点一一对应的数是(). A.整数 B.有理数 C.无理数 D.实数 2.下列说法正确的是(). A.整数和分数、零统称为有理数 B.正数和负数统称为实数 C.整数、有限小数和无限小数统称为实数 D.无限小数就是无理数 3.a是一个(). A.非负数 B.正实数 C.正有理数 D.非完全平方数 4.下列计算正确的是(); A.)9 ( )4 (- ? -=4 -×9 -B.6=2 4+=2+2 C.2a=|-a| D.= 5.下列说法正确的是(); A、任何有理数均可用分数形式表示; B、数轴上的点与有理数一一对应; C、1和2之间的无理数只有2; D、无理数与无理数间的运算结果是无理数。6.下列说法正确的是() A、3.14是无理数B C是无理数D是无理数 1 3 3 2 π

相关主题
文本预览
相关文档 最新文档