当前位置:文档之家› 酸性水汽提装置的腐蚀与防护

酸性水汽提装置的腐蚀与防护

酸性水汽提装置的腐蚀与防护
酸性水汽提装置的腐蚀与防护

酸性水汽提装置的腐蚀与防护

炼油厂各工艺装置排出的酸性水不经处理直接排放造成环境污染,随着环保要求的提高,必须妥善治理炼油厂含硫污水,并从中回收硫化氢和氨等资源。含硫污水汽提装置的目的是从工艺装置排出的污水去掉污染物如H2S、NH3、CO、CO2以及CN-等,同时脱除污水中的瓦斯、油类,使排放污水净化,达到环保规定的排放标准。

处理含H2S、NH3为主的酸性水有空气氧化法,催化空气氧化法,离子交换法,蒸汽汽提法等。国内采用最广泛的是蒸汽汽提的单、双塔汽提工艺。

单塔汽提工艺分为单塔常压汽提和单塔加压汽提工艺。

单塔常压汽提是将来自进料缓冲罐的酸性水,在塔底换热器换热后,送入塔的上部,在塔内借助塔底重沸器和蒸汽两者共同的热量,将污染介质汽提出来,净化水则从塔底排放。含污染介质的塔顶蒸汽和水蒸汽被冷凝后送到塔顶回流罐,在回流罐中将液体、气体分离。酸性水再循环到汽提塔。含有H2S、NH3的气体送到硫磺回收装置或焚烧。单塔常压汽提不能分别回收H2S、NH3,但工艺设备简单,操作灵活,腐蚀轻微。

单塔加压汽提工艺设备简单,可以分别回收H2S、NH3,但操作不宜控制,另外,汽提塔上部和侧线冷凝器,由于存在生成NH4HS的化学反应,使设备腐蚀严重。

双塔汽提装置可以分别回收H2S、NH3和净化水。双塔汽提

工艺又分为先进脱H2S塔的汽提工艺和先进脱NH3塔的汽提工艺。

先进脱NH3塔的汽提工艺是自进料缓冲罐的酸性水与塔底换热器换热后进脱NH3汽提塔。进料口上部有NH3汽提塔塔顶回流和H2S汽提塔塔底水回流进口,塔底设有重沸器,用过热蒸汽汽提。塔顶出来的含有大量H2S、NH3的水汽,先经空冷和水冷后进入气液分离罐,分离出的浓氨气作为氨吸收塔的进料,用以制取稀氨水。分离出的含硫浓氨水,一部分作为NH3汽提塔的塔顶回流,另一部分作为H2S汽提塔的进料。H2S汽提塔顶引入冷净化水,塔底设有重沸器,用过热蒸汽汽提。塔底水引入NH3汽提塔上部作为进料,塔顶H2S气体去硫磺回收装置。

先进脱H2S塔的汽提工艺是自进料缓冲罐的酸性水与塔底换热器换热后进入脱H2S汽提塔上部,在塔内借助塔底重沸器汽提,分离出80%左右的H2S。通常将塔顶纯度很高的H2S送到硫磺回收装置,脱H2S后的塔底水送到H2S/NH3汽提塔。在H2S/NH3汽提塔中,所有的NH3和剩余的H2S都被汽提出来,塔顶的富NH3酸性气送至硫磺回收装置特殊喷嘴燃烧,或经一级冷凝分离后制作稀氨水。

11.1 腐蚀类型

进酸性水汽提装置的酸性水中一般含有H2S、NH3、CO、CO2、CN-、硫醇、酚类、有机酸、无机盐、游离和溶解的油类,腐蚀性介质主要是H2S、NH3、CO2以及CN-等,以及它们之间反应

生成的盐类。

酸性水汽提装置的腐蚀遍及整个装置,主要部位是塔顶和回流系统。由于酸性水是一种单溶质挥发性的弱电解质溶液,其腐蚀性随化学组成而变化。不同类型的酸性水汽提装置由于其化学组成和操作条件不同,其腐蚀程度相差很大。腐蚀特征是:1) 设备和管线的均匀减薄或局部腐蚀穿孔;2) 酸性水中的H2S以及CN-等引起的应力腐蚀开裂或氢鼓泡。

酸性水汽提装置由于各种不同的原因,可能在不同部位生成NH4HS、NH4HCO3或氨基甲酸氨,NH4HS等盐类结晶引起堵塞管道。一般塔顶部位的堵塞是由于NH4HS等盐类、多硫化物以及腐蚀产物的沉积造成的。塔底的堵塞是由于碳酸盐的沉积造成的,特别是酸性水和脱盐水、或者钙、镁含量高的新鲜水混合时容易产生。另外,当脱H2S汽提塔塔顶温度过低(低于19℃),H2S和水生成H2S-6H2O,容易堵塞管道。

H2S水溶液在CN-以及CO2等存在下造成腐蚀加重。H2S和NH3反应生成NH4HS,依然是腐蚀性很强的介质,当NH4HS浓度高,流体流速也高时,即使较为耐蚀的材料也会发生高的腐蚀速率,因此一般流速限制在10m/s以下。

11.2 工艺防腐措施

为防止腐蚀和腐蚀产物堵塞管道,开工时装置的设备和工艺管线推荐用蒸汽、氮气或工业水置换设备内的空气。

停工时,用工业水切换原料污水并冲洗设备和管线。注意水

不能窜入酸性气线和放火炬线。停工时不宜采用压缩空气吹扫设备,以免产生腐蚀。

H2S汽提塔压力超高时,不宜切断重沸器汽源,宜缓慢降低蒸汽量,并紧急放空以避免上下压差过大造成塔内构件弯曲或损坏,同时避免重沸器过热。

塔顶和塔顶管线应有保温措施,并同时对管线伴热,以防止气相冷凝物的腐蚀。塔体接管和人孔等处也应保温,防止气体在无保温处冷凝,产生腐蚀。为防止塔顶冷凝液的积聚而产生腐蚀,可在适当部位设置冷凝液排出口。

酸性水进料线和回流循环线的进料速度宜控制在0.9-1.8m/s,减少管线的腐蚀。

如果在H2S/NH3汽提塔塔顶冷凝器使用铝管束,则物流速度应限制在12.2m/s以内,防止由于雾沫夹带或冷凝产生的液滴冲击铝管。

适当降低酸性水汽提塔的汽提深度,使H2S气体中NH3的浓度降低,可减少NH4HS、NH4HCO3或氨基甲酸氨造成的腐蚀。

为监测设备腐蚀和氢渗透鼓包情况,宜在塔顶冷凝器入口、出口,塔顶塔盘的液相区和气相区以及回流罐的液相区和气相区安装腐蚀探针和氢探针。

为防止NH4HS、NH4HCO3或氨基甲酸氨结晶引起的堵塞和腐蚀,可采用间断注水或用蒸汽加热的措施去除结晶物。注水应在确认冷凝器因堵塞引起压降增加时才能进行。

汽提塔、容器等应有保温措施,不能剧烈降温,以免其它部位产生盐类结晶。

NH3汽提塔塔顶温度应大于82℃,以防止冷凝物腐蚀和NH4HS结晶堵塞。H2S/NH3汽提塔液控阀、压控阀应该加保温和伴热,防止结晶堵塞。为防止高浓度的NH4HS等结晶堵塞仪表测量引线,H2S/NH3汽提塔塔底液位变送器、玻璃板液面计、NH3汽提塔塔顶流量计等,应注入冲洗水。

提高H2S/NH3汽提塔压力,降低塔顶温度(不低于出现堵塞温度),使NH3在水中的溶解度提高,可以减少或消除塔顶H2S 管线的结晶物。

四环烷酸腐蚀研究进展

环烷酸详细的腐蚀机理至今还无法定论,对其较为流行的认识有下述两种说法:(1)环烷酸与铁反应生成环烷酸铁:2RCOO- + Fe2+→Fe(OOCR)2

环烷酸铁溶于油中并脱离金属表面,从而暴露出金属裸面。溶剂蒸发后的环烷酸铁残渣虽不具有腐蚀性,但遇到H2S后会进一步反应生成硫化亚铁和环烷酸:

Fe(OOCR)2 + H2S →FeS + 2 RCOOH

生成的硫化亚铁覆盖在钢铁表面形成保护膜。这层膜不能完全阻止环烷酸与铁作用,但它的存在显然减缓了环烷酸的腐蚀,而释放的环烷酸又引起下游腐蚀,如此循环。

(2)硫化物与铁反应生成硫化亚铁:

S2- + Fe2+→FeS

硫化亚铁再与环烷酸反应生成环烷酸铁和硫化氢:

2RCOOH + FeS →Fe(OOCR)2 + H2S

环烷酸铁破坏了硫化亚铁保护膜,引起了设备的腐蚀。从这两种解释不难看出,上述几种反应在一定的条件下是可逆的。原油中腐蚀的两大症结是硫化物和环烷酸,它们在原油中的作用不尽相同,正是这两种物质的相互作用和相互制约、促进,使腐蚀问题变得错综复杂。不同的原油中含有不同类别的硫化物(活性的和非活性的),它们的含量和存在形式既能抑制又能加速环烷酸与铁的作用,从而导致硫化物既可增强又可降低含酸原油的腐蚀性。

预测环烷酸腐蚀的实验方法有以下几种:

TAN法:原油中酸值的测定是采用传统的KOH中和法,其结果以中和1克原油所需要的KOH毫克数来表示,称之为TAN。一般认为当原油的TAN>0.5mgKOH/g时,就存在环烷酸腐蚀。但试验表明,在一定的温度范围内,环烷酸含量和TAN间并无确定的关系,同时也说明环烷酸腐蚀与TAN间无确定的关系。

腐蚀酸度(CAN)法:试验得知,随着馏分沸点的增加酸含量增加,但酸度却下降,说明低分子量的环烷酸活性较高。Craig 提出了腐蚀酸度(以下简称CAN)的概念,即将实验过程中试样钢片的失重换算为相当于消耗了多少酸值的环烷酸来表示。CAN与TAN有相同的单位,求出每次实验后CAN与TAN的比值,就可

以预测该油品的腐蚀性。

原子轰击质谱(FAB-MS)法:是将分离出的环烷酸做相对分子质量的分布实验。这种方法主要是对来自世界各地的原油进行特征分析,应用这种技术来预测腐蚀的研究工作一直在进行当中,目前尚未见到有实质性的进展。

壁剪切应力法:流速在环烷酸腐蚀中是一个很关键的因素。在某一温度,某种材料在原油中的腐蚀速率与流速的关系中,似乎存在一临界流速,但至今尚不清楚其绝对值是多少。从实际经验中得出:凡是有阻碍流体流动从而引起流速发生变化的地方,如弯头、泵壳、热电偶套管插入处等,环烷酸的腐蚀就特别严重。虽然流速是影响环烷酸腐蚀的主要参数,但由于直接用流速缺乏预测腐蚀的表达方式,所以使用与流速参数相关的雷诺数和壁剪切应力显得更为准确。因为它们包含了管路中液体的密度、粘度、气化程度和管径。二者计算公式如下:

Re=DρV/μ

式中:Re=雷诺数;

D=管径,m;

ρ=流体密度,Kg/m3;

V=流体流速,m/s;

μ=动力粘度,kg/m·s。

得到雷诺数后,就可以通过Moody表查到摩擦系数f,然后用下面的公式计算壁剪切应力:

τ=fρV2/2

式中:τ=壁剪切应力;

f=摩擦系数。

比较二者的壁剪切应力,就可以预测环烷酸腐蚀情况。腐蚀速率与壁剪切应力之间存在一定的比例关系,一般酸值越高,对流速的敏感度越大。高温、高流速条件下,即使非常低的环烷酸含量也可导致高的腐蚀速率。

NACI法:原油中的硫化物在高温下会释放出H2S,H2S与铁反应生成硫化亚铁覆盖在钢铁表面形成保护膜;另外,H2S还能与环烷酸铁反应生成环烷酸。原油中这些不同类别的硫化物和羧酸之间的相互作用十分复杂,即,可增强也可减弱原油的腐蚀性。Craig提出了用环烷酸腐蚀指数(NACI)的概念来判断腐蚀类型,即试样在腐蚀介质中的腐蚀速率(mpy)与试样在实验后单位面积上的失重量(mg/cm2)的比值来表示。当NACI小于10时,可以认为发生了完全的硫化物腐蚀;当NACI大于10时,可以认为发生了一定程度的环烷酸腐蚀,且受到了硫化物的影响,该值越大,环烷酸腐蚀越严重。

模拟实验法:环烷酸腐蚀实验一般要在实际的工艺物流或接近实际操作条件的模拟环境下进行。原油加工过程中腐蚀易出现在加热炉、转油线、减压塔及侧线馏分管道等部位,其中每一部位环烷酸腐蚀的影响因素不尽相同,所以腐蚀实验的模拟条件也是不同的。实验大部分是以高压釜金属挂片作为研究对象,它的基本

原理是测定含铁金属试片浸入腐蚀介质后的重量损失。失重实验是所有腐蚀测定中最常见的一种试验方法。挂片经测量、称重后浸入在腐蚀介质中一段已知的时间,取下挂片,清洗挂片以除去腐蚀产物,然后再称重,就可算出试片单位面积上的失重量。

烟气脱硫装置的腐蚀与防护(正式)

编订:__________________ 审核:__________________ 单位:__________________ 烟气脱硫装置的腐蚀与防 护(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1289-52 烟气脱硫装置的腐蚀与防护(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1. 引言 我国是一个能源结构以燃煤为主的国家,随着近年来国民经济建设的迅速发展,燃煤产生的大气污染日益严重,酸雨面积不断扩大。烟道气脱硫装置(简称FGD)是当今燃煤锅炉控制二氧化硫排放的主要措施。烟气脱硫有多种工艺,而石灰石-石膏湿法工艺是当今世界各国应用最多且最为成熟的工艺。 煤炭燃烧时除产生SO?外,还生成少量SO?、NOX、HCl、HF等气体,由于烟气中含有水,因此可在瞬间形成H?SO?、HCl、HF等强腐蚀性溶液。与此同时,含有烟尘的烟气高速穿过设备和管道,对装置的腐蚀相当严重。并且,吸收塔的入口烟气温度可高达180℃,而内腔长期处于45-70℃的酸、碱交替的湿热环境之中。可见,湿法除尘脱硫系统在运行中处于强

加氢裂化装置的腐蚀与防护

加氢裂化装置的腐蚀与防护 加氢裂化是炼油厂重要的二次加工手段,可以获得高质量的轻质燃料油。其特点是对原料适应性强,可加工直馏重柴油、催化裂化循环油、焦化馏出油,甚至可以用脱沥青重残油生产汽油、航煤、和低凝点柴油。其次,生产方案灵活,可根据不同的季节改变生产方案,并且产品质量好,产品收率高。 加氢裂化操作条件:温度380-450℃,操作压力8-20Mpa,采用的催化剂含有Pt、Pd、W、Mo、Ni、Co等金属氧化物作为加氢组分,以硅酸铝、氟化氧化铝或结晶硅铝酸盐为载体。原料油经加氢、裂化、异构化等反应转化为轻油产品,收率一般可达100%(体积),可以获得优质重整原料、高辛烷值汽油、航煤、和低凝点柴油,同时产品含硫、氮、烯烃低,安定性好。 加工含酸、高酸原油主要对原料油进料系统有严重影响,加氢反应器也应选择防护措施。 6.1 腐蚀形态 6.1.1氢损伤 高温高压条件下扩散在钢中的氢与钢中不稳定的碳反应生成甲烷,可引起钢的内部脱碳,甲烷不能从钢中逸出,聚集在晶界及其附近的空隙、夹杂物等不连续处,压力不断升高,形成微小裂纹和鼓泡,钢材的延展性、韧性等显著降低,随之变成较大的裂纹,致使钢最终破坏。因为铬钼钢具有良好的高温力学性能和抗氢损伤性能,近年来加氢反应器大多选用2.25Cr1Mo钢制造。

6.1.2堆焊层氢致开裂 在高温高压的氢气氛中,氢气扩散侵入钢材,当反应器停工冷却过程中,温度降至150℃以下时,由于氢气来不及向外释放,钢中吸藏了一定量的氢,这样在一定条件下就有可能发生开裂。裂纹的产生和钢中的氢气含量有很大关系,曾经有实验证明,停工7个月后的加氢反应器,堆焊层仍有29ppm的氢含量,在堆焊层上取样进行弯曲实验,弯曲角度在19-750范围内试样就发生了开裂,取试样进行脱氢处理后,试样中氢含量降到1.2ppm,试样弯曲到1800也没有发生开裂。实验证明了氢脆的危害性,同时也证明了氢脆是可逆的。另外,一旦有σ相的叠加作用,将会导致堆焊层的延展性能进一步损失。 反应器基材与堆焊层界面剥离现象是氢致裂纹长大的一种形式。由于反应器在高温高压条件下操作,金属内部吸藏有大量的氢,在高温状况和低温状况下,氢气在基材和堆焊层中的饱和溶解度变化不一致,一旦停工,氢气不能完全释放,在界面层聚集,导致界面层脆化造成的。另外,熔合层上的应力和不锈钢堆焊层的化学成分也是重要的影响因素。所以装置停工应采用氢较为彻底释放的方案,即停工时冷却速度尽量放缓,在较高的温度多停留一段时间,严格遵循操作规程,避免异常升温和紧急停工。 6.1.3 连多硫酸应力腐蚀开裂 加氢反应器内件和堆焊层为抗高温硫化氢腐蚀一般选用奥氏体不锈钢,该材料长期在高温下和氢以及硫化氢接触,操作条

酸性水汽提操作规程最终版

第一章酸性水汽提装置概述 第一节工艺设计说明 1.1设计规模 装置建成后为连续生产,年开工按8000小时计,设计规模为50T/H,装置设计弹性范围为0.6-1.2。 1.2工艺技术特点 采用单塔汽提工艺技术,流程简单,操作方便,能耗低,酸性水经过净化,可以达到回用指标,送至其它装置回用。 1.3原料及产品 1.3.1原料 酸性水汽提装置原料来源于两套常减压装置及两套催化装置及新建的延迟焦化装置、加氢精制装置、硫磺回收装置的酸性水。 现有及新建装置酸性水情况 1.3.2产品 产品为净化水及酸性气。

产品质量控制指标 1.4装置主要操作条件 酸性水汽提塔(C-2511): 1.5装置物料平衡

1.6.1装置给水水量 1.6.2装置排水水量 1.6.3蒸汽耗量及回收冷凝水量 1.6.4净化空气耗量

1.6.6装置能耗及能耗指标 全年能耗:22492.8×104MJ 全年酸性水处理量:40×104T 单位计算能耗:562.32 MJ/T酸性水1.6.7汽提装置主要生产控制分析项目表

第二节酸性水汽提工艺原理及流程简述 2.1 工艺原理 在炼油厂一、二次加工过程中,原料中的含硫、含氮化合物由于受热分解,生成一定的氨和硫化氢及其它物质,污染油品并产生含硫含氮污水,直接排放将会造成严重污染,因此需对此污水进行处理,并回收硫和氨。含硫含氮污水在进入污水处理场之前,需对其中的硫和氮化物含量严格控制,否则将对污水处理场的微生物系统造成冲击,使污水场处理水排放不达标,造成环境污染,影响企业的经济效益和社会效益。因此含硫含氮污水需经汽提处理,使污水中的NH3-N < 80ppm,硫化氢< 30ppm才能进入污水场进行下一步的处理。 酸性水汽提装置就是利用酸性水中的H 2S、CO 2 、NH 3 、H 2 O的相对挥发度不同,用蒸 汽作为热源,把挥发性的H 2S、CO 2 、NH 3 从污水中汽提出去,从而将污水净化,并分离提 取氨和硫化氢的一种装置。 2.2工艺流程简述 各装置酸性水混合后进入酸性水汽提装置的原料水脱气罐(D-2511),脱出溶于酸性水的轻烃组份至低压瓦斯管网。脱气后的酸性水进入原料水罐(D-2512/1,2)静置、除油;上层污油经收集进入污油罐(D-2516),再经污油泵(P-2512)送出装置。 脱油后的酸性水经原料水泵(P-2511/1,2)升压,送至原料水-净化水换热器(E-2512/1,2),与酸性水汽提塔(C-2511)底的净化水换热升温到95℃后进入汽提塔(C-2511)中上部;酸性水汽提塔(C-2511)的热源由汽提塔底重沸器(E-2511)提供,1.0Mpa过热蒸汽通入汽提塔重沸器(E-2511)管程,使进入重沸器的酸性水部分汽化,然后冷凝水进入凝结水罐(D-2515), 经调节阀控制液面后再送至硫磺回收装置凝结水回收系统进行处理。 在酸性水汽提塔(C-2511)内,污水中的H 2S、NH 3 被汽提出,进入气相至塔顶。塔 顶混合器是含H 2S、NH 3 的蒸汽,经过汽提塔顶空冷器(A-2511/1,2)冷凝冷却至85℃后, 进入汽提塔顶回流罐(D-2517)进行汽、液分离,罐顶分出的含氨酸性气送至硫磺回收装置或焚烧炉进行焚烧;罐底液相经汽提塔顶回流泵(P-2513/1,2)送回汽提塔顶作回流。塔底产品是合格的净化水,温度约为127℃,经原料水-净化水换热器(E-2512/1,2)与原料水换热,温度降至71℃,再经净化水泵(P-2514/1,2)升压,送至净化水冷却器(E-2513)冷却至50℃后送出,作为其它装置的回用水或排至污水场深度净化。

烟气脱硫装置的腐蚀与防护详细版

文件编号:GD/FS-3412 (安全管理范本系列) 烟气脱硫装置的腐蚀与防 护详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

烟气脱硫装置的腐蚀与防护详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1. 引言 我国是一个能源结构以燃煤为主的国家,随着近年来国民经济建设的迅速发展,燃煤产生的大气污染日益严重,酸雨面积不断扩大。烟道气脱硫装置(简称FGD)是当今燃煤锅炉控制二氧化硫排放的主要措施。烟气脱硫有多种工艺,而石灰石-石膏湿法工艺是当今世界各国应用最多且最为成熟的工艺。 煤炭燃烧时除产生SO?外,还生成少量SO?、NOX、HCl、HF等气体,由于烟气中含有水,因此可在瞬间形成H?SO?、HCl、HF等强腐蚀性溶液。与此同时,含有烟尘的烟气高速穿过设备和管道,对装置的腐蚀相当严重。并且,吸收塔的入口烟气温度

可高达180℃,而内腔长期处于45-70℃的酸、碱交替的湿热环境之中。可见,湿法除尘脱硫系统在运行中处于强腐蚀性介质、湿热和高磨损的严酷环境中。由于腐蚀环境恶劣,湿式脱硫系统对材质的耐蚀、耐磨、耐温要求极为严格。 吸收塔、烟道的材质或防护材料的选择对装置的使用寿命和成本影响很大,因此被认为是烟气脱硫装置设计和制造的关键技术之一。吸收塔体可用合金钢、玻璃钢或碳钢内衬玻璃钢、橡胶、砖板、鳞片涂料等。调查结果表明,脱硫系统中材料所占设备总造价的比重是相当高的,为了不断降低费用,80年代起,国内外专家一直在寻求一种造价低、耐高温、耐腐蚀的材料。高性能涂料作为一种最为经济有效的防护材料,经过二十余年在脱硫装置的成功应用,正引起各国脱硫工作者的关注。

酸性水汽提装置的腐蚀与防护

酸性水汽提装置的腐蚀与防护 炼油厂各工艺装置排出的酸性水不经处理直接排放造成环境污染,随着环保要求的提高,必须妥善治理炼油厂含硫污水,并从中回收硫化氢和氨等资源。含硫污水汽提装置的目的是从工艺装置排出的污水去掉污染物如H2S、NH3、CO、CO2以及CN-等,同时脱除污水中的瓦斯、油类,使排放污水净化,达到环保规定的排放标准。 处理含H2S、NH3为主的酸性水有空气氧化法,催化空气氧化法,离子交换法,蒸汽汽提法等。国内采用最广泛的是蒸汽汽提的单、双塔汽提工艺。 单塔汽提工艺分为单塔常压汽提和单塔加压汽提工艺。 单塔常压汽提是将来自进料缓冲罐的酸性水,在塔底换热器换热后,送入塔的上部,在塔内借助塔底重沸器和蒸汽两者共同的热量,将污染介质汽提出来,净化水则从塔底排放。含污染介质的塔顶蒸汽和水蒸汽被冷凝后送到塔顶回流罐,在回流罐中将液体、气体分离。酸性水再循环到汽提塔。含有H2S、NH3的气体送到硫磺回收装置或焚烧。单塔常压汽提不能分别回收H2S、NH3,但工艺设备简单,操作灵活,腐蚀轻微。 单塔加压汽提工艺设备简单,可以分别回收H2S、NH3,但操作不宜控制,另外,汽提塔上部和侧线冷凝器,由于存在生成NH4HS的化学反应,使设备腐蚀严重。 双塔汽提装置可以分别回收H2S、NH3和净化水。双塔汽提

工艺又分为先进脱H2S塔的汽提工艺和先进脱NH3塔的汽提工艺。 先进脱NH3塔的汽提工艺是自进料缓冲罐的酸性水与塔底换热器换热后进脱NH3汽提塔。进料口上部有NH3汽提塔塔顶回流和H2S汽提塔塔底水回流进口,塔底设有重沸器,用过热蒸汽汽提。塔顶出来的含有大量H2S、NH3的水汽,先经空冷和水冷后进入气液分离罐,分离出的浓氨气作为氨吸收塔的进料,用以制取稀氨水。分离出的含硫浓氨水,一部分作为NH3汽提塔的塔顶回流,另一部分作为H2S汽提塔的进料。H2S汽提塔顶引入冷净化水,塔底设有重沸器,用过热蒸汽汽提。塔底水引入NH3汽提塔上部作为进料,塔顶H2S气体去硫磺回收装置。 先进脱H2S塔的汽提工艺是自进料缓冲罐的酸性水与塔底换热器换热后进入脱H2S汽提塔上部,在塔内借助塔底重沸器汽提,分离出80%左右的H2S。通常将塔顶纯度很高的H2S送到硫磺回收装置,脱H2S后的塔底水送到H2S/NH3汽提塔。在H2S/NH3汽提塔中,所有的NH3和剩余的H2S都被汽提出来,塔顶的富NH3酸性气送至硫磺回收装置特殊喷嘴燃烧,或经一级冷凝分离后制作稀氨水。 11.1 腐蚀类型 进酸性水汽提装置的酸性水中一般含有H2S、NH3、CO、CO2、CN-、硫醇、酚类、有机酸、无机盐、游离和溶解的油类,腐蚀性介质主要是H2S、NH3、CO2以及CN-等,以及它们之间反应

加氢装置——重点部位设备说明及危险因素及防范措施

编号:SM-ZD-38653 加氢装置——重点部位设备说明及危险因素及防范 措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

加氢装置——重点部位设备说明及 危险因素及防范措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、重点部位及设备 (一)重点部位 1.加热炉及反应器区 加氢装置的加热炉及反应器区布置有加氢反应加热炉、分馏部分加热炉、加氢反应加热器、高压换热器等设备,其中大部分设备为高压设备,介质温度比较高,而且加热炉又有明火,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸是安全上重点防范的区域。 2.高压分离器及高压空冷区 高压分离器及高压空冷区内有高压分离器及高压空冷器,若高压分离器的液位控制不好,就会出现严重问题。主要危险为火灾、爆炸和H2S中毒,因此该区域是安全上重点防范的区域。

3.加氢压缩机厂房 加氢压缩机厂房内布置有循环氢压缩机、氢气增压机,该区域为临氢环境,氢气的压力较高,而且压缩机为动设备,出现故障的机率较大,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸中毒,是安全上重点防范的区域。 4.分馏塔区 分馏塔区的设备数量较多,介质多为易燃、易爆物料,高温热油泵是应重点防范的设备,高温热油一旦发生泄漏,就可能引起火灾事故,分馏塔区内有大量的燃料气、液态烃及油品,如发生事故,后果将十分严重,此外,脱丁烷塔及其干气、液化气中H2S浓度高,有中毒危险,因此该区域也是安全上重点防范的区域。 (二)主要设备 1.加氢反应器 加氢反应器多为固定床反应器,加氢反应属于气-液-固三相涓流床反应,加氢反应器分冷壁反应器和热壁反应器两种:冷壁反应器内有隔热衬里,反应器材质等级较低;热壁反应器没有隔热衬里,而是采用双层堆焊衬里,材质多为2

酸性水汽提装置工艺说明书

酸性水汽提装置工艺说明书 xx石化集团股份有限公司 60吨/小时酸性水汽提装置 说明书 xx石化工程设计有限公司 2009年1月9日 档案号:Y0407A-1 xx 设计阶段:施工图说明书石化工程设计有限公司第 1 页共 39 页 建设单位:xx石化集团股份有限公司项目名称:60吨/小时酸性水汽提装置 编制: 校核: 审核: 审定: 项目负责人: 技术负责人: 档案号:Y0407A-1 xx 设计阶段:施工图说明书石化工程设计有限公司第 2 页共 39 页 目录 1 概 述 ..................................................................... 3 2 原料及产品性 质 ......................................................... 5 3 物料平 衡 ................................................................ 6 4 主要操作条件 ............................................................

7 5 流程简 介 ................................................................ 7 6 主要设备计算与选择 ..................................................... 9 7 设备平面布置说 明 ....................................................... 9 8 公用工程 及材料消耗 .................................................... 28 9 装 置定员 ............................................................... 31 10 装置内外关 系 ......................................................... 32 11 分析 化验 (34) 12 劳动安全卫生 ......................................................... 35 13 环境保 护 .............................................................. 36 14 消防 ................................................................... 37 15 设计中采用的规 范 ..................................................... 38 16 施工技术 要求 ......................................................... 39 17 存 在的问题及建议 (39) 档案号:Y0407A-1 xx 设计阶段:施工图说明书石化工程设计有限公司第 3 页共 39 页 1 概述 1.1 设计依据 本项目的设计依据为:

加氢裂化高压空冷器腐蚀分析与防护

加氢裂化高压空冷器腐蚀分析与防护 第21卷第2期全面腐蚀控制2007年4月全面腐蚀控制 TOTAL CORROSION CONTROLVol.21 No.2 2007年第21卷第2期Apr. 2007 章炳华陈江谭金龙 (扬子石化股份公司,江苏南京210048) 摘要:100万吨/年中压加氢裂化装置反应产物高压空冷器在新投运16个月后连续2次出现腐蚀泄漏事故,造成装置非计划停工23天。本文对高压空冷器的腐蚀原因进行了分析,并和进口200万吨/年高压加氢裂化装置进行对比分析,认为进料配管设计和高压空冷器结构型式的不合理,导致进料分配不均匀,局部流速偏大,使空冷器管口和Ti衬管产生冲刷腐蚀,在H2-H2S-HCl-NH3双相区加快了冲刷腐蚀。在总结经验的基础上,提出了设备改进和防护措施。 关键词:高压空冷器H2-H2S-HCl-NH3 冲刷腐蚀防护 中图分类号:TE986 文献表示码:A 文章编号:1008-7818(2007)02-0026-04 The Corrosion Analysis and Protection of High-pressure Air Cooler in Hydrocracker ZHANG Bing-hua, CHEN Jiang, TAN Jin-long (Yangzi Petrochemical Co., Ltd., Nanjing 210048, China)

Abstract: Corrosion leakage occurred continuously 2 times to the reactor effluent high-pressure air cooler in 1Mt/a medium-pressurehydrocracker after it had been put into effect for 16 months. It caused shutdown of the system without planning for 23 days. By the analysisof the corrosion of high-pressure air cooler and the contrast to the imported 2Mt/a high-pressure hydrocracker, it was drawn that theinconsequence of the feeding tubing design and the high-pressure air cooler structure brought out the uneven distribute of the feedstock. Sothe large local velocity of flow appeared which led to the erosion of the pipe mouth of air cooler and the Ti liner. At the same time the erosionwas accelerated among the H2-H2S-HCl-NH3 dual-phase zone. The corrosion analysis was summarized and the improving measures for theequipment, the protection of it were given in the article. Key words: high-pressure air cooler; H2-H2S-HCl-NH3; erosion; protection 1990年以来,我国的炼油行业由于油品质量和环保等要求,陆续建设了许多加氢装置,从最早引进技术的茂名加氢裂化,到后来自主设计建设的镇海、齐鲁、金山、高桥、金陵、湛江等加氢裂化装置陆续建成并投产。在这些装置投产后,陆续有加氢换热器、高压空冷器腐蚀泄漏的报告。 扬子石化100万吨/年中压加氢裂化装置由中国石化工程建设公

HF生产装置的腐蚀机理及安全防护技术探讨

编号:SM-ZD-32538 HF生产装置的腐蚀机理及安全防护技术探讨Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

HF生产装置的腐蚀机理及安全防护 技术探讨 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 氢氟酸是清澈、无色、发烟的腐蚀性液体,具有剧烈刺激性气味。可用于制造碳氟化合物和无机氟化物、提炼金属、硅片制作、玻璃刻蚀、搪瓷、酸浸、电抛光、罐头工业及某些清洁剂的成份。然而,氢氟酸又是一种危险介质,它的腐蚀性极强,AHF生产不能实现长周期开车,关键在于系统腐蚀严重,常常因设备腐蚀原因被迫停车,虽非易燃品,但对金属的腐蚀作用往往会导致容器和管道内产生氢气,从而潜有着火和爆炸危险。同时氢氟酸还具有较高的毒性,对人体容易造成伤害:其蒸气能溶于眼睛表面上的湿气并产生刺激反应;若其液体溅入眼内,将引致严重及不可恢复的损伤,令眼角膜留下疤痕;低浓度气体能对鼻、喉和呼吸道产生刺激作用;高浓度气体会使口腔、口唇、喉咙和肺部严重灼伤。若液体积聚于肺部便可导致死亡;氢氟酸液体还可使消化系

加氢装置常见腐蚀

加氢装置常见的腐蚀 1. 氢腐蚀 氢腐蚀是在高温高压条件下,分子氢发生部分分解而变成原子氢或离子氢,并通过金属晶格和晶界向钢中扩散,扩散侵入钢中的氢与不稳定的碳化物发生化学反应,生成甲烷气泡(它包含甲烷的成核过程和成长),即Fe3C+2H2→CH4+Fe,并在晶间空穴和非金属夹杂部位聚集,而甲烷在钢中的扩散能力很小,聚积在晶界原有的微观孔隙(或亚微观孔隙)内,形成局部高压,造成应力集中,使晶界变宽,并发展成为裂纹,开始时是很微小的,但到后期,无数裂纹相连,引起钢的强度、延性和韧性下降与同时发生晶间断裂。由于这种脆化现象是发生化学反应的结果,所以他具有不可逆的性质,也称永久脆化现象。 在高温高压氢气中操作的设备所发生的氢腐蚀有两种形式:一是表面脱碳,二是内部脱碳。 表面脱碳不产生裂纹,这点与钢材暴露在空气、氧气或二氧化碳等一些气体所产生的脱碳相似,表面脱碳的影响一般很清,其钢材的强度和硬度局部有所下降而延性有所提高。 内部脱碳是由于氢扩散侵入到钢中发生反应生成甲烷,而甲烷又不能扩散到钢外,就聚集于晶界或夹杂物附近。形成了很高的局部应力,使钢产生龟裂、裂纹或鼓包,其力学性能发生了显化。 造成氢腐蚀的因素: 1 操作温度、氢的分压和接触时间。温度越高或者压力越大发生高温氢腐蚀的起始时间越早。氢分压8.0MPa是个分界线,低于此值影响比较缓和,高于此值影响比较明显,操作温度200℃是个临界点,高于此温度钢材氢腐蚀程度随介质的温度升高而逐渐加重。氢在钢中的话浓度可以用下面公式表示: C=134.9P1/2exp(-3280/T) 式中: C-氢浓度 P——氢分压,MPa T-温度,K 从式中可看出,温度对钢中氢浓度的影响比系统氢分压更显著。 2 钢材中合金元素的添加情况。在钢中不能形成稳定碳化物的元素(如镍、铜)对改善钢的抗氢腐蚀的性能毫无作用;而在钢中添加形成很稳定碳化物的元素(入铬、钼、钒、钛、钨等),就可以使碳的活性降低,从而提高钢材抗氢腐蚀的能力。关于杂质的影响,在针对

酸性水汽提装置操作规程

目录 第一章工艺技术规程 (4) 第一节概述 (4) 1 设计说明 (4) 2 设计范围 (4) 第二节装置概况及工艺原理 (4) 1 装置概况 (4) 2 装置工艺原理 (5) 第三节工艺流程说明 (7) 第四节工艺指标 (8) 第六节主要产品性能指标 (10) 1 富H2S酸性气 (10) 2 净化水 (10) 第七节公用工程指标 (10) 1 电源 (10) 2 N2 (11) 3 冷却水 (11) 4 净化风 (11) 5 非净化风 (11) 6 蒸汽 (11) 7 凝结水 (12) 8 除盐水 (12) 第八节主要操作条件 (12) 第九节物料平衡 (13) 第十节装置内外关系 (14) 1 原料及产品 (14) 2 公用工程 (14) 第二章岗位操作法................................. 错误!未定义书签。 第一节基本操作要求:...................... 错误!未定义书签。 1、正常操作的主要内容....................... 错误!未定义书签。 2、岗位操作员应做到: (15) 第二节岗位操作法 (15) 1 原料水罐脱油、送油操作 (15) 2.塔C8401汽提塔操作 (16) 3. 分一、分二、分三的操作 (18) 4 净化水质量调节 (18) 5 酸性气质量控制 (19) 第三章装置开停工规程 (20) 第一节开工规程 (20) 1 开工统筹图 (20) 2 开工准备 (20) 3 系列开工 (39) 第二节停工规程 (42)

1 停工要求 (42) 2 停工注意事项 (42) 3停工准备 (43) 4系统停工 (43) 第四章设备操作规程 (48) 1.普通离心泵操作法 (48) 2.计量泵的操作法 (54) 3、冷换设备的投用与切除 (57) 4 液下泵 (61) 5 风机操作规程 (64) 第五章装置事故处理 (72) 第一节事故处理原则 (72) 第二节紧急停工事故 (73) 第三节停电故障事故处理 (75) 第四节停循环水故障事故处理 (76) 第五节停蒸汽故障事故处理 (76) 第六节停仪表风故障事故处理 (77) 第六章操作规定 (78) 第一节定期工作规定 (78) 1 每两个月运转泵切换至备用泵操作规定 (78) 2 巡检规定 (78) 3 盘车规定 (78) 4 操作记录规定 (79) 5 卫生清扫规定 (79) 6 夜间熄灯检查规定 (79) 第二节操作规定。 (79) 第八章安全生产及环境保护 (80) 第一节安全知识 (80) 1 安全知识 (80) 第二节安全规定 (97) 1 一般安全规定 (97) 2 装置生产过程中的安全规定 (98) 3 装置停工安全规定 (99) 4 装置安全检修规定 (99) 5、消防工具的维护与使用方法及火灾报警程序 (100) 6、劳动保护用具的使用及保养 (102) 第三节装置防冻凝措施 (107) 1、冬季防冻防基础知识 (107) 2、防冻防凝通则 (108) 第四节同类装置典型事故分析、处理方法及经验教训 (110) 1、大庆石化分公司2004年10月27日硫磺装置酸性水罐爆炸事故分析 (110)

加氢处理装置安全特点和常见事故分析汪加海

加氢处理装置安全特点和常见事故分析摘要:本文简要介绍了广州石化分公司210万吨/年加氢处理装置及其原理,论述了装置的安全特点和安全设计内容。总结了加氢处理装置容易发生的事故,并列举和分析了国内外同类装置发生的相关事故,结合加氢处理装置开工以来生产实际运行状况,有针对性的提出防范事故的方法,为装置安全生产提供保障。 关键词:加氢处理、事故、安全、防范 加氢处理是重质油深度加工的主要工艺之一,集炼油技术、高压技术和催化技术为一体。加氢处理装置处于高温、高压、临氢、易燃、易爆、有毒介质操作环境,属甲类火灾危险装置。从原料到产品在操作条件下均具有易燃易爆特性,装置所有区域均为爆炸危险区。因此分析装置的安全特点,掌握装置的安全技术,了解容易发生的事故,对于确保装置顺利开工及正常生产是十分重要的。 1 装置的生产原理及简介 加氢处理采用劣质蜡油加氢处理技术,加氢处理催化剂采用FRIPP的FF14(保护剂采用FZC系列)。加氢处理过程是在较高压力下,烃类分子与氢气在催化剂表面进行也发生加氢脱硫、脱氮和不饱和烃的加氢反应,同时部份裂解和加氢反应生成较小分子的转化过程。其化学反应包括饱和、还原、裂化和异构化。烃类在加氢条件下的反应方向和深度,取决于烃的组成、催化剂的性能以及操作条件等因素。加氢处理单元主要由反应、分馏等工段组成。反应部分采用炉前混氢方案、热高分工艺流程。催化剂的硫化采用湿法硫化。催化剂再生采用器外再生方案;分馏部分采用汽提塔、常压分馏塔切割石脑油和柴油等馏分方案。主要原料为常减压蜡油、焦化蜡油和溶剂脱沥青油等蜡油。主要产品为粗石脑油、

柴油和精制蜡油等。 2 加氢处理装置安全特点 2.1 临氢、易燃易爆 氢气具有易扩散、易燃烧、易爆炸的特点。氢气的化学性质很活泼,氢气的火焰有“不可见性”,而且燃烧速度很快,在空气中,只要微小的明火甚至猛烈撞击就会发生爆炸。其爆炸浓度范围为4.1%~75%。闪点低于28℃的易燃液体、爆炸下限低于10% 的可燃气体为甲类。生产中属于甲类物质的有氢气、石脑油、硫化剂(DMDS)等。具体见表1 表1 主要易燃易爆物料的安全理化特性 介质名称性质爆炸极限V%闪点℃自燃点℃火灾危险类别氢气易燃、易爆4~75580~590甲 燃料气易燃、易爆3~13650~750甲 石脑油易燃、易爆 1.4~7.6-22~20510~530甲B 柴油易燃 1.5~4.545~120350~380乙B 蜡油易燃>120300~380丙B DMDS易燃 2.2~19.715>300甲A MDEA易燃>139丙A

酸性水汽提装置节能优化概述

酸性水汽提装置节能优化概述 摘要优化酸性水汽提装置的生产操作,汽提塔降温降压;控制合理的氨循环比和冷热进料比;侧线系统热量回收;降低装置能耗。 关键词降温降压;氨循环比;冷热进料比;装置能耗 前言 炼油厂在加工原油时,特别是加工含硫原油或高硫原油过程中,常减压蒸馏、催化裂化、重整加氢等装置会产生大量酸性水(含硫含氨污水)。由于酸性水不仅含有较多硫化物和氨,同时含有酚和油等污染物,不能直接排至污水处理场,一般污水处理场对进水中硫化氢和氨的浓度要求分别是小50mg/L和100mg/L,因此酸性水必须进行预处理后才能排入污水处理场,以保证污水处理场的正常运转和最终排出厂外的污水符合标准,不污染环境。 1 污水汽提工艺原理 NH3和H2S同属可溶于水的挥发性弱电解质,因此酸性水汽提是一个复杂的多元系化学电离和相变过程。当温度低于80℃时,污水中的硫和氨通常以硫铵盐和碳酸盐的形式存在;当温度超过110℃后,硫铵盐和碳酸盐电离水解,生成游离的H2S,NH3和CO2,主要化学方程式如下: NH4+ +HS- →← NH3液+H2S液→← NH3气+H2S气 2NH4 +S2- →← 2NH3液+H2S液→← 2NH3气+H2S气 NH4+ +HCO3- →← NH3液+CO2液+H20液→← NH3气+CO2气+H2O气 研究发现,上述化学反应过程中,温度较低时,水解常数受温度的影响不大;但当温度高于115℃,即NH4 HS水解反应的转折温度时,水解常数迅速增大,反应平衡向右移动,水溶液中的NH4+,HS-等便转化成NH3,H2S分子,它们以游离态存于水中并从液相向气相转移,从而实现污水的净化[1]。 2 酸性水汽提装置的改造 2.1 侧线气系统热量回收 酸性水汽提装置侧线系统原设四台换热器,其中三台冷却器和一台酸性水与侧线换热器,都是用来降低侧线温度。2013年检修时在二级冷凝冷却器E3406前增加一台换热器E3416,采用动力厂来热水在此取热,把侧线气的这部分热量取走,即给动力厂提供了循环热水的热量又减少了二级冷凝冷却器的循环水用量每小时减少循环水使用15t/h回收热能11578MJ/h。

硫磺回收装置管道的腐蚀与防护

硫磺回收装置管道的腐蚀与防护 摘要:论述了硫磺回收装置的反应过程,分析了硫磺回收装置管道腐蚀生成的原因与部位,腐蚀的类型,提出了防护的措施与手段。并简要对比了青岛和大连两套硫磺回收装置的管道选材。 关键词:硫磺回收 管道 腐蚀 一、概述 近年来,随着国家对环境保护的重视,以及加工进口高含酸原油,硫磺 回收装置越来越多,且规模趋于大型化。我公司设计的有大连27万吨/年,天津20万吨/年,青岛22万吨/年硫磺回收装置。深入研究硫磺装置腐蚀机理,搞好管道选材,节约投资费用,保证装置长周期安全运行具有重要的意义。 硫磺回收装置的工艺包主要有Tecnip 工艺和Luigi 工艺。都是采用Clause 部分燃烧法工艺,其原则工艺流程如图1所示。 2级硫3级硫酸性气分液罐酸性气燃烧炉1级硫冷吸 收 自装置外来的酸性气经过酸性气分液罐后进入焚烧炉燃烧产生过程气,过程气经过三级冷凝两级反应后进入尾气加热炉,温度加热到2930

进入加氢反应器,过程气在催化剂作用下进一步反应后经尾气废热锅炉减温后进入急冷塔将温度降至390后进入尾气焚烧炉焚烧后排入烟囱。硫磺装置共在三个地方发生了化学反应 1.自装置外来的酸性气在燃烧炉,与空气按一定比例混合燃烧,反应方 程如下: H2S+1/2O2→H20+1/2S H2S+3/2O2→H20+SO2 2H2S+CO2→2H20+CS2 因此从燃烧炉出来的过程气主要成份是SO2和未燃烧完的H2S。 2.过程气在反应器里在催化剂作用下进一步反应 2H2S+SO2→3S+2H20 CS2+2H20→ CO2+2H2S 因此从Clause出来的过程气主要成份是的CO2和H2S。 3.在加氢反应器,过程气中的SO2在2800~3300和H2混合,在催化剂作 用下发生放热反应生成H2S。 SO2+H2→H2S +2H20 二、腐蚀原因及防护措施 从以上的反应过程及其反应产物可以看出,硫磺回收装置中含有H2S、SO2、CS2、COS、水蒸汽和硫蒸气等,这些气体对管道产生不同程度的腐蚀。根据腐蚀机理的不同,硫磺回收装置管道的腐蚀主要有低温硫化氢腐蚀、露点腐蚀、高温硫腐蚀及电化学腐蚀。 1. 低温湿硫化氢腐蚀

酸性水汽提问题

我们的污水汽提跟你们是一样的,也是没有侧线抽出,我们净化水控制指标是硫化物8ppm 以下,氨氮30ppm以下,我们一般底温控110~116摄氏度,顶温控101~105摄氏度,塔顶酸性气过冷却器后温度不小于85摄氏度,开了大半年没堵过,分液罐液面计可以加反吹蒸汽。另外可以在酸性气线适当的位置加一条除氧水线,可以有效地清洗结晶,比蒸汽效果好 酸性水汽提工艺主要有单塔加压侧线抽出汽提、单塔低压全吹出汽提、双塔加压汽提三种工艺流程。其中单塔低压全吹出汽提工艺流程简单,将含有硫化氢和氨的混合气体排入设有烧氨喷嘴的硫磺回收装置,使氨在高于1250℃的高温下转变为氮气,硫化氢则经部分燃烧和催化反应转化为硫元素。单塔低压全吹出汽提工艺适宜于氨回收经济价值不高或氨销路不景气的情况,和其它工艺相比,其优点是投资最少,能耗最低,占地最少。 汽提塔顶含氨酸性气温度要大于90℃,否则硫化氢和氨极易结成铵盐晶体,堵塞管线。酸性汽管线必须全程保温,低压蒸汽伴热。以前我在制硫装置时,管线堵过一次,管线堵得严严实实,最后把管线切断,在地面用热水冲才处理通。 搂住所说的工艺是侧线不抽氨的常压全吹出工艺,也是目前比较流行的工艺。从塔顶出来的含氨酸性气送至硫磺回收装置处理(此时硫磺回收装置必须配备又能烧氨的烧嘴)。由于酸性气中氨含量比较高,所以容易出现形成铵盐堵塞管线。为防止此现象发生,必须控制含氨酸性气温度至少在85℃以上。通常有三种加热方式,一是采用1.0MPa蒸汽多根伴热,二是0.3MPa蒸汽夹套加热,三是电伴热。综合比较而言,采用1.0MPa蒸汽多根伴热最为适宜。 由于酸性水主要是硫化氢和氨,酸性气汽提塔的压力和顶温未控制好,就会造成酸性气中氨含量较高,在管线内冷却形成氨盐结晶。以前我们单位酸性气汽提塔塔顶压控保温不好,到天冷经常堵就是这个道理。故一定要采用强伴热的方式,如夹套或多伴热。 一般在80度以下,硫化氢和氨会生成硫氢化氨的结晶,因此,塔顶温度一般需要控制在90度左右或更高些。 气相管线的温降较大,如果不采取很好的伴热措施,酸性气管线在冬天尤其会结晶,一般加压污水汽提装置中,塔顶酸性气中的氨含量很低,一般不会形成结晶。 如果在操作上无法解决(设计上有问题--没有侧线抽出),建议将易堵的管线设备定期用蒸汽扫一下,防患于未然。 当然,解决此问题的根本还是在搞好酸性水汽提塔的操作 汽提法处理含硫污水是一种通过加热的方式,降低气相中的NH3、H2S、CO2的分压,促进它们从液相转入气相,从而将挥发性的NH3、H2S、CO2 从污水中汽提出去,达到净化污水的目的,整个汽提过程可用如下综合反应式表示。 (1) 2(H+ +OH-+NH+4+HS-)←→(NH3+H2S+H2O)液+(NH3+H2S+H2O)气 (2) 2(H+ +OH-+NH+4+HCO3-)←→ (NH3+CO2+2H2O)液+(NH3+CO2+

加氢装置常见腐蚀

加氢装置常见的腐蚀 1.氢腐蚀 氢腐蚀是在高温高压条件下,分子氢发生部分分解而变成原子氢或离子氢,并通过金属晶格和晶界向钢中扩散,扩散侵入钢中的氢与不稳定的碳化物发生化学反应,生成甲烷气泡(它包含甲烷的成核过程和成长),即Fe3C+2H2→CH4+Fe,并在晶间空穴和非金属夹杂部位聚集,而甲烷在钢中的扩散能力很小,聚积在晶界原有的微观孔隙(或亚微观孔隙)内,形成局部高压,造成应力集中,使晶界变宽,并发展成为裂纹,开始时是很微小的,但到后期,无数裂纹相连,引起钢的强度、延性和韧性下降与同时发生晶间断裂。由于这种脆化现象是发生化学反应的结果,所以他具有不可逆的性质,也称永久脆化现象。 在高温高压氢气中操作的设备所发生的氢腐蚀有两种形式:一是表面脱碳,二是内部脱碳。 表面脱碳不产生裂纹,这点与钢材暴露在空气、氧气或二氧化碳等一些气体所产生的脱碳相似,表面脱碳的影响一般很清,其钢材的强度和硬度局部有所下降而延性有所提高。 内部脱碳是由于氢扩散侵入到钢中发生反应生成甲烷,而甲烷又不能扩散到钢外,就聚集于晶界或夹杂物附近。形成了很高的局部应力,使钢产生龟裂、裂纹或鼓包,其力学性能发生了显化。 造成氢腐蚀的因素: ①操作温度、氢的分压和接触时间。温度越高或者压力越大发生

高温氢腐蚀的起始时间越早。氢分压8.0MPa是个分界线,低于此值影响比较缓和,高于此值影响比较明显,操作温度200℃是个临界点,高于此温度钢材氢腐蚀程度随介质的温度升高而逐渐加重。氢在钢中的话浓度可以用下面公式表示: C=134.9P1/2exp(-3280/T) 式中: C-氢浓度 P——氢分压,MPa T-温度,K 从式中可看出,温度对钢中氢浓度的影响比系统氢分压更显著。 ②钢材中合金元素的添加情况。在钢中不能形成稳定碳化物的元素(如镍、铜)对改善钢的抗氢腐蚀的性能毫无作用;而在钢中添加形成很稳定碳化物的元素(入铬、钼、钒、钛、钨等),就可以使碳的活性降低,从而提高钢材抗氢腐蚀的能力。关于杂质的影响,在针对2.25Cr-1Mo刚的研究已发现,锡、锑会增加甲烷气泡的密度、大小和生成速率。 ③加工过程。钢的抗氢腐蚀性能与钢的显微组织也有密切关系。回火过程对钢的氢腐蚀性能也有影响。对于淬火状态,只需很短时间加热就出现了氢腐蚀。但是一施行回火,且回火温度越高,由于可形成稳定的碳化物,抗氢腐蚀性能就得到改善,另外对于在氢环境下使用的铬钼钢设备,施行焊后热处理同样具有提高抗氢腐蚀能力的效果。曾有试试验证明,2.25Cr-1Mo钢焊缝若不进行热处理的话,则

酸性水汽提开工方案

酸性水汽提开工方案 酸性水汽提装置开工方案 一、生产方法、工艺原理 该装置采用单塔加压侧线抽出蒸汽汽提工艺,其生产方法是:利用硫化氢和二氧化碳的相对挥发度比氨高,而溶解度比氨小的特性,首先从气提塔的上部将污水中的二氧化碳汽提出来,而塔顶部的气氨被冷却水吸收,再通过控制适宜的塔体各部位温度分布,使酸性污水中的中部形成NH3/(H2S+C O2 )分子比大于10的氨聚集区,在此抽出分离,再采用变温变压的三级分凝设施,将侧线抽出的氨气逐渐浓缩,最后取的纯度较高的氨气。酸性污水单塔汽提的工艺原理 单塔汽提处理含硫污水的方法就是用带有一定压力的蒸汽,把挥发性的硫化氢、氨分别从污水中汽提出来,从而达到净化污水,提取硫化氢、氨的目的。二、工艺流程叙述 自加氢精制装置来的含硫污水汇合后进入原料水脱气罐,罐顶脱除轻油气后再进入原料水罐,灌上部分出污油进入污油罐,原料水再从原料水进料泵升压,然后分两路进入汽提塔,一路做为冷进料由汽提塔塔顶进入;另一路热进料先经过换热器与侧线气、净化水换热器换热至150?以上后进入汽提塔第1层塔盘。汽提蒸汽(1.0Mpa )作为重沸热源,为汽提塔提供热源,汽提塔的17、19、21层塔盘处开一侧线抽出口抽出富氨气,净化水由塔底排出。酸性气在不大于50?的条件下有塔顶抽出,经酸性气冷凝冷却器冷却后,经酸性气分液罐分液,酸性气去硫化氢处理装 置,分凝液返回原料水罐。 17、19、21层侧线抽出的富氨气,先与原料水换热冷凝冷却至135?左右进入一级分凝器进行分凝,气相经冷却器冷却至110?左右进入二级分凝器分凝,从二

级分凝器出来的富氨气经循环水冷却器冷却至50?左右,进入三级分凝器分凝,一、二级分凝液混合后经冷却器冷却后与三级分凝液混合返回原料水罐。 从三级分凝器出来的纯度为90%左右的氨气,经减压后进入氨精制塔,塔底经氨液循环泵循环至氨精制塔顶作为回流,塔顶出高纯度的氨气,再经氨液分离器、脱硫吸附器、氨气过滤罐后,通过氨压机升压1.5Mpa.g后变成液态氨,在经过氨油分离器分离出少量的轻油,再经过氨冷凝器冷却至40?C进入液氨罐,在经过液氨泵升压后出装置。 净化水——出装置至污水处理场或去回用装置 1)规格 H2S不大于10PPM NH3不大于50PPM PH=6--8 2)温度 40? 压力 0.4MPa(g) 精制氨-----出装置 温度 40? 压力 0.4MPa(g) 污油-----出装置不合格油品罐区温度 40? 压力0.4MPa(g) 三、装置的开工 1、开工程序 1.1 开工前的准备 ——联系调度引蒸汽、新鲜水、循环水进装置——联系调度、空压站引仪表风和工业风进装置——联系调度、电工检查电气设备,无问题后送电——联系调度、钳工进行单机试运——联系调度、动力车间做好送水准备 1.2贯通吹扫 1.2.1吹扫的目的: ——清扫设备、管线内的杂质,确保管线设备的畅通——通过吹 扫使操作人员熟悉设备、流程等 1.2.2吹扫准备工作 ——按规定拆装好盲板,把好关键阀门,以防跑串——联系施工单位,做好保运工作——准备吹扫工具 1.2.3贯通吹扫的原则及注意事项 1.2.3.1水管线用汽、水贯通;风管线用风或水贯通。 1.2.3.2吹扫前应拆除管线上的孔板、调节阀、流量计、过滤器,吹扫时可以通过副线或接临时短管代替

相关主题
文本预览
相关文档 最新文档