当前位置:文档之家› 高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案
高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理

1.如图所示,圆弧轨道AB是在竖直平面内的1

4

圆周,B点离地面的高度h=0.8m,该处切

线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:

(1)圆弧轨道的半径

(2)小球滑到B点时对轨道的压力.

【答案】(1)圆弧轨道的半径是5m.

(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.

【解析】

(1)小球由B到D做平抛运动,有:h=1

2

gt2

x=v B t

解得:

10

410/

220.8

B

g

v x m s

h

==?=

?

A到B过程,由动能定理得:mgR=1

2

mv B2-0

解得轨道半径R=5m

(2)在B点,由向心力公式得:

2

B

v N mg m

R -=

解得:N=6N

根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下

点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.

2.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道

后压缩弹簧,并被弹簧以原速率弹回,取,求:

(1)弹簧获得的最大弹性势能;

(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;

(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m

【解析】

【详解】

(1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动

能定理得:?μmgl+W弹=0?m v02

由功能关系:W弹=-△E p=-E p

解得 E p=10.5J;

(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得

?2μmgl=E k?m v02

解得 E k=3J;

(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:

①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得

?2mgR=m v22?E k

小物块能够经过最高点的条件m≥mg,解得R≤0.12m

②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心

等高的位置,即m v12≤mgR,解得R≥0.3m;

设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

?2mgR=m v12-m v02

且需要满足m≥mg,解得R≤0.72m,

综合以上考虑,R需要满足的条件为:0.3m≤R≤0.42m或0≤R≤0.12m。

【点睛】

解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

3.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数

μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶

(1)物块通过P 点的速度大小;

(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;

【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】

(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则

22y v gh =

o

sin 60y v v

=

整理可得,物块通过P 点的速度

8m/s v =

(2)从P 到M 点的过程中,机械能守恒

22

11=(1cos60)+22

o M mv mgR mv + 在最高点时根据牛顿第二定律

2

M

N mv F mg R

+= 整理得

4.8N N F =

根据牛顿第三定律可知,物块对轨道的压力大小为4.8N (3)从D 到P 物块做平抛运动,因此

o cos 604m/s D v v ==

从C 到D 的过程中,根据能量守恒定律

2

12

p D E mgx mv μ=+

C 、

D 两点间的距离

2m x =

4.如图,在竖直平面内,半径R =0.5m 的光滑圆弧轨道ABC 与粗糙的足够长斜面CD 相切于C 点,CD 与水平面的夹角θ=37°,B 是轨道最低点,其最大承受力F m =21N ,过A 点的切线沿竖直方向。现有一质量m =0.1kg 的小物块,从A 点正上方的P 点由静止落下。已知物块与斜面之间的动摩擦因数μ=0.5.取sin37°=0.6.co37°=0.8,g=10m/s 2,不计空气阻力。 (1)为保证轨道不会被破坏,求P 、A 间的最大高度差H 及物块能沿斜面上滑的最大距离L ; (2)若P 、A 间的高度差h =3.6m ,求系统最终因摩擦所产生的总热量Q 。

【答案】(1) 4.5m ,4.9m ;(2) 4J 【解析】 【详解】

(1)设物块在B 点的最大速度为v B ,由牛顿第二定律得:

2B

m v F mg m R

-=

从P 到B,由动能定理得

2

1()02

B mg H R mv +=

- 解得

H =4.5m

物块从B 点运动到斜面最高处的过程中,根据动能定理得:

-mg [R (1-cos37°)+L sin37°]-μmg cos37°?L =2102

B mv -

解得

L =4.9m

(3)物块在斜面上,由于mg sin37°>μmg cos37°,物块不会停在斜面上,物块最后以B 点为中心,C 点为最高点沿圆弧轨道做往复运动,由功能关系得系统最终因摩擦所产生的总热量

Q =mg (h +R cos37°)

解得

Q =4J

5.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离

【答案】(1)160N (2)2 【解析】 【详解】

(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =

1

2

mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:

2B

v N mg m R

-=

联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N

由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:

2D

v mg m R

=

可得:v D =2m/s

设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,

2R =

12

gt 2

解得:x =0.8m

则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x =

=

6.如图所示,半径为R 1=1.8 m 的

1

4

光滑圆弧与半径为R 2=0.3 m 的半圆光滑细管平滑连接并固定,光滑水平地面上紧靠管口有一长度为L =2.0 m 、质量为M =1.5 kg 的木板,木

板上表面正好与管口底部相切,处在同一水平线上,木板的左方有一足够长的台阶,其高度正好与木板相同.现在让质量为m 2=2 kg 的物块静止于B 处,质量为m 1=1 kg 的物块从光滑圆弧顶部的A 处由静止释放,物块m 1下滑至B 处和m 2碰撞后不再分开,整体设为物块m (m =m 1+m 2).物块m 穿过半圆管底部C 处滑上木板使其从静止开始向左运动,当木板速度为2 m/s 时,木板与台阶碰撞立即被粘住(即速度变为零),若g =10 m/s 2,物块碰撞前后均可视为质点,圆管粗细不计.

(1)求物块m 1和m 2碰撞过程中损失的机械能; (2)求物块m 滑到半圆管底部C 处时所受支持力大小;

(3)若物块m 与木板及台阶表面间的动摩擦因数均为μ=0.25,求物块m 在台阶表面上滑行的最大距离.

【答案】⑴12J ⑵190N ⑶0.8m 【解析】

试题分析:(1)选由机械能守恒求出物块1m 下滑到B 点时的速度;1m 、2m 碰撞满足动量守恒,由221B 1122

E m v mv =

-共机求出碰撞过程中损失的机械能;(2)物块m 由B 到C 满足机械能守恒,在C 点由牛顿第二定律可求出物块m 滑到半圆管底部C 处时所受支持力大小;(3)根据动量守恒定律和动能定理列式即可求解. ⑴设物块1m 下滑到B 点时的速度为B v ,由机械能守恒可得:

2

111B 12

m gR m v =

解得:B 6/v m s =

1m 、2m 碰撞满足动量守恒:1B 12()m v m m v =+共

解得;2/v m s 共=

则碰撞过程中损失的机械能为:221B 111222E m v mv J =-=共机 ⑵物块m 由B 到C 满足机械能守恒:222C 11222

mv mg R mv 共+?= 解得:C 4/v m s =

在C 处由牛顿第二运动定律可得:2C

N 2

v F mg m R -=

解得:N 190F N =

⑶设物块m 滑上木板后,当木板速度为22/v m s =时,物块速度为1v , 由动量守恒定律得:C 12mv mv Mv =+ 解得:13/v m s =

设在此过程中物块运动的位移为1x ,木板运动的位移为2x ,由动能定理得: 对物块m :2211C 1122

mgx mv mv μ-=- 解得:1 1.4x m = 对木板M :22212

mgx Mv μ= 解得:20.4x m =

此时木板静止,物块m 到木板左端的距离为:3211x L x x m =+-= 设物块m 在台阶上运动的最大距离为4x ,由动能定理得:

23411

()02

mg x x mv μ-+=-

解得:40.8x m =

7.如图所示,AB 是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数

=0.30μ,BCD 是半径为R =0.2m 的光滑圆弧轨道,它们相切于B 点,C 为圆弧轨道的最低

点,整个空间存在着竖直向上的匀强电场,场强E = 4.0×103N/C ,质量m = 0.20kg 的带电滑块从斜面顶端由静止开始滑下.已知斜面AB 对应的高度h = 0.24m ,滑块带电荷q = -5.0×10-4C ,取重力加速度g = 10m/s 2,sin37°= 0.60,cos37°=0.80.求:

(1)滑块从斜面最高点滑到斜面底端B 点时的速度大小; (2)滑块滑到圆弧轨道最低点C 时对轨道的压力. 【答案】(1) 2.4m/s (2) 12N 【解析】 【分析】

(1)滑块沿斜面滑下的过程中,根据动能定理求解滑到斜面底端B 点时的速度大小; (2)滑块从B 到C 点,由动能定理可得C 点速度,由牛顿第二定律和由牛顿第三定律求解. 【详解】

(1)滑块沿斜面滑下的过程中,受到的滑动摩擦力:

()cos370.96N f mg qE μ=+?=

设到达斜面底端时的速度为v 1,根据动能定理得:

()2

11sin 372

h mg qE h f

mv +-=o

解得:

v 1=2.4m/s

(2)滑块从B 到C 点,由动能定理可得:

()()22

2111=1cos3722

m mg q v E v m R +?--

当滑块经过最低点时,有:

()2N 2

F mg qE v m R

-+= 由牛顿第三定律:

N N 11.36N F F ==,

方向竖直向下. 【点睛】

本题是动能定理与牛顿定律的综合应用,关键在于研究过程的选择.

8.如图为一水平传送带装置的示意图.紧绷的传送带AB 始终保持 v 0=5m/s 的恒定速率运行,AB 间的距离L 为8m .将一质量m =1kg 的小物块轻轻放在传送带上距A 点2m 处的P 点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N .小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.求:

(1)该圆轨道的半径r ;

(2)要使小物块能第一次滑上圆形轨道达到M 点,M 点为圆轨道右半侧上的点,该点高出B 点0.25 m ,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围.

【答案】(1)0.5r m =(2)77?

.5,05?.5m x m x m ≤≤≤≤ 【解析】 【分析】 【详解】

试题分析:(1)小物块在传送带上匀加速运动的加速度2

5/a g m s μ==

小物块与传送带共速时,所用的时间0

1v t s a

=

=

运动的位移0

2.52v x m a

?=

=<L -2=6m 故小物块与传送带达到相同速度后以05/v m s =的速度匀速运动到B ,然后冲上光滑圆弧

轨道恰好到达N 点,故有:2N

v mg m r

=

由机械能守恒定律得

22011(2)22

N mv mg r mv =+,解得0.5r m = (2)设在距A 点x 1处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒

得:1()mg L x mgh μ-= 代入数据解得17.5?

x m = 设在距A 点x 2处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:

2()mg L x mgR μ-=代入数据解得27?x m =

则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围

同理,只要过最高点N 同样也能过圆心右侧的M 点,由(1)可知38 2.5 5.5?

x m m m -== 则:0 5.5x m ≤≤.

故小物块放在传送带上放在传送带上距A 点的距离范围:77?.505?.5m x m x m ≤≤≤≤和 考点:考查了相对运动,能量守恒定律的综合应用

9.如图所示,倾角为45α=?的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;

(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)

【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214

μ-= 【解析】 【分析】 【详解】

(1)小滑块从a 点飞出后做平拋运动: 2a r v t =

竖直方向:2

12

r gt = 解得:a v gr =

小滑块在a 点飞出的动能211

22

k a E mv mgr =

= (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:

2211

222

m a mv mv mg r =+? 在最低点由牛顿第二定律:2

m mv F mg r

-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg

(3)bd 之间长度为L ,由几何关系得:()

221L r =+ 从d 到最低点e 过程中,由动能定理21

cos 2

m mgH mg L mv μα-?= 解得42

14

μ-=

10.一质量为m =0.5kg 的电动玩具车,从倾角为θ=30°的长直轨道底端,由静止开始沿轨道向上运动,4s 末功率达到最大值,之后保持该功率不变继续运动,运动的v -t 图象如图所示,其中AB 段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g =10m/s 2.

(1)求玩具车运动过程中的最大功率P ;

(2)求玩具车在4s 末时(图中A 点)的速度大小v 1; (3)若玩具车在12s 末刚好到达轨道的顶端,求轨道长度L . 【答案】(1)P =40W (2)v 1=8m/s (3)L =93.75m 【解析】 【详解】

(1)由题意得,当玩具车达到最大速度v =10m/s 匀速运动时, 牵引力:F =mg sin30°+0.3mg

代入数据解得:P =40W

(2)玩具车在0-4s 内做匀加速直线运动,设加速度为a ,牵引力为F 1, 由牛顿第二定律得:F 1-(mg sin30°+0.3mg )=ma 4s 末时玩具车功率达到最大,则P =F 1v 1 由运动学公式v 1=at 1 (其中t 1=4s ) 代入数据解得:v 1=8m/s

(3)玩具车在0~4s 内运动位移x 1=2112

at 得:x 1=16m

玩具车在4~12s 功率恒定,设运动位移为x 2,设t 2=12s 木时玩具车速度为v ,由动能定理得

P (t 2-t 1)-(mg sin30°+0.3mg )x 2=2211122

mv mv - 代入数据解得:x 2=77.75m 所以轨道长度L =x 1+x 2=93.75m

11.将一根长为L 的光滑细钢丝ABCDE 制成如图所示的形状,并固定在竖直平面内.其中

AD 段竖直,DE 段为

3

4

圆弧,圆心为O ,E 为圆弧最高点,C 与E 、D 与O 分别等高,BC =1

4

AC .将质量为m 的小珠套在钢丝上由静止释放,不计空气阻力,重力加速度为g . (1)小珠由C 点释放,求到达E 点的速度大小v 1;

(2)小珠由B 点释放,从E 点滑出后恰好撞到D 点,求圆弧的半径R ;

(3)欲使小珠到达E 点与钢丝间的弹力超过4

mg

,求释放小珠的位置范围.

【答案】⑴v 1=0; ⑵243L

R π

=+; ⑶C 点上方低于34(43)L π+处滑下或高于

54(43)L π+处 【解析】

(1)由机械能守恒可知,小珠由C 点释放,到达E 点时,因CE 等高,故到达E 点的速度为零;

(2)由题意:13(2)44BC L R R π??=

-?+????

;小珠由B 点释放,到达E 点满足:2

12

E mgBC mv =

从E 点滑出后恰好撞到D 点,则E R v t = ;2R

t g =

联立解得:243L R π

=+; (3)a.若小珠到达E 点与小珠上壁对钢丝的弹力等于14mg ,则2

11

4E v mg mg m R

-= ;从

释放点到E 点,由机械能守恒定律:2

1112

E mgh mv = ; 联立解得:3384(43)

L h R π=

=+ b.若小珠到达E 点与小珠下壁对钢丝的弹力等于14mg ,则2

21

4E v mg mg m R

+= ;从释放

点到E 点,由机械能守恒定律:2

2212

E mgh mv = ; 联立解得:5584(43)L

h R π=

=+ ; 故当小珠子从C 点上方低于34(43)

L π+ 处滑下或高于

54(43)

L π+ 处滑下时,小珠到达E 点与钢丝间的弹力超过1

4mg .

12.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,在A 的上方O 点用细线悬挂一小球C (可视为质点),线长L =0.8 m .现将小球C 拉至水平无初速度释放,并在最低点与A 物体发生水平正碰,碰撞后小球C 反弹的最大高度为h =0.2 m .已知A 、B 、C 的质量分别为m A =4 kg 、m B =8 kg 和m C =1 kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10 m/s 2.

(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;

(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1) 30N (2) 1.5m/s (3) 0.375m 【解析】

解:(1)小球下摆过程机械能守恒,由机械能守恒定律得:201

2

C C m gL m v = 代入数据解得:04v =m/s

对小球,由牛顿第二定律得:20

c c v T m g m L

-=

代入数据解得:T =30N

(2)小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向 由动量守恒定律得:0C C c A A m v m v m v =-+ 代入数据解得:A v =1.5m/s

(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:()A A A B m v m m v =+ 代入数据解得:v =0.5m/s 由能量守恒定律得:()2211

22

A A A A

B m gx m v m m v μ=-+ 代入数据解得:x =0.375m 。

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

(word完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

人教版高中物理必修二高一物理动能定理机械能守恒检测(计算题)

高中物理学习材料 金戈铁骑整理制作 高一物理动能定理机械能守恒检测(计算题) 1.“绿色奥运”是2008年北京奥运会的三大理念之一,奥委组决定在各比赛场馆适用新型节能环保电动车,届时奥运会500名志愿者将担任司机,负责接送比赛选手和运输器材。在检测某款电动车性能的某次试验中,质量为8×102kg 的电动车由静止开始沿平直公路行驶,达到的最大速度为15m/s,利用传感器测得此过程中不同的时刻电动车的牵引力F 与对应的速度v ,并描绘出F —1/v 图像(图中AB 、BO 均为直线)。假设电动车在行驶中所受的阻力恒定,求: (1)根据图线ABC ,判断该环保电动车做什么 运动并计算环保电动车的额定功率 (2)此过程中环保电动车做匀加速直线运动的 加速度大小 (3)环保电动车由静止开始运动,经过多长时间 速度达到2m/s? 2.如图所示,粗糙的斜面通过一段极小的圆弧与光滑的半圆 轨道在B 点相连,整个轨道在竖直平面内,且C 点的切线水平。 现有一个质量为m 且可视为质点的小滑块,从斜面上的A 点由 静止开始下滑,并从半圆轨道的最高点C 飞出。已知半圆轨道的 半径R=1m, A 点到水平底面的高度h=5m, 斜面的倾角θ=450,滑块 与斜面间的动摩擦因数μ=0.5, 空气阻力不计,求小滑块在斜面上的 落点离水平面的高度。(g=10m/s 2) 3.在光滑的水平面有一个静止的物体。现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J 。则在整个过程中,恒力甲、乙对物体做的功分别是多少? 4.从倾角为θ的斜面上,水平抛出一个小球,小球的初动能为E K0, F / N C B A 151 2000 400 V 1/s.m -1 O C O · y R A B H θ x C θ

高考物理动能与动能定理试题(有答案和解析)含解析

高考物理动能与动能定理试题(有答案和解析)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道

后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得: ?2mgR=m v12-m v02 且需要满足m≥mg,解得R≤0.72m, 综合以上考虑,R需要满足的条件为:0.3m≤R≤0.42m或0≤R≤0.12m。 【点睛】 解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

高中物理必修二动能和动能定理

高中物理必修二动能和动能定理 【知识整合】 1、动能:物体由于_____________而具有的能量叫动能。 ⑴动能的大小:_________________ ⑵动能是标量。 ⑶动能是状态量,也是相对量。 2、动能定理: ⑴动能定理的内容和表达式:____________________________________________ ⑵物理意义:动能定理指出了______________________和_____________________的关系,即外力做的总功,对应着物体动能的变化,变化的大小由________________来度量。 我们所说的外力,既可以是重力、弹力、摩擦力,又可以是电场力、磁场力或其他力。物体动能的变化是指_____________________________________________。 ⑶动能定理的适用条件:动能定理既适用于直线运动,也适用于________________。 既适用于恒力做功,也适用于______________________。力可以是各种性质的力,既可以同时做用,也可以____________________,只要求出在作用过程中各力做功的多少和正负即可,这些正是动能定理解题的优越性所在。 【重难点阐释】 1、应用动能定理解题的基本步骤: ⑴选取研究对象,明确它的运动过程。 ⑵分析研究对象的受力情况和各力做功的情况:受哪些力?每个力是否做功?做正功还是负功?做多少功?然后求各力做功的代数和。 ⑶明确物体在过程的始末状态的动能E k1和E k2 ⑷列出动能定理的方程W合=E k2-E k1及其它必要的解题方程,进行求解。 2、动能定理的理解和应用要点: (1)动能定理的计算式为W合=E k2-E k1,v和s是想对于同一参考系的。 (2)动能定理的研究对象是单一物体,或者可以看做单一物体的物体系。 (3)动能定理不仅可以求恒力做功,也可以求变力做功。在某些问题中由于力F的大小发生变化或方向发生变化,中学阶段不能直接利用功的公式W=FS来求功,,此时我们利用动能定理来求变力做功。 (4)动能定理不仅可以解决直线运动问题,也可以解决曲线运动问题,而牛顿运动定律和运动学公式在中学阶段一般来说只能解决直线运动问题(圆周和平抛有自己独立的方法)。(5)在利用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(如加速和减速的过程),此时可以分段考虑,也可整体考虑。如能对整个过程列动能定理表达式,则可能使问题简化。在把各个力代入公式:W1﹢W2﹢……﹢Wn=E k2-E k1时,要把它们的数值连同符号代入,解题时要分清各过程各力做功的情况。 【典型例题】 另一端施加大小为F1的拉力作用,在水平面上 做半径为R1的匀速圆周运动今将力的大小改变

高一物理 动能定理练习题

动能定理练习 巩固基础 一、不定项选择题(每小题至少有一个选项) 1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 2.下列说法正确的是( ) A .某过程中外力的总功等于各力做功的代数之和; B .外力对物体做的总功等于物体动能的变化; C .在物体动能不变的过程中,动能定理不适用; D .动能定理只适用于物体受恒力作用而做加速运动的过程。 3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 C .两物块速度变化相等 D .水平拉力对两物块做功相等 4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能( ) A .与它通过的位移s 成正比 B .与它通过的位移s 的平方成正比 C .与它运动的时间t 成正比 D .与它运动的时间的平方成正比 5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D .0.5L 8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 11.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

高中物理动能定理的综合应用试题经典及解析

高中物理动能定理的综合应用试题经典及解析 一、高中物理精讲专题测试动能定理的综合应用 1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求: (1)汽车所能达到的最大速度; (2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】 (1)汽车匀加速结束时的速度 11120m /s v a t == 由P=Fv 可知,匀加速结束时汽车的牵引力 1 1F P v = =1×104N 由牛顿第二定律得 11F f ma -= 解得 f =5000N 汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力 F=f =5000N 由P Fv =可知,汽车的最大速度: v=P P F f ==40m/s (2)汽车匀加速运动的位移 x 1= 1 140m 2 v t = 对汽车,由动能定理得 21121 02 F x Pt fs mv =--+ 解得 s =480m 2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B

点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求: (1)物块与传送带间的动摩擦因数; (2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 3 5 (2) -3.75 J 【解析】 解:(1)由图象可知,物块在前0.5 s 的加速度为:21 11 a =8?m/s v t = 后0.5 s 的加速度为:222 22 2?/v v a m s t -= = 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得: 1mgsin mgcos ma θμθ+= 物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得: 2mgsin mgcos ma θμθ-= 联立解得:3μ= (2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:11 12 v t x = 则摩擦力对物块做功:11· W mgcos x μθ= 在后0.5 s ,物块对地位移为:12 122 v v x t += 则摩擦力对物块做功22· W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J 3.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)

高中物理动能定理的综合应用练习题及答案

高中物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求: (1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。 【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】 (1)物块A 从出发至N 点过程,机械能守恒,有 22011 222 mv mg R mv =?+ 得 20445m /s v v gR =-= (2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有 2 N v mg F m R += 得物块A 受到的弹力为 2 N 150N v F m mg R =-= 由牛顿第三定律可得,物块对轨道的作用力为 N N 150N F F '== 作用力方向竖直向上 (3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有 2 0102 mgx mv μ-=- 得

12.5m x = 2.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

相关主题
文本预览
相关文档 最新文档