当前位置:文档之家› 排列组合论文

排列组合论文

排列组合论文
排列组合论文

排列组合论文

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

排列组合体系重建

制作:星哥

摘要

排列组合是高中数学中相对独立的内容,对学生分析问题、解决问题能力有较高要求,师生普遍反映难学难教。产生困难的原因很多,比如题目变化多,结构复杂,思考过程容易出错,很难找到一个简明而又全面的问题归类方式;解答思路灵活,简繁不一,答案检验也不容易;师生仅凭书面交流难以真正了解彼此的想法,更不用说纠正和改正错误了。

该论文在文献研究的基础上,通过对部分高三学生的测试与学生的访谈,意在揭示高中生学习排列组合时的常见认知错误,分析其产生原因,并基于实证研究,为改进排列组合教学提供具体建议。

本文中,我对排列组合问题提出了一个新的分类,先将排列组合问题分为选取模型和分配模型两大类,再依次分为4个小类,部分小类中还有进一步的划分。希望通过新的分类,更清晰地梳理问题类型,帮助学生更容易地找到解决问题的方法。

通过对测试结果的分析,我将学生常见的错误归为三种类型:题意理解错误、模式选择错误、操作技术错误。在这三大类错误中包含的具体错误情况共有11种。对于每种错误,我都根据学生的访谈内容、文献研究等对学生的出错原因进行了分析。通过访谈,我还发现,在解决陌生问题、解决限制条件多的问题时学生普遍存在困难,而且很多学生不知道如何自我检查答案。

针对学生普遍存在的困难和常见错误,我的建议是:(1)帮助学生认识学习目的;(2)多采用直观图示的方法;(3)重视读题过程,推敲问题特征,列式之后再次读题,检查是

否有遗漏和重复;(4)利用学生错误,开展有意义的学习;(5)适当变式,如改换背景和增加限制条件,提高学生的理解水平;(6)引导学生用“缩小数据”和“一题多解”的方法检验解法的正确性。

关键词:排列组合,常见错误,高中生,数学学习

目录

第一章引言 (4)

研究背景 (4)

研究问题 (5)

研究意义 (5)

第二章文献综述 (6)

关于排列组合问题模型 (6)

选取模型 (6)

分配模型 (6)

课程中的排列组合知识及其要求 (6)

课程标准及考纲要求 (6)

教材要求 (7)

关于排列组合常见错误类型及其成因 (8)

关于排列组合教学 (9)

第三章研究的设计和实施 (10)

研究对象 (10)

测试题的设计 (10)

按排列组合模型设计 (10)

测试题设计 (11)

详细见附录 (12)

第四章研究结论和建议 (13)

主要结论 (13)

教学建议 (14)

第一章引言

研究背景

我国《普通高中数学课程标准》中指出:“计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具”。“计数原理”的教学要求是“通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题”。它要求教师“引导学生根据计数原理分析、处理问题,而不应机械地套用公式。同时,在这部分教学中,应避免繁琐的、技巧性过高的计数问题。”。《上海市中小学数学课程标准》指出“计数问题,与中学所讨论的其他数学问题有不同的特点,要重视对具体问题的分析,重视数学思维品质的培养”。“排列组合”的教学要求是“通过实例分析,学习和掌握乘法原理和加法原理、排列和组合的概念及其计算,但所涉及的难题情境比较简单”,“排列、组合问题中的限制条件不超过两个;不讨论重复排列问题。解排列和组合的问题,限用常见方法(包括枚举法)。会利用计算器求排列数和组合数”。以上是全国课程标准与上海课程标准对排列组合的课程教学要求,总的来说,既承认这部分内容对提高学生思维品质有帮助,又强调要严格控制课程难度。

“排列组合”是高中教材中相对独立的一个章节,很多学生(包括教师)觉得它和其他章节联系不大,在高考中所占分值很少,对其不重视。其实,当今排列组合的应用已经超越了历史上的自然数计数范畴,与计算机算法结合,在计算机科学、编码和密码学等学科有着广泛的应用。无论是从历史文化角度看,还是从对培养人们逻辑思维的影响看,它都有着重要的教育价值。上海高三年级的《数学》教材中有介绍排列组合的历史,中国周代初期(公元前1035—公元前879)的《周易》中有“四象”和“八卦”,宋代科学家沈括在《梦溪笔谈》中讨论了围棋可能摆出的棋局数是“以一为基,三百六十一次三乘之”,意思是“用3连乘361次”,即3613(围棋每格可有白子、黑子或空格三种可能,棋盘共有361 个位置),而他也提到计算数值太大,无法表达。

当今社会,排列组合也有其重要的应用。在生产调度中,排列组合可用于计算各种可能的调度方案的数目;在科学实验中,可用于计算各种配置方式的数目;在交通问题中,可用于计算可能路径的数目。而组合数学更是涉及计算机科学、生物学、化学、心理学以及基因工程等前沿学科中的最新应用,例如在基因工程中,每组基因密码都是从四个碱基:腺嘌呤(A),乌漂呤(G),胞嘧啶(C)和胸腺嘧啶(T)中可重复选取三个进行排列而成,而人类疾病的发生往往就是某些碱基的组合而形成的,所以碱基的组合研究在基因工程研究中是不能缺少的。

当今高中数学课程中的排列组合看似独立,其实,它涉及集合、函数、方程、数列、几何等多个领域,例如在数列中,对原数列每一项进行不同组合都会产生一个新的数列,产生新的性质;在立体几何中,可以用排列组合方法来统计某些立体图形内的顶点数、边数、面数、异面直线对数、正交线面对数等等,比直接数数要便利,尤其是在很难画清图形的情况下;排列组合也为概率统计学习如二项分布、古典概率计算等提供

了必要的基础。所以,排列组合的学习不应当是孤立的,在培养数学优秀生时应当重视其在思维训练中的重要价值。

排列组合问题内容抽象、类型繁多、解法灵活,所以历来是教师教学中比较困难的部分,也是广大学生极易犯错,却很难纠正的一个学习主题。总结一下,最常被提到的有以下几个难点:(1) 从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2) 限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3) 计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4) 计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力,采用缩小数据和一题多解等方法加以检验。基于此,在学完基本的原理与公式后,更需要学生自我探究与感悟,达到真正的理解。同时,教师也要倾听学生的想法,以便及时了解和帮助学生学习。

由此看来,排列组合无论是其历史渊源、当今社会地位及高中数学教育中的作用都是不容小觑的,但教师难教、学生易错也确实是我们面临的难题,对排列组合学习中学生的错误及成因研究是很有必要的。

研究问题

鉴于排列组合在高中数学及现实世界中的重要性,以及师生在这一章节的教与学均存在一定困难,所以我决定以高三学生对排列组合的认知错误为研究主题。具体来说,主要采取问卷测试和访谈的方法,深入了解学生在解排列组合题时的常见错误及主要原因。我主要关注以下两个方面:

1.高中学生在学习排列组合时有哪些常见错误

2.导致高中生发生错误的主要原因有哪些

研究意义

解排列组合综合题常常需要学生具备良好的语言理解能力、扎实的数学知识功底、过硬的计算能力等,因为计数结果庞大,学生往往无法检查答案的正确性,思考时也容易出现错误,降低了学生做题的兴趣。这不仅让很多学生惧怕排列组合题,也给教师的教学带来了很多阻碍。排列组合问题对学生分析问题、解决问题能力有较高要求,同一个答案可以有多种思考途径到达,除了结论的对错外,很难有其他严格证明的方式去验证。教师自己解答题目不一定有困难,但是要发现学生思考中的问题却是一个不小的挑战。因此,对排列组合的教和学生的学进行深入研究并提出改进建议是很有必要的。

虽然中外文献中涉及排列组合知识和教学的为数不少,很多期刊论文也分析了学生常见的错误,但是国内文章很少是基于实证研究的。本文希望能结合文献研究与对学生的测试调查来找出学生在求解排列组合问题中的常见错误表现,确认、修改和补充已有文献关于学生在排列组合学习中的主要困难,让我们更加了解学生的“数学现实”。这是我想要了解的第一方面。通过测试和访谈的方式了解学生的真实想法是什么到底是什么原因让学生出现这些错误学生希望教师做何教学改进这是我想要了解的第二方面。最后,在上述研究的基础上,我将对本主题的教学提出具体的有针对性的建议,以促进教师改进教学。

第二章文献综述

本章主要从四个方面着手,第一个方面是“关于排列组合问题模型”;第二个方面是“课程中的排列组合知识及其要求”;第三个方面是“常见的错误类型及其成因”;最后一个方面是“关于排列组合教学”。

关于排列组合问题模型

由于排列组合问题常常是文字描述相近但却可能分属于完全不同的类型,因此教学中一般都采用分类讲模型的办法,所以,应该对文献中的问题归类作一个梳理。

指导求解排列组合问题的文章较多。常见的排列组合题型归类主要有以下几种:特殊元素与特殊位置问题、相邻问题、相离问题、定序问题、分组分配问题、配对问题、多排问题(对象站成多排进行排队)、环排问题、相同元素排列问题(参与排列的部分元素完全相同)等等,每种问题都有相应的解题策略。这种教法因为问题之间缺乏联系,类型多而且要仔细地根据问题的特征来判断,不容易准确记忆,学生普遍感觉难学。于是课程标准通过限制问题中最多只能出现两个约束条件和不讨论重复排列问题的办法降低课程难度,而上述归类中的多排问题、环排问题和相同元素排列问题都不在现行课标范围内。

根据参考的文献,我将排列组合问题分为两大类:选取模型和分配模型,再将选取模型分为4个小类,分配模型分为4个小类,下面作具体介绍。

选取模型

选取模型借用了抽样概念,它是指“从一个有m个元素的集合中选取n个元素”的问题。在选取模型下,分别对应以四种可能性:

①从m个元素中取n个元素的排列(不放回、元素有序)

②从m个元素中有放回地取n个元素的排列(放回、元素有序)

③从m个元素中取n个元素的组合(不放回、元素无序)

④从m个元素中有放回地取n个元素的组合(放回、元素无序)

其中①是我们熟知的排列定义;③是我们熟知的组合定义;②是可重复选择的题型;

④超出了高考要求,不要求掌握。

分配模型

分配模型则是借用映射的概念,它是指“将n个元素分配进m个容器”。在分配模型下,分别对应以下四种情况:

①将n个不同的元素分配进m个不同的容器

②将n个不同的元素分配进m个相同的容器

③将n个相同的元素分配进m个不同的容器

④将n个相同的元素分配进m个相同的容器

由于元素的个数及元素之间的顺序也是需要考察的重要指标,因此在原来的划分基础上,还需要根据元素是否平均分配再划分,再根据元素之间是否考虑顺序更细致的划分。

课程中的排列组合知识及其要求

课程标准及考纲要求

《上海市中小学数学课程标准(试行稿)》和《2012年上海高考数学考纲》中对排列组合的要求总结如表2-2

表2-2 课程标准和考纲要求

在上述课程标准和考纲中,都对两个原理和排列组合的概念提出了掌握的要求,都提出要求学生运用常见方法解题,如枚举法。可见对于学生的要求是要掌握排列组合的基本原理和方法,不需要在问题情境和限制条件方面给学生增加太大难度。

教材要求

在高中数学必修教材中,排列组合的知识结构框架如下:

教材主要介绍了排列和组合的基本概念和计算公式以及两个计数原理。在排列中侧重以例题涵盖不相邻问题、相邻问题和特殊元素优先考虑等问题,之后的内容侧重在有一个限制条件的排列组合混合题上。

关于排列组合常见错误类型及其成因

人的计数能力是在不断发展的,儿童时期的计数是具体化的,从最初的数数到借助一定方法有步骤地计数,再到使用排列组合数计数。

学生学习排列组合通常从直观的“枚举法”开始,“枚举”是分析解答数学题的一种方法,它是根据问题的要求,把不重复的、不遗漏的有限情况一一列举出来,达到解答问题的目的。它适用于枚举数量不大的计数问题,但枚举过程要求有缜密的思维,否则容易遗漏或重复。

高中生学习了排列组合,计数能力会有更大提高,但是也会有很多主观与客观的因素影响他们答题的准确率。

根据市面上统计的资料发现,学生的错误类型有:“对问题陈述的误解(改变了问题陈述中的数学模型、简单问题复杂化、动词意思理解错误)”、“分不清排列还是组合”、“分不清元素是否可重复使用”、“混淆对象异同性”、“相同元素只当做一个元素”、“列举无系统性”、“凭直觉的错误解答”、“公式错误”、“组合数性质错误”等。但是他们并没有

继续就这些错误的成因作具体分析,他们统计错误类型是为了确定影响排列组合问题难度的主要因素。

国内对于学生在排列组合学习中的错误及其成因的研究有很多,但基本是期刊上的短文章,一般会按问题类型,介绍正确的求解方法,或者罗列学生的典型错误,很少通过测试访谈等进行实证研究的。

我认为比较重要的论文有胡海霞的《影响高中生组合推理的因素》和徐娟的《高中排列组合的教学研究与实践》。

胡海霞(2006)基于Batanero的研究,对国内高中生作了类似的测试。通过对867名学过和未学过排列组合知识的高中生的测试,她将学生排列组合常见错误类型归结为“与两个基本原理和概念有关的错误”、“文字或语义理解上的错误”、“重复和遗漏”、“关于公式和计算的错误”、“错误的直观解答(学生凭直觉直接作答)”等,但她也没有做详细的错因剖析。

徐娟(2006)在2006年对兰州市的326位高中生进行了测试,其中理科班159人,文科班167人。设计了十道问卷调查题和三道测试题,问卷与测试内容囊括了学生学习目的、概念掌握、原理应用等方面。其调查是在学生刚学完排列组合后两周,开始总复习时进行的,花时15分钟。调查得到的主要错误类型有:“对问题陈述的误解”、“顺序错误”、“重复错误”、“混淆对象类型(元素异同)”、“混淆单元类型(容器异同)”、“混淆题目类型”和“错误的直观解答”等。

比较她们两位对于错误类型的总结,她们都提到了“题意本身的理解错误”和“重复错误”,这两种也是相关的期刊论文常常提到的。我认为,“题意本身的理解错误”其实是对于很多错误的一种涵盖,还需要进一步细化。对于重复错误,刘明远(2009)的《排列组合中重复性错误的六种表现》、欧阳尚昭(2003)的《排列组合中几种常见的“重

复性”错误》、应朝伟(1990)的《排列组合计算中的重复错误浅析》等都对其做了详细的剖析,这是学生在思考排列组合题时思维很容易出现的一个差错。

徐娟对于错误原因的解释比较笼统,但是也点出了学生的错误有客观原因,如问题书面陈述的复杂性,也有主观原因,如知识迁移的困难性等。尤其是她提到的最后一点“学生不能很好地进行知识迁移、类比解题”(第18页),再次说明排列组合学习的困难性,学生不能靠记忆、套公式的方法解决新的问题,要靠自己的阅读理解和分析解答。

在对于学生产生问题的原因解释中,研究客观原因,即排列组合知识特点和 13 问题本身特点的研究较多,而对于学生认知方面的原因,即思考过程研究较少,这与学生难以用书面形式表达清楚自己的思维也有关。

关于排列组合教学

徐娟(2006)在其论文中除了对学生的排列组合错误类型做出分析外,还专门针对教师的教学做了研究。她对兰州市的60位高中教师做了调查问卷,问卷包含10道题,主要包括排列组合教学的现状、教学中存在的问题、教师教学的目的以及排列组合教学的思考等方面。她的调查结果是“基本上所有的教师都认为排列组合知识是高中阶段的难点,有近40%的教师认为教学的主要任务是迎接高考的选拔”。而在教师的教学实践中,有以下几个问题:

(1)两个原理与概念的讲解不透彻。教师在讲解过程中往往认为两个原理的理解很容易,交代清楚后便进行习题训练,把重点放在解题方法上。学生在利用原理时出现了不会分类或有重复或遗漏的情况。在区分排列与组合问题时,学生也出现了问题。

(2)忽视了读懂题目,导致学生在求解问题时,不了解要解决的问题是什么或要达到什么目的,不知如何下手做题。

(3)忽视了教学过程中前后知识联系的重要性。有些排列组合问题,如果直接从排列组合的角度着手,很难找到解题方向,可考虑引进集合,找到解题的突破口。部分教师可能自身缺乏高水平运用知识的能力。

(4)教师对学生解决问题的实际操作过程了解和重视不够,导致教师不知道学生是怎么想的。

(5)题目的相似性与差异性困扰了学生,学生不能辨别清楚。教师在教学中渗透思想方法教学的不多,知识零散,难以进一步迁移。

(6)教师教学研究不够,很多教师认为排列组合教学需要改革,但做过教学研究的教师很少。

这些问题的存在的确会影响教学效果,同时也影响着学生的思考方式,导致学生解题错误。

其他文章基本上都是凭教学经验总结得到的成果,采用实证方法研究教学的极少。我归纳教师对于排列组合教学的主要策略有

1、讲清加法原理与乘法原理的联系与区别

加法原理与乘法原理是解排列组合应用题的基础,掌握它们有利于学生从原理的角度去思考问题。要解决这一问题,关键是引导学生理解加法原理中的“分类”与乘法原理中的“分步”,尤其让学生明白乘法原理中的每一步都是相互独立的。此外,应该把加法原理和乘法原理的教学贯穿于整个章节。

2、指导学生正确判断排列与组合问题

能判断一个问题是排列问题还是组合问题是解决排列组合复杂问题的基础。要引导学生通过具体的实例,用比较直观的方法如框图与树状图对问题进行分析,相互对比,使学生切实把握排列与组合的概念以及他们的区别。

3、指导学生正确选择分析对象

对于一个具体的复杂问题,要先考虑题中哪些具体对象应看成“元素”,哪些作为“容器”,选对正确的分析角度。

4、重视解题模型的分析与训练

解决排列组合问题必须重视解法的分析和训练,提高学生的解题能力。主要通过一般与特殊相结合、分析与判断相结合、将复杂问题简单化等方面来训练学生的思维。

5、重视教学中数学思想的渗透

主要是分类思想、特殊化思想、转化思想和对应思想的渗透,促使学生思想认识发生“飞跃”,达到不但“学会”,而且“会学”的效果。

第三章研究的设计和实施

本章主要介绍本研究的对象、测试题的设计以及试卷分析。

研究对象

本研究的测试对象是我所带的高三学生,刚好高二结束,上完了排列组合章节,也完成了这个章节的复习,对排列组合有一定的认识。

为了更清楚地了解学生的解题过程,在分析完测试卷后,我就试卷中一些比较特殊的回答和我还不了解的想法向一些位学生作了个别访谈。

测试题的设计

按排列组合模型设计

在第二章中给出了排列组合的两个模型及分类,但是在具体的题目中,还会有附加的一些限制条件,为了降低难度,课程标准中指出最多只能有两个限制条件。因此我把每个模型的具体分类及添加的条件作了一个综合的整理,然后配对上相应的测试题。

(1)选取模型和对应的测试题

注意:选取模型是指“从一个有m个不同元素的集合中选取n个元素(m>n)”的问题。所有元素都不同,而且是部分元素参与。具体分类与测试题对应关系见表3-1。

表3-1 选取模型及相应的测试题号

“选取模型”中的“可重复无序样本”解题过程中涉及到要先考虑“重复元素的排列”,然后除序,而“重复元素的排列”对于学生来说难度较高,已不属于高中课程标准中的内容,所以不予考查。

对应的具体练习:

1)可重复无序型:超纲,不要求

2)可重复有序型:

例:学校运动会中,五名学生报名参加四项体育比赛,若五名学生同时参加这四项比赛,

则获得冠军的可能有多少种

3)无重复无序型:

例:从0,5,11,13中任意抽取两个数相加,问最终一共有多少种不同的和

4)无重复有序型:

例:从0,5,11,13中任意抽取两个数相减,问最终一共有多少种不同的差

(2)分配模型和对应的测试题

注意:分配模型是指“将m个元素分配到n个容器中”。此模型与选取模型的最大区别是元素全部元素参与以及参与分配的元素可以相同也可以不同,但每个元素仅被分配一次,所以不存在重复使用的问题。

由于在第二章中谈到分配模型的考察要素还有元素的个数及是否有顺序,因此我在原来的4个分类的基础上,增加了是否平均分配,而且被分配的元素同时还要考虑是否有序。最终一共细分为11个小类。(见表3-2)。其中对于“元素在容器间平均分配”,我特别将“一一对应”模式单独列出,主要是其做法比较简单。当元素不同,容器相同时,“一一对应”方式只有一种情况,故不再讨论。当元素相同时,不存在顺序问题,且此时的平均分配都只有一种情况,故也不作讨论。

“分配模型”中“m个相同元素非平均分配到n个相同容器中”,只需考虑每个元素分堆时每堆数量的可能性,难度较低,也未考查。对于分配到各个容器中元素的有序性问题在高中阶段的排列组合问题中很少碰到,所以只在E5模型中出一道题,而其他三种有序模型中不再出题。具体分类与测试题对应关系见表3-2。

表3-2分配模型及相应的测试题号

对应的具体练习:

1、元素不同、容器不同、平均分配且符合一一对应:

例:将5个人分配到5个不同的工作岗位,问一共有多少种不同的分配方式

2、元素不同、容器不同、平均分配、元素无序

例:将9个人分配到3所不同的学校,每个学校分配3人,问一共有多少种

不同的分配方式

3、元素不同、容器不同、平均分配、元素有序

例:将9个人分配到3所不同的学校,每个学校分配3人,且被分配到学校

里的人需要从周一、周三、周五中选择一天值班,问共有多少种不同的情况

4、元素不同、容器不同、非平均分配、元素无序

例:将5个人分配到3所不同的学校,每所学校至少分配一人,问一共有多

少种不同的分配方式

5、元素不同、容器不同、非平均分配、元素有序

例:学校文艺汇演原本有10个节目,现要增加3个节目,不能加在第一个,原有节目

顺序不变,增加后,节目安排共有几种方案

6、元素不同、容器相同、平均分配、元素无序

例:将6本不同的书平均分成三堆,问有多少种不同的分法

7、元素不同、容器相同、平均分配、元素有序(不要求)

8、元素不同、容器相同、非平均分配、元素无序

例:把5本不同的书分成3组,每组至少一本,问有多少种不同的分法

9、元素不同、容器相同、非平均分配、元素有序(不要求)

10、元素相同、容器不同

例:现有10个保送上大学的名额,分配给7所学校,每校至少1个名额,共有 几种分

配方法

11、元素相同、容器相同(不要求)

测试题设计

详细见附录

第四章 研究结论和建议

主要结论

本研究主要关注的是高中学生在解决排列组合问题过程中显现的困难,根据平时教学中的经验和学生所反映出的意见主要提出两个研究问题:

1. 高中学生在学习排列组合时有哪些常见错误

2. 导致高中生发生错误的主要原因有哪些

我通过测试分析主要得到如下结论:

学生在排列组合中出现的常见错误类型有

1) 重复考虑顺序出错

例:有4双不同颜色的鞋子,从中取出2只不成双的鞋子,问共有几种取法

常见错误答案:1618C C 正确答案:14

28C C 2) 遗忘部分对象排序

例:将7个人排成一排,其中甲乙必须站在一起,问共有多少种不同的站法

626 3) 无序分配重复除序

例:将5本书分成3组,其中一组有一本,另外两组各两本,问有多少种不同的分法

常见错误答案有 !3C 222415C C ,正确答案是!

2C 22241

5C C 4) 增序性重复

例:将6本书平均分成3组,常见错误答案有2

6c 24c 22

c ,正确答案是!3C 222426C C 5) 元素是否可重复使用不分

例:学校运动会中,五名学生报名参加四项体育比赛,若五名学生同时参加这四 项比赛,则获得冠军的可能有多少种

常见错误答案:45A 正确答案:45

6) 误解题目陈述

7) 元素异同不分

例:将4个乒乓球分别装进两个不同的盒子中,每个盒子中至少装一个球,问有多少 种方法

常见错误答案:22243314C C C C + 正确答案:13C

8) 计数错误

9) 分类过程中产生遗漏

例:将5本书分成3堆,没堆至少有一本,问有多少种不同的分法

常见错误答案:!2C 222415C C ,正确答案!

2!2C 331415222415C C C C C + 10) 同一性重复

例:从0,5,11,13中任意选取两个数相乘,问最终又多少种不同的结果

3 11) 分不清属于排列还是组合

例:某学校高二连续七天内要排四门科目的考试,三天休息。现有物理、化学、 历史、

生物四门学业水平科目考试各要排一天,若要使三天休息连在一起,则考试安排方法 有几种

常见错误答案:4437A C , 正确答案:4415A C

这11类错误中的“元素异同不分”、“元素是否可重复使用不分”和“误解题目陈述”都是学生对于题目中关键的元素、容器和动词没有理解到位,这三种类型的平均错误比例处于中间位置,但涉及题目数量较多,特别是“元素异同不分”的错误尤其顽固。

“分类过程中产生遗漏”的错误也涉及到多到题型,很多学生对于一些可以直接总体解决的问题使用基础的分类方法进行讨论,而讨论过程中涉及多次基本的排列组合运算,大大增大了其错误的比例。

与原来文献中归类的错误类型相比,我发现结果有一定改动。我将“误解题目中的动词”改为“误解题目陈述”主要是因为对于题目的误解包含对整件事情各方面的读题错误;将“插空时空隙数数错”改为“计数错误”,主要是将其涵盖范围扩大,“计数”问题不仅包括空隙数,也可包括元素数量等等。文献中“枚举不全”问题在测试题中出现比例不高,主要是使用枚举法的学生很少,即使在枚举过程中出现的问题也都是由其他提到的错误类型涵盖了;“未考虑特殊情况(元素)出错”在学生中同样出现比例很低,即使出现问题主要都是对限制条件把控不到位,很少有遗漏或为考虑的现象;“分类有交叉性重复”同样在学生中没有太多表现,即学生对于“类”之间的差别基本能分清,反而是“分类过程产生遗漏”更为严重。“错误选择分析”在笔者的分析中有谈及,但是在统计时比例较

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

超全排列组合二十种经典解法

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有 1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A =

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

排列组合方法总结

排列组合方法总结(新导航用) 1、【特殊元素、特殊位置】优先法 在排列、组合问题中,如果某些元素或位置有特殊要求,则一般需要优先满足要求。 例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为( ) 解析:五位奇数的末尾必须是奇数,还有首位不能为0,都应该优先安排,以免不合要求的 元素占了这两个位置,先安排末位共有13C ;然后排首位共计有1 4C ;最后排其他位置共计有 34A ;由分步计数原理得.288341413=A C C 2、【相邻问题】捆绑法 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例:,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排 法种数有( ) 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种, 3、【相离问题】插空法 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端. 例:七人并排站成一行,如果甲乙两人必须不相邻,那么不同的排法种数有( ) 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有2 6A 种,不同的排法种 数是52563600A A =种 4、【选排问题】先选后排法 从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先选后排法. 例:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种? 解析:先取:四个球中选两个为一组(捆绑法),其余两个球各自为一组的方法有2 4C 种,再排: 在四个盒中每次排3个有34A 种,故共有2344144C A =种. 5、【相同元素分配问题】隔板法 将n 个相同的元素分成m 份(m,n 均为正整数),每份至少一个元素,可以用 m-1块隔板插 入n 个元素排成一排的n-1个空隙中,所有分法数为:1 1--m n C 。 如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

(完整版)☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 教学内容 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有mi 种不同的方法,在第2类办法中有m 2种不同的 方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m 1 m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有m i 种不同的方法,做第2步有m 2种不同的方法,…, 做第n 步有m n 种不同的方法,那么完成这件事共有: N g m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及 多少类。 3. 确定每一步或每一类是排列冋题(有序)还是组合(无序)冋题,兀素总数是多少及取出多少个兀 素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 先排末位共有 C ; 然后排首位共有C 1 最后排其它位置共有A 3 由分步计数原理得C 4C 3A 3 288 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里, 问有多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其 它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有 A^A I A 2 480种不同 的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三. 不相邻问题插空策略 例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序 有多少种? A 3 1 3

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

高中数学排列组合题型总结与易错点提示25587汇编

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1 m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1 m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合 要求的元素占了这两个位置. 先排末位共有13 C C 1 4 A 3 4 C 1 3 然后排首位共有14 C 最后排其它位置共有34 A 由分步计数原理得113434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花

不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素, 同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5225 2 2 480A A A 种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈 节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55 A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46 A 不同的方法,由分步计数原理,节目的不同顺序共有5456 A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单, 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列 ,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

排列组合问题的类型及解答策略

排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握。实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。本文介绍十二类典型排列组合问题的解答策略,供参考。 一、相邻问题捆绑法 例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种 A. 720 B. 360 C. 240 D. 120 解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。由分步计数原理可知,共有=240 种不同排法,选C。 评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。 二、相离问题插空法 例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算) 解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。由分步计数原理可知,任何两个舞蹈节 目不得相邻的排法为种。 评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。 三、定序问题缩倍法 例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。 解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作 一次的挂法,故共有不同的信号种数是=10(种)。 评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用缩小倍数的方法求解比较方便快捷。 四、标号排位问题分步法 例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有() A. 6种 B. 9种 C. 11种 D. 23种 解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。所以先将1填入2至4号的3 个方格里有种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有种填

相关主题
文本预览
相关文档 最新文档