当前位置:文档之家› 钢栈桥施工技术

钢栈桥施工技术

钢栈桥施工技术
钢栈桥施工技术

海上钢栈桥施工技术

1、前言

桥梁施工沿线一般都要设施工便道辅助施工,由于桥梁施工环境的特殊性,必须采用相应的措施,保证桥梁正常施工。海域桥梁基础施工一般都采用搭设钻孔平台辅助施工的方法进行,在海滩环境可采用吹填的施工方法构筑施工便道,跨河跨海桥梁施工便道可采用钢栈桥的形式,针对跨纳潮河特大桥施工环境特点,并综合考虑施工进度与工程造价问题,最终设计钢栈桥与钻孔平台辅助主桥施工,钢栈桥施工便道不仅能够解决海上桥梁施工没有合适的操作空间的技术难点,而且还提供了安全、舒适的海上施工作业平台,同时对于海域环境没有污染,桥梁建成后容易恢复沿线海域环境,并不影响设计通航。

1、2工程概况

纳潮河特大桥位于曹妃甸岛后浅滩,处于曹妃甸煤码头通路路基工程公路段以南,曹妃甸综合服务区围海造地二期工程以北,已建成通车的通岛路河规划一港池之间,滩面高程约-1.0m~0.7m,因周边工程取砂,本工程范围内局部分布有取砂坑,最深处约-17.9m。曹妃甸特大桥全桥长7477.46m,共242孔,位于水中部分约为1.44Km。该特大桥自191#至216#共有26个墩台在纳潮河水域施工。设计浅滩部位采用吹填的方法构筑施工便道,水域部分全部设钢栈桥及钻孔平台,钢栈桥全长897m,根据主跨基础结构尺寸与施工需求分别设为8m、12m、15m三种宽度。

2、方案选择

为满足大桥桩基及墩台施工需要,采用在主桥桥线旁建造临时钢栈桥以辅助主桥施工的方案。根据主桥施工需要,综合考虑当地气象、水文等资料,设计钢栈桥结构形式为:栈桥标准桥跨为15m长,每四个标准跨为一联并设伸缩缝。下部结构采用打入式钢管桩基础。钢管桩顶面采用2I45b工字钢为横向连接的垫梁,顶面铺设“321”型贝雷片组成的贝雷梁,梁部结构为间距0.9m的双排单层“321”贝雷桁架,梁高1.5m,贝雷梁上面铺设间距为0.6m的型号为I25a工字钢,工字钢长度比桥面宽度大1.0m,桥面采用[30b槽钢满铺。钻孔平台也采用此方案,平台顶面标高与栈桥顶面标高一致。

结合工程实际情况,将距承台边缘最近距离为2.5m处作为栈桥边缘对钢栈桥进行设计施工,由于沿线承台结构尺寸不同,栈桥桥面设有8m、12m、15m三种宽度,栈桥平面变宽形式如“图1”所示,综合考虑水文特点及施工需要,将钢栈桥桥面顶标高设为5m。

3、钢栈桥辅助主桥施工的特点

(1)解决了海上桥梁施工没有合适的操作空间的技术难点,提供了安全、舒适的海上施工作业平台。

(2)海上钢栈桥建设工期较短,可利用性较大,为工程进度争取时间。

(3)海上钢栈桥连通了两岸交通,为沿线桥梁施工提供了极大的方便,有利于工程质量与进度的保障。

(4)海上钢栈桥使用材料全部为常见钢材,易于购置与回收,节约成本。

(5)根据海上钢栈桥的结构特点,可以方便的调整钢栈桥结构,以满足局部不同的承载力要求。

(6)海上钻孔平台顶标高与钢栈桥桥面标高一致,为水中桩基施工提供了良好的作业空间,同时可以辅助避车,减少或省去避车台的设置,降低材料费用。

(7)钢栈桥建设、使用过程中不污染施工海域环境,拆除后容易恢复海域环境与航道通航。

4、栈桥、钻孔平台施工工艺

(1)施工准备

施工之前,全面掌握当地气候条件、水文特征、地质情况,合理安排管理人员,组建项目部,对项目各项工作分级、分工管理;项目经理部全面负责本工程组织实施、调度指挥、施工管理、进度控制、工程创优、安全管理、对外协调等全过程控制管理工作。及时根据计划工期合理安排作业面,组织施工人员、设备与材料进场。编制施工组织计划及施工作业指导书,有计划有步骤的开始钢栈桥的全面建设工作。

(2)测量平台搭设及测量放线

因栈桥较长且大部分在海水中,为精确定位,在施工前首先沿栈桥轴线两侧沿路线方向每500m搭设一座测量平台,测量平台与栈桥垂直距离为300m,测量平台设计为边长为 4.5m的正方形,平台面标高与栈桥面标高一致,测量平台设计示意图如“图2”所示。测量平台基础采用Φ820螺旋焊管,钢管桩基础入土深度12m,管桩基础间设剪刀撑,以I45b为横梁,以间距为1m的I25a为分配梁铺设在横梁上,焊接固定,面板采用[30b铺面,面板间焊接使之成为一体,且在平台四周用Φ50钢管焊接高1.2m的护栏,并留出入口,在出入口下方设爬梯供测量人员使用。测量平台施工完成后在平台上借助于GPS测定出一个定点坐标及高程,施工过程中利用

全站仪借助测量平台进行全部测量定位作业。测量平台完成后首先按照设计图纸精确定出管桩基础的实际位置,并指挥定位船定位。

(3)栈桥桥台施工

栈桥桥台位置采用填土筑岛,以双排中心间距为 1.5m的管桩基础作支撑,桩顶铺设I45工字钢承压,以I25a工字钢为横向分配梁,面板采用[30b槽钢满铺,端部一排管桩外侧铺衬两层荆芭挡土,桥台外侧填土至桥面标高,便道与栈桥桥台连接的填土过渡段两侧抛石护坡处理,桥台侧面示意图如“图3”示。

(4)管桩基础打设

根据设计承载力要求,普通墩管桩基础统一采用Φ820螺旋焊管,制动墩及深水处双排管桩采用Φ630螺旋焊管,管桩使用前必须进行防腐处理(后面详细介绍防腐方案),管桩基础入土深度必须保证在12m以上,普通桩位采用垂直于路线布置单排管桩基础,每排设3根管桩,伸缩缝位置采用制动墩管桩基础(制动墩示意图如“图4”示),由双排管桩组成,低潮位水深大于12m的区域,统一采用双排管桩基础。管桩运输到施工现场后,以方便施工为目标,对管桩进行对接加长作业,一般可根据运输船长度加长至18m左右,对接加长时必须对对接部位增设加强钢板,对接完成后,由运输船运至桩位。

图1

钢栈桥施工方案

钢栈桥施工方案 1.1编制依据 (1)、成都二绕城高速西段B2合同工程施工合同及招标文件(2)、成都二绕城高速西段B2合同工程二阶段施工图设计文件(3)、公路桥涵设计通用规范(JTG D60-2004); (4)、公路桥涵地基与基础设计规范(JTJ D63-2007);(5)、公路桥涵钢结构设计规范(GB50017-2003); (6)、公路工程水文勘测设计规范(JTG C30-2002); (7)、港口荷载规范(JTJ215-98); (8)、装配式公路钢桥多用途使用手册(广州军区工程科研所);(9)、公路桥涵施工技术规范(JTJ041-2000); (10)、公路工程质量评定标准(JTG F80/1-2004);

(11)、港口工程设计手册。 (12)、本公司在大海、长江、黄河项目施工中的栈桥设计与制安经验 1.2工程概况 1.2.1项目环境基本情况 成都二绕城高速西段B2合同工程府河特大桥工程,主桥为三跨连续箱梁桥,跨越府河。府河为季节性河流,河水较浅,常规深度约4~5米;水流湍急,估计2m/s左右;河中丁坝和溢流坝较多,多横跨府河;河滩较宽较平缓;河床淤积层估计约2~3米,其下为较厚的稍密实砂卵石层,卵石粒径2~40cm。 工程所在地外围交通较发达,需建设顺路线方向施工便道进入各个施工点。 1.2.2项目总体构造 府河特大桥主桥采用72+120+72m变截面连续箱梁。本栈桥为主桥施工和对岸引桥施工服务。 本栈桥考虑河床覆盖层浅、砂卵石层厚的特点,将栈桥桥跨布置为4×9+3+12+3+4×9m=90m布置。中间2个3米跨的钢管桩,各自4根连接成单元整体桥墩,以抵抗栈桥受水流冲击、河流漂浮物阻力、钢管桩埋置河床深度不足的影响。 1.2.3工程地质

钢栈桥专项施工方案 ()

漳州沿海大通道漳浦段佛昙湾特大桥工程 钢栈桥及平台专项施工方案 编制人:丁桂生 审核人:罗小红 批准人:高向鹏

中国葛洲坝集团第五工程有限公司 漳州沿海大通道漳浦段佛昙湾、旧镇湾特大桥工程项目经理部 2014年12月1日

一、编制依据 (1)漳州沿海大通道漳浦段佛昙湾特大桥工程施工设计图纸 (2)漳州沿海大通道漳浦段佛昙湾特大桥工程岩土工程勘察报告。 (3)施工现场调查。包括施工场地和周边环境条件,水、电、路、临时租地和地材等情况,水文地质、气象、交通、机械、物资采购等资料。 (4)国家及福建省现行的施工技术规程、验收标准及质量、安全技术规程。 (5)根据我单位的综合施工能力及近年来参加类似工程的经验,投入的各类资源和技术、管理等。 二、工程概况 佛昙湾特大桥里程桩号K38+548.05—K41+49.25,起于整美村南侧,终于佛昙镇后社村渡头。佛昙湾特大桥主桥上部结构为77+140+77m的三跨变高度预应力砼连续刚构跨北港航道,引桥为30m标准跨径装配式预应力砼连续T梁,跨南港航道处为4×40mT 梁。主桥下部结构采用双肢薄壁实心墩、钻孔灌注桩基础。引桥下部结构采用柱式墩、肋板式台,钻孔灌注桩基础。全桥长2501.20m。 全桥约设置2420m的施工钢栈桥,布置在大桥左侧。钢栈桥宽度为6米,考虑水位及浪高,计划栈桥顶部高程6.0m,高于设计最高水位(3.58m)约2.4m。贝雷梁底部高程低于桥面约1.9m,考虑其阻水安全,实际最高设防水位按4.5m控制。栈桥、水上钢平台拟仅用于主桥下部结构施工,少量边跨膺架的安装。以砼罐车运输、35t汽车吊起重作业、50t履带吊零星起重作业,作为工况控制。 栈桥起点与桥头混凝土硬化的便道相接,各个桥墩设置钻孔平台,和栈桥相连。栈桥、桩基钢平台拟“L”字型布置,栈桥、钢平台采用钢管桩+贝雷梁+防滑钢桥面板的结构。18#、19#墩中间预留Ⅱ级航道通航孔,总净宽100m。 三、气象、水文、地质 项目所在区域属南亚亚热带海洋性季风气候,常年气候温和,冬暖夏凉,全年无

钢栈桥验收方案

浠水二桥钢栈桥验收方案 一、工程概况 为满足县政府目标工期要求,根据现场情况,拟定搭钢栈桥施工。 钢栈桥宽度为8m,跨径组合为6*12m,总长为72m,采用φ630*10的钢管桩。栈桥下部结构均采用钢管桩基础,上部结构采用贝雷梁、型钢组拼,桥面系采用专用桥面板。 二、执行标准和依据 1、工程施工合同文本 2、工程设计施工图及设计变更联系单 3、《建筑工程施工质量验收统一标准》GB50300-2013 4、《建筑地基基础工程施工质量验收规》GB50202-2002 5、《建筑桩基检测技术规》JGJ106-2014 6、《城市桥梁工程施工与质量验收规》(CJJ-2008); 7、《公路桥涵施工技术规》(JTG/T F50-2011); 8、《建筑桩基技术规》(JGJ 94-2008); 9、《建筑施工扣件式钢管脚手架安全技术规》(JGJ 130-2011)。 三、验收围 钢栈桥下部结构均采用钢管桩基础,上部结构采用贝雷梁、型钢组拼,桥面系采用专用桥面板。验收围包括钢栈桥全部施工容。 四、验收人员 1、总承包单位和分包单位技术负责人或授权委派的专业技术人员、项目负责人、项目技术负责人、专项施工方案编制人员、项目专职安全生产管理人员及相关人员; 2、监理单位项目总监理工程师及专业监理工程师; 3、有关勘察、设计和监测单位项目技术负责人。

4、安装施工单位技术负责人。 五、验收检查方法 按照浠水二桥钢栈桥施工验收表和《钢栈桥静载试验方案》的容进行验收。 六、验收程序 验收由生产经理主持,请监理工程师、测量工程师及有关人员参加。验收的结果及时填写相关工程验收记录表格,并请相关人员签认。 附件: 钢栈桥静载试验方案 一、试验目的 1、检验钢管桩单桩承载力; 2、检验钢栈桥结构焊接质量; 3、检验钢栈桥结构整体稳定性; 4、实测贝雷梁及钢管桩桩身弹性变形。 二、试验方法概述 本次试验选取浠水二桥钢栈桥作为试验对象,利用平板车、载重汽车作为加载平台,荷载物可以选择袋装水泥或各类型钢,分三级加载(卸载)。第一级加载(卸载)60%设计荷载,第二级80%,第三级100%。加载点位于跨中纵横桥轴线交叉处,以此模拟贝雷梁在最不利的位置受到最大汽车荷载作用效应,具体布置如图2-1所示:

钢栈桥论文

钢栈桥在中梁二级电站引水隧洞交叉施工中的应用 刘利华 [摘要]:在施工部位架设栈桥,为降低栈桥跨度,将原设计底板分缝长度12m 调整为6m,分缝处底板增设止水带,边顶拱处不再增设。栈桥架设高度高于设计混凝土底板20cm,桥面净空6m长度,与上下游引桥搭接各25cm,实际桥面长度为7m,上下游各设4m长度的引桥。施工过程采取跳仓进行,有效解决施工干扰、确保施工质量,减少工序,缩短先洞挖再衬砌的直线工期。 [关键词]:洞室交叉施工施工难点钢栈桥设计工艺流程 一、工程概述 中梁二级电站为径流引水式电站,为Ⅳ等小(1)型工程,枢纽由首部建筑物、引水建筑物、厂房及开关站组成。 首部建筑物位于半溪沟下游约400.0m的西溪河河床,包括左岸非溢流坝、河床滚水坝和右岸拉沙闸。左岸非溢流坝采用混凝土重力坝,长 5.0m,最低建基高程425.00m,坝顶高程433.50m,最大坝高8.5m,坝顶宽度3.0m。河床滚水坝为自由溢流式混凝土低滚水坝,长92.0m,最低建基面高程418.40m,堰顶高程427.40m,坝高9.0m,上游设粘土铺盖防渗,下游采用综合消力池消能。拉沙闸布置于滚水坝右端,为宽顶堰型平底闸,底板高程421.40m,孔口尺寸为6.0m×6.0m(宽×高),上游设粘土铺盖防渗,下游采用综合消力池消能。 引水建筑物布置在右岸,包括进水口、无压引水隧洞、压力前池及压力钢管。进水口布置在拉沙闸右侧岸边,为一控制闸,底板高程423.40m,闸室长29.695m,内设拦污栅、平板检修门和弧形工作门各一道,闸室末端接长8174.938m的引水隧洞,引水隧洞为城门洞型,断面尺寸为 5.95m×7.102m(宽×高),纵坡桩号引0±000.00~引0+195.00m段为i=1/300,桩号引0+195.00~引0+8174.938m段为i=1/1500,隧洞设计引用流量51.75m3/s。压力前池布置于隧洞末端,正常运行水位421.80m,总容积5500m3,有效容积2500m3。前池底板高程413.70m,电站进水室顶部高程428.00m,从上游往下游依次设拦污栅、事故检修门和通气孔,喇叭口下部设冲砂孔。进水室采用明敷钢管与厂房相连,一管一机供水,单管长87.58m,内径2.2m。 厂房布置在下堡镇大水溪沟左岸,为岸边地面式厂房,主厂房尺寸为43.6m×113.9m×30.5m(长×宽×高),内装3台HLA551c-LJ-135型水轮发电机组,单机容量0.8万kW,总容量2.4万kW。主变及开关站布置在主厂房外安装场一端,为露天开敞式,面积为29.0m×17.0m(长×宽),地面高程377.35m。

官洲河特大桥钢栈桥施工技术交底

官州河特大桥钢栈桥施工技术交底

官州河特大桥钢栈桥施工技术交底 一、水文情况 桥区水域处于珠江三角洲河网区。桥区水域水位呈周期变化,潮流为往复流,即桥区水域既受径流作用,又受潮流影响,具有水丰沙少和潮汐为主的特性。桥区天然深槽稳定性好,冲淤基本平衡。 官洲河水道径流来自西江、北江和流溪河,其年际变化和年内分配与西江、北江的变化一致。根据下游大虎站资料统计,桥址处水道年平均径流量为81.4亿m3,年平均径流量为258.1m 3/s,小潮和大

潮的全潮下泄量分别是27.484 Xl06m3和14.568 Xl06m3,平均径流量分别为296.0 xi06m3和166.8 xi06m3。 桥位区多年平均潮差为 1.69m ,最大为 3.64m ;平均高潮位 5.974m ,平均低潮位4.334m ,最高潮位7.564m ,最低潮位3.264m。 二、栈桥施工 为满足现场主墩施工需要,拟在官洲河水道南、北两侧分别设置 213.0m 、418.0m 钢栈桥,钢栈桥顶宽6.0m ,跨径主要为15.0m ,伸缩缝处跨径为 3.0m ,其余跨径均小于15.0m 。上部构造由贝雷架、型钢构成,其中承重结构采用双排单层上下加强的贝雷架形式,贝雷下弦杆处每一联内均布设置 3 道横梁和斜撑,左右幅贝雷桁架之间每3m 设一道剪刀撑,采用[20a 型钢;贝雷下弦杆与钢管桩顶2I32a 分配梁之间采用[14a 型钢设置限位装置,上弦杆与I25a 分配梁之间通过垫板与拉杆进行固定,具体详见《钢栈桥细部构造加工图》;贝雷架上横桥向采用I25a 的型钢作为分配梁,其间距为 75cm ,分配梁上铺设顺桥向铺设[20a 型钢做面板,其相邻两型钢之间的间距为5cm ,桥面两侧设置1.2m的安全护栏,护栏采用 ①48mm , S2.5mm的钢管构成, 护栏设置照明用路灯和警示灯。钢栈桥基础采用单排钢管桩,规格为①63cm、S8mm的螺旋钢管,横向中心距离为 4.00m ;钢管桩顶横桥向采用2132a设置分配梁,并在钢管桩采用S =12mm 钢板焊设牛腿,分配梁与牛腿之间要密贴并进行间断焊固定。为了加强钢管整体稳定性,在钢管桩与顶端分配梁之间采用 [14a 型钢设置短斜撑。钢管桩振沉拟采用DZ60 型振桩锤悬打, 采用悬臂式钢管导向平台作为振沉钢管桩的导向设置。

临时钢栈桥施工方案(精)

北京新机场旅客航站楼及综合换乘中心(核心区)工程(一标段)临时钢栈桥施工方案 江苏沪宁钢机股份有限公司 2016年9月 北京新机场旅客航站楼及综合换乘中心(核心区)工程(一标段)编制: 审核: 审批:

临时钢栈桥施工方案 根据施工方案,F1层劲性结构吊装采用100吨汽车吊上F1层楼面,待F1层混凝土底板浇筑完成并达到规定的强度后,汽车吊由下图所示位置进入施工区域,且运输构件的平板车相应跟进,遇到混凝土后浇带时采用钢路基板架设临时通道,为了保护F1层底板,汽车吊行走通道下方B2层—F1层间的脚手架需全部保留不能拆除,汽车吊行走路线如下图所示:

(注:100吨汽车吊上F1层楼面作业相关计算详见“附录1:100吨汽车吊上F1层楼面安全验算”) 为了保证F1层劲性结构顺利安装,上图所示汽车吊通道及安装区域内脚手架需等劲性结构安装完成后再搭设。 根据现场实际情况,上图所示通道1、2、5入口处F1层楼面与外围地面存在高低差,为了保证100吨汽车吊顺利进入施工区域,需在各通道入口处搭设临时钢栈桥。钢栈桥采用格构支撑(规格:1.5米×1.5米)和路基箱(规格:0.3米×1.8米×8米)搭设而成,搭设示意图如下,具体尺寸根据现场实测确定。 (注:临时钢栈桥受力计算详见附录:100吨汽车吊行走吊栈桥验算) 附录5:100吨汽车吊行走吊栈桥验算 1、验算依据

《钢结构设计规范》GB 50017-2003 《建筑结构荷载规范》GB 50009-2012 100吨汽车吊相关资料 2、100吨汽车吊性能 100吨汽车吊性能参数如下: 100吨汽车吊性能参数 100汽车吊开行时,自重580kN ,1轴/2轴/3轴/4轴/5轴/6轴轴荷分别为 75kN 、75kN 、100kN 、125kN 、125kN 、80kN ,左右轮距取为2.5m ,则单侧轮压如下图所示:

钢栈桥施工技术

钢栈桥施工技术 1.工程概况 海南东环线位于海南省东海岸,北起海南省省会海口市,南至著名热带滨海旅游度假胜地三亚市,途经文昌、琼海、万宁和陵水等四市县,线路全长308.11正线公里。 万泉河双线特大桥位于琼海,桥全长3971.92m,其中0#台~50#墩、71#墩~122#台为陆地墩台,51#墩~70#墩跨越万泉河,为水中墩。基础均为群桩钻孔桩基础、矩形承台,结构尺寸如表1-1: 桥址百年一遇河道设计洪(潮)水位为10.47m,设计流量为17060m3/s,断面平均流速2.23m/s;设计测时水位3.0m,施工水位考虑3.0m。本桥位于近海地带,受季节降雨、台风及上游水库影响,河道水位值相差较大,现场实测水位落差可达4.0m,56~63#墩深水基础施工难度大。 水中桥址区域地层岩性从上而下主要为:细砂、中砂、粗砂、全风化、强风化、弱风化砂岩,部分墩位岩层直接过渡桥址区域砂层厚。本桥主墩承台基础属高桩承台,承台置于河床面,拟采用搭设钢栈桥及“先桩后堰”工法施工桩基及承台。 2.钢栈桥设计 对于钢栈桥设计,我国目前尚没有可以遵循的规范。为此,在钢栈桥设计中,我们遵循相关要求和规定,同时遵守国家及相关行业标准、当地水文地质资料和有关设计手册。 2.1钢栈桥构造形式 考虑历年洪水水位,桥面标高设置为9m,在特大洪水来临之时,本桥不通行。栈桥设计采用多跨连续梁方案,全长453m,共计42跨,每7跨为一联,其中26跨长12m,15跨长9m,1跨长6m。 贝雷梁结构:施工钢栈桥采用“321”型贝雷桁架,每联之间设立双墩,采用2组单层双排贝雷桁架,其间距采用4.5m;桥面全宽6.0m; 桥面系:由防滑钢板和型钢组成的,桥面板厚度为10mm,横梁为I40b工字钢,间距1.5m;纵梁为I12.6工字钢,间距40cm; 桩基础:f550,d=10mm厚钢管桩,材质为Q235,采用钢板卷焊。 栈桥设计使用期为24个月,为保证施工车辆行驶安全沿栏杆出顺桥向设置通长I28工字钢作为路缘保护以防止车辆坠落。 栈桥设计荷载参数:汽-超20(单列);设计行车速度为15km/h。

钢栈桥施工方案

钢栈桥施工方案 1、编制依据 1.1、泉三高速公路泉州支线(南安至惠安)NHA1合同段施工图纸; 1.2、由建设单位提供的施工文件; 1.3、国家、行业、泉州市有关的建筑施工和施工质量、施工安全、文明 施工等方面的规范、规程、规则、标准等文件; 1.4、泉三高速公路泉州支线(南安至惠安)NHA1合同段施工组织设计; 1.5、现场考察情况; 1.6、本单位的施工能力、经验; 1.7、主要技术标准及规范 1.7.1《公路桥涵设计规范》(JTJ021—89) 1.7.2《公路桥涵钢结构及木结构设计规范》(JTJ025—86) 1.7.3《公路桥涵地基及基础设计规范》(JTGD063—2007) 1.7.4《公路桥涵施工技术规范》(JTJ041—2000) 1.7.5《装配式公路钢桥制造及检验、验收办法》 2、工程概况 2.1、工程概况 泉三高速公路泉州支线(南安至惠安)NHA1合同段仙石大桥左线桥有0#台~22#台,共23排墩台,其中:11#墩~20#墩横跨晋江,桥梁下部施工需要搭设钢栈桥及钢平台;右线桥有0#台~21#台,共22排墩台,其中:11#墩~19#墩横跨晋江,桥梁下部施工需要搭设钢栈桥及钢平台。钢栈桥搭设总长度为330米,工作钢平台19座。 2.2、地质状况

仙石大桥大桥桥址区位于晋江的现代河床及I级阶,墩位处属冲积平原地貌,河床标高为-1.1m~3.4m,晋江水位标高为6.6m左右,晋江水深7.7m~10m,上部岩性为亚砂土、亚粘土、粉细砂,局部分布软土层,流塑~软塑状,厚度较小;其下为中砂、圆砾、卵石层,呈密实状;下伏基岩为花岗岩,桥址区基岩面和其风化面起伏较大。 根据仙石大桥两阶段施工图纸,钢栈桥及钢平台所属区共有8个钻孔点,各钻孔点的岩性及厚度为: ZKS17-1(右线12#墩) 亚砂土(1.8 m)、亚粘土(7.9 m)、细砂(11.1 m) ZKS19(右线14#墩) 中砂(2.8 m)、卵石(12.9 m) ZKS21(右线16#墩) 中砂(3.9 m)、卵石(6.1 m) ZKS23(右线18#墩) 砾砂(10.4m) ZKS17(左线12#墩) 亚砂土(3.0 m)、亚粘土(5.3 m)、细砂(4.3 m) 、中砂(4.1 m) ZKS18(左线14#墩) 细砂(4.8 m)、含细砂淤泥质亚粘土(3.7m)、中砂(7.9 m)、砾砂(6.1 m) ZKS20(左线16#墩) 中砂(7.7 m)、卵石(4.5 m) ZKS22(左线18#墩) 中砂(2.7 m)、卵石(6.5 m) 2.3、总体设计 钢栈桥桥面宽度6.0m,栈桥每9m间隔设置单排和双排钢管桩组成的桥墩,双排钢管桩间距为2.2 m,栈桥每跨跨径为9m。 钢栈桥基础采用φ630mm×8mm钢管桩,单桩入土深度在河床处计划9m、在岸边淤泥层较厚处计划16m,振动沉桩时根据实际情况确定打入深度,横梁采用I36b双拼工字钢,纵梁采用321钢桥贝雷梁,I36b 工字钢和[14b槽钢分配梁,面板采用10mm的钢板。贝雷片间的连接采用销接,贝雷片与横梁用U型箍扣锁。栈桥每隔9m在右侧安装1盏路

钢栈桥施工方案(最终版).

天津汉沽寨上大桥工程 栈 桥 及 施 工 平 台 施 工 方 案 编制单位:天津第三市政公路工程有限公司编制时间:2014年8月天津汉沽寨上大桥工程 栈桥及施工平台施工方案 编制: 审核: 批准: 目录 一、工程概况 (1 二、栈桥方案编制依据 (1 三、现场水文地质特征 (1 四、钢栈桥整体设计思路 (2 五、钢栈桥构造 (4

六、栈桥搭建施工工艺 (6 七、栈桥拆除施工工艺 (13 八、河道通航孔设置 (14 九、栈桥施工专项安全保证措施 (14 十、栈桥施工投入主要机械设备和材料计划 (17 十一、施工栈桥计算书 (18 (一条件参数 (18 (二相关计算 (19 (三计算结果汇总 (43 (四构件计算 (43 钢栈桥及施工平台施工 一、工程概况 天津汉沽寨上大桥位于汉沽中心城区太平街上,是蓟运河汉沽中心城区东西两岸的重要交通通道,西起四纬路与一经路平交路口环岛位置,终点位于太平街与新开南路的交口,路线全长约840.235米,采用双向四车道城市主干道标准,设计车速为50公里/小时,其中桥梁长度约为237.26米,桥梁面积约7117.8平米;道路面积约32580平米;地道面积约1066平米,地道断面面积约185平米,最大基坑深度4.5米,施工内容包括道路工程、桥梁工程、排水工程、照明工程、交通工程等。 本工程在施工时先在现状桥南侧新建一幅桥,待其通车后,再拆除旧桥,然后在旧桥位置新建一幅桥。本工程跨蓟运河大桥桥梁起点桩号K0+319.734,桥梁终点桩号K0+556.994,桥梁总长为237.26m,分左右幅实施,此外含滨河路下穿地道、南北侧辅道、医院路通道、人行及自行车上下梯道等。 蓟运河主桥宽度31m,跨径布置(20+3×31+(3×31+27.5,结构型式采用预制简支变连续小箱梁桥,桥梁面积7117.8m2;考虑行人和非机动车过桥,在蓟运河两岸引路处布置4座纵坡1:4的人行梯道,人行梯道宽度4.5m,总长度128.9m。 新建滨河路地道,地道断面全宽23.6m,地道长度31.016m,地道面积732m2,新建医院路通道,通道断面全宽13.8m,通道长度31m,通道面积427.8 m2,寨上大桥工程是连接海河东西两岸的一个重要节点工程,也是该地区重要的景观工程。 二、栈桥方案编制依据

钢栈桥施工技术

海上钢栈桥施工技术 1、前言 桥梁施工沿线一般都要设施工便道辅助施工,由于桥梁施工环境得特殊性,必须采用相应得措施,保证桥梁正常施工。海域桥梁基础施工一般都采用搭设钻孔平台辅助施工得方法进行,在海滩环境可采用吹填得施工方法构筑施工便道,跨河跨海桥梁施工便道可采用钢栈桥得形式,针对跨纳潮河特大桥施工环境特点,并综合考虑施工进度与工程造价问题,最终设计钢栈桥与钻孔平台辅助主桥施工,钢栈桥施工便道不仅能够解决海上桥梁施工没有合适得操作空间得技术难点,而且还提供了安全、舒适得海上施工作业平台,同时对于海域环境没有污染,桥梁建成后容易恢复沿线海域环境,并不影响设计通航。 1、2工程概况 纳潮河特大桥位于曹妃甸岛后浅滩,处于曹妃甸煤码头通路路基工程公路段以南,曹妃甸综合服务区围海造地二期工程以北,已建成通车得通岛路河规划一港池之间,滩面高程约1、0m~0、7m,因周边工程取砂,本工程范围内局部分布有取砂坑,最深处约17、9m。曹妃甸特大桥全桥长7477、46m,共242孔,位于水中部分约为1、44Km。该特大桥自191#至216#共有26个墩台在纳潮河水域施工。设计浅滩部位采用吹填得方法构筑施工便道,水域部分全部设钢栈桥及钻孔平台,钢栈桥全长897m,根据主跨基础结构尺寸与施工需求分别设为8m、12m、15m三种宽度。 2、方案选择 为满足大桥桩基及墩台施工需要,采用在主桥桥线旁建造临时钢栈桥以辅助主桥施工得方案。根据主桥施工需要,综合考虑当地气象、水文等资料,设计钢栈桥结构形式为:栈桥标准桥跨为15m长,每四个标准跨为一联并设伸缩缝。下部结构采用打入式钢管桩基础。钢管桩顶面采用2I45b工字钢为横向连接得垫梁,顶面铺设“321”型贝雷片组成得贝雷梁,梁部结构为间距0、9m得双排单层“321”贝雷桁架,梁高1、5m,贝雷梁上面铺设间距为0、6m得型号为I25a工字钢,工字钢长度比桥面宽度大1、0m,桥面采用[30b槽钢满铺。钻孔平台也采用此方案,平台顶面标高与栈桥顶面标高一致。 结合工程实际情况,将距承台边缘最近距离为2、5m处作为栈桥边缘对钢栈桥进行设计施工,由于沿线承台结构尺寸不同,栈桥桥面设有8m、12m、15m三种宽度,栈桥平面变宽形式如“图1”所示,综合考虑水文特点及施工需要,将钢栈桥桥面顶标高设为5m。

钢栈桥施工方案2-(型钢)

钢栈桥施工方案 1、钢栈桥使用功能 (1)满足80t履带吊在桥面行走及起吊20t重物; (2)满足施工人、材、机通行要求。 (3)满足9m3混凝土罐车通行。 (4)钢栈桥限速5km/h。 2、栈桥构造 (1)钢管桩 采用φ630mmm×8mm钢管桩,横向均布两根,间距4.5m,加宽段加设1根;在联与联之间设置制动墩,纵向间距4.5m,制动墩处单排3根管桩,横向间距2.25m;桥台处两排钢管桩纵向间距3m,横向单排3根,间距2.25m;钢管桩间采用[20a连接系连接。 (2)连接系:[20a连接系焊接在管桩顶下50cm处,横向连接系为单根槽钢,纵向连接系为双拼槽钢。 (3)承重横梁:承重横梁采用双拼工45a型钢制作,在对应钢管桩顶位置设置加劲肋板。横梁嵌入钢管桩30cm,并用加劲钢板加固。 (4)承重纵梁 采用工45a型钢制作,在对应钢管桩顶位置设置加劲肋板,横向间距0.9m,贝雷梁每12m跨设20mm伸缩缝。 (5)分配梁:分配梁支承桥面板,采用I20a型工钢按间距75cm排列在承重纵梁上,采用固定件与纵梁固定。 (6)桥面板:桥面板尺寸为5.99×3m,面板为10mm厚花纹钢板,纵向板肋为I12.6工字钢按30cm间距焊接排列,横向肋为10mm钢板焊接在桥面板端头。采用固定件与下方分配梁与贝雷梁连接。 (7)桥面系:护栏采用φ48mm×3mm钢管焊接而成,6m一组,必要时可用螺栓连接。护栏高出桥面1.2m,竖杆1.9m一道,设三道横杆。线路平台为φ16mm圆钢按3m 间距焊接在分配梁上。 3、栈桥断面布置

钢栈桥标准断面(单位:mm ) 4、栈桥施工方案 4.1施工流程图 4.2施工工艺 4.2.1准备工作 准备工作包括人员及技术准备,机械及材料准备,场地准备。 人员及技术准备:确定相关人员的岗位职责并进行三级技术交底,制订检查流程 及相关表格。 机械及材料准备:钢管桩、贝雷梁、型钢等原材料,80t 履带吊、运输平板车、25t 汽车吊、交通船等。 场地准备:加工堆放材料场地的准备,施工便道的填筑以便材料和机械能到达栈桥搭设地点,履带吊作业场地的整平。 4.2.3钢管桩施工 1、振动锤选用 振动锤的选用:G P R a -= 式中: [] a R ——振动锤的激振力; P —单桩承载力,按774KN 计; G ——振动锤自重,取60KN ; 施工开始 机械及材料准备 安装桥台 打设钢管桩 钢管桩加工 铺设桩顶横梁及桩间连接系 吊装承重纵梁 桥台回填土 基底清表 铺设桥面板 安装护栏,铺设管线等 下一道工序 钢管桩找平、切槽、焊劲板 测量放样 铺设分配梁

装配式钢栈桥设计施工新技术

中国港湾建设 New technology for design and construction of fabricated steel trestle LIU Zhong-you (CCCC Second Harbor Engineering Consultants Co.,Ltd.,Wuhan,Hubei 430071,China ) Abstract :For speeding up steel trestle construction speed,reducing construction cost and energy consumption,we researched and implemented the assembly of steel trestle during the steel trestle design and construction in Nanjing -Gaochun railway project.The foundation of fabricated steel trestle used the locking type clip pile hold hoop,bearing plug,and self -lock connecting rods pieces,its structure used factory of processing,the site construction only need for structure installation;the panel system for standard,and general structure design,all welding works were completed in factory,only need with card board connection in Bailey beam in the site.The fabricated steel trestle successfully implemented can savings over 30%cost compared with conventional steel trestle,its structure is safe and reliable,and efficiency increased by more than 1time.Practice proved fabricated steel trestle should have good application prospects.Key words :steel trestle;fabricated;bailey beam;hold hoop;U-shape steel plate 摘 要:为加快钢栈桥施工速度,降低施工成本,降低能源消耗,在宁高项目钢栈桥设计施工中对钢栈桥的装配化 进行研究与实施,装配式钢栈桥基础采用了锁固式夹桩抱箍、承插、自锁连接杆件,结构采用工厂化加工,现场施工只需要进行结构安装;面板系统为标准、通用结构设计,全部焊接工作在工厂内完成,现场只需要用卡板连接在贝雷梁上即可。装配式钢栈桥在宁高项目成功实施,与普通钢栈桥相比可节省成本30%以上,结构安全可靠,施工效率提高1倍以上。实践证明装配式钢栈桥具有较好的应用前景。关键词:钢栈桥;装配;贝雷梁;抱箍;U 形钢板卡中图分类号:U445.55;U448.218文献标志码:A 文章编号:2095-7874(2017)01-0046-04 doi :10.7640/zggwjs201701010 收稿日期:2016-08-30 修回日期:2016-10-22 作者简介:刘忠友(1963—),男,江苏沛县人,教授级高级工程师, 主要从事水运工程的施工与管理。E-mail :lzy630906@https://www.doczj.com/doc/2118241554.html, 装配式钢栈桥设计施工新技术 刘忠友 (中交第二航务工程勘察设计研究院有限公司,湖北武汉 430071) 第37卷第1期 2017年1月 Vol.37No.1 Jan.2017 0引言 水上工程结构,特别是桥梁工程的施工,为了方便施工,需要搭设临时栈桥作为施工通道,搭设临时钢平台作为施工场地。目前国内桩基式钢栈桥、钢平台,桩基部分除采用钢管桩外,也有采用PHC 桩的报道;栈桥面层部分除采用钢结构面层外,也有部分栈桥采用预制、安装的钢筋混凝土板结构。钢结构面层也有很多的结构组合, 但基本都没走出旧有的框架,不具有装配化性能。 采用钢管桩作为基础的常规钢栈桥、钢平台,通过焊接剪刀撑、钢横梁,上面摆放贝雷梁、面板系统。上述结构基本都是采用焊接加螺栓连接,现场的焊接工作量大,安装、拆除费时费工,剪刀撑等材料不具有周转性,材料损耗大,成本高。对于需多次周转的材料经过重复的焊接,造成钢材局部损伤从而降低钢材的力学性能,形成结构使用期间的安全隐患。 栈桥面板系统与贝雷梁的连接通常采用的是骑马螺栓连接方式,采用骑马螺栓连接时,面板系统的分配梁无法放置在贝雷梁的节点位置,影

桥钢栈桥施工方案

巴达铁路Ⅱ标石梯巴河特大桥钢栈桥 专项施工方案 中铁十六局集团巴达铁路工程指挥部 二〇一〇年十一月

目录 1.工程概况 (4) 2.钢栈桥设计 (5) 2.1设计荷载 (5) 2.2规程规范 (5) 2.3栈桥设计 (5) 2.3.1桥面高程 (5) 2.3.2栈桥布置形式 (6) 2.3.3钢栈桥构造 (7) 2.4钢栈桥受力计算 (7) 3.钢栈桥、钢平台施工 (11) 3.1工期安排 (11) 2010年11日15日-2011年1月31日。 (11) 3.2人员、设备配备 (11) 3.3桩基施工 (14)

3.4 桩顶纵横梁施工 (15) 3.5栈桥上部结构安装 (15) 3.6 栈桥拆除 (15) 3.7 栈桥、平台施工要点 (16) 4.技术保障措施 (17) 5.安全保障措施 (17) 6.保证工程质量措施 (19) 7.计划保证 (19) 8.文明施工目标及技术措施 (20) 8.1文明施工目标 (20) 8.2文明施工管理体系 (20) 8.2文明施工措施 (20) 9.施工环保目标及措施 (21) 9.1环保目标 (21) 9.2环保措施 (21)

1.工程概况 石梯巴河特大桥位于广元至达州线巴中至达州段巴河达县河段上,设计里程范围为D1K90+242.38~D1K91+694.42,长度为1462.94m,中心里程:D1K90+723,由4跨连续刚构和37跨预制T梁组成,跨度布置为:1×24+10×32+(48+2×80+48)连续刚构+25×32+1×24m。 巴河通航等级为Ⅵ级。百年一遇的洪水标高为H[1/100]=274.06M,流量Q=35630m3/s,流速V=4.76m/s,施工水位为H1=255.6m,最低通航水位为H2=247.65m。 10月-来年4月份为枯水季节。 河床已无覆盖层,为泥质夹砂岩和砂岩。

跨江钢栈桥结构设计研究与施工技术浅析

跨江钢栈桥结构设计研究与施工技术浅析 摘要:近些年来水利水电工程施工技术发展越来越快,极大的促进了社会的进 步与发展。 做为水利水电工程施工辅助技术的跨江河临时栈桥技术同样发展迅猛,本文 以贵州省郎洞航电枢纽工程跨江钢栈桥技术为依托,浅析临时跨江钢栈桥的结构 设计与施工技术。 关键词:水利水电工程;跨江钢栈桥;结构设计研究;施工技术 引言:目前,国内外研究人员对栈桥的设计和施工很少有系统化的研究成果,大部分都是建立在施工经验上的一些数据。即使是参考文献,涉及研究的较少, 没有编制相关的规范,很多是通过参考类似工程来确定设计和施工方案,栈桥设 计和施工工艺的经济性和安全性的统一难以做到。目前世界上最长的施工栈桥— 宁波杭州湾跨海大桥南岸施工栈桥,全长9444米,共633跨,是海上主桥施工 物资供应及交通出入的唯一通道,也是整座跨海大桥施工的基础性工程和控制性 工程。 栈桥在国内水工大坝施工过程中经常得到应用。例如,为设立各种运输通道,三峡大坝在施工过程中,于泄洪段下游,左厂坝下游和连通厂坝处修建了3座施 工栈桥,其中规模最大的是泄洪段和连通厂坝这两处的栈桥。许多临时栈桥根据 需要在国外也得到广泛修建。在美国加州的库柏河桥施工过程中,其轴线旁修建 了3座栈桥,而且还设立了支栈桥,用来作为基础的施工平台,其中查乐斯顿是 最长的栈桥,长为853m。在俄罗斯远东,为了修建库页岛—Ⅰ桥所用设备的运 输通道,在施工中修建了长为850m的临时栈桥。近来年,由于钢结构栈桥具有 材料强度高、抗震性能好、自重轻、施工方便且易于维护等优点,已经成为了一 种发展趋势。 一、概述 郎洞航电枢纽工程位于贵州省黔东南州从江县境内,处于柳江干流上游都柳 江河段,是都柳江干流梯级规划方案中的第8个梯级。郎洞坝址距从江县城约 30km,距榕江县城约50km,距都匀市约182km,距贵阳市约290km。 枢纽工程工期47个月,根据招投标文件及施工合同,承包人除充分利用现有公路外,需自行解决外来物资及场内运输的道路问题。为此,在坝址上游巨洞村 附近修建一座满足郎洞项目4年施工需求,并连接左右岸场内道路的跨江临时交 通栈桥。 都柳江流域地处贵州高原东部边缘、黔中山原向广西丘陇山地过渡地带的桂 北九万大山向西北延展带和同黔东南苗岭山脉接壤地带,属亚热带季风气候区, 平均气温16~18℃,年雨量在1200mm~1600mm之间,流域面积11326 km2,施 工部位平均水深4.5m。 都柳江地质情况:都柳江即为区域最低侵蚀基准面,外围分水岭高程一般高 于300m,水平宽度在至少在5km以上。两岸泉水出露点一般高于223m。河床覆盖层构成透水层,库盆基岩——变质砂岩、粉砂质板岩,残坡积覆盖层、冲积粘 性土层均构成相对隔水岩层,受此影响,两岸冲沟内基本有水流。 二、跨江钢栈桥结构设计研究 2.1结构设计研究主要内容 2.2跨江钢栈桥选址 水库两岸地势崎岖,山连着山,地面高程为200m~650m,相对高差一般为

钢栈桥、钢板桩围堰施工方案

1.工程概况 2.钢栈桥设计 2.1设计荷载 因为是施工临时设施,具体计算荷载根据实际施工的情况进行考虑,按70T履带自行式起重车吊重不超过30吨,按1.1系数进行计算。 2.2规程规范 中华人民共和国交通部部标准《公路工程施工安全技术规程》(JTJ076-95); 国家标准《钢结构工程施工及验收规范》(GB50205-95); 建设部《建筑钢结构焊接规程》(JGJ81-91); 中华人民共和国交通部部标准《公路桥涵施工技术规范》(附局部修订条文)(JTJ041-2000);等相关规范。 2.3栈桥设计 ?栈桥为钢板桩止水帷幕辅助设施,栈桥合计长度1000m。因为是施工临时设施,具体计算荷载根据实际施工的情况进行考虑,按70T履带自行式起重车吊重不超过30吨,按1.1系数进行计算。 ?规程规范 ①中华人民共和国交通部部标准《公路工程施工安全技术规程》(JTJ076-95); ②国家标准《钢结构工程施工及验收规范》(GB50205-95); ③建设部《建筑钢结构焊接规程》(JGJ81-91); ④中华人民共和国交通部部标准《公路桥涵施工技术规范》(附局部修订条文)(JTJ041-2000); ⑤《装配式公路钢桥使用手册》-98等相关规范。

2.3.1桥面高程 根据水文地质情况,钢桥面高程暂定为:19.5m 2.3.2栈桥布置形式 栈桥基础采用φ630㎜,δ=12mm的钢管桩。为保证机械作业面要求,需设置栈桥。为方便机械进出作业,栈桥高度与入河处原挡墙顶高程同高。 栈桥在河道护砌范围外0.5m处布置,桥面宽度6m,栈桥桩基采用Φ600(厚12mm)钢管桩,单根长度15m。横向布置为每排4根钢管桩,间距2m,纵向布置间距5.5m。 管桩顶面横桥向架设45b型双拼工字钢横梁,每排桩布置1条,在其上方沿纵桥向架设45b型单拼工字钢纵梁,单拼工字钢横向间距为1m。单拼工字钢纵梁工字钢架设完毕后,在其上铺设20mm厚钢板。 栈桥结构断面图 河中墩栈桥下部结构为约15m长钢管桩,施工采用70T履带吊吊

钢栈桥施工方案

深茂铁路江门至茂名段JMZQ-6标段钢栈桥及钢平台施工方案 中交二航局深茂铁路JMZQ-6标工程指挥部 二〇一五年九月

深茂铁路江门至茂名段JMZQ-6标段钢栈桥及钢平台施工方案 编制: 审核: 批准:

目录 一、概述 (1) 1.1编制依据 (1) 1.2 工程概况 (1) 1.3 地质构造 (5) 二、栈桥设计 (5) 2.1设计条件 (5) 2.2栈桥结构 (5) 三、施工平台设计 (10) 3.1 设计条件 (10) 3.2 施工平台结构 (10) 四、总体施工方案及施工工艺流程 (11) 五、主要施工方法 (12) 5.1钢管桩施工 (12) 5.2 平联安装 (15) 5.3 主横梁安装 (16) 5.4 贝雷梁安装 (16) 5.5 桥面板体系安装 (17) 5.6 附属设施安装 (18) 5.7 栈桥及施工平台拆除 (19) 六、施工组织及进度计划 (19) 6.1 人员组织安排 (19) 6.2主要施工设备 (20) 6.3进度计划 (20) 七、施工保证措施 (21) 7.1质量保证措施 (21) 7.2安全保证措施 (21) 7.3文明施工与环保措施 (22)

深茂铁路JMZQ-6标工程指挥部钢栈桥及平台设计施工方案 一、概述 1.1编制依据 (1)《广东深茂铁路有限责任公司标准化》 (2)深茂铁路现场详细的踏勘调查资料 (3)深茂铁路相关设计图纸、工程量清单 (4)《高速铁路桥涵工程施工质量验收标准》(TB10751-2010)(5)国家有关方针政策和国家、铁路总公司有关标准规范、验标和规程等 (6)《中交二航局工程质量管理办法》;中交二航局通过质量体系认证中心认定的ISO9001:2000《质量手册》和《程序文件》(7)新建铁路深圳至茂名线江门至茂名线JMZQ-6标投标文件(8)《高速铁路桥涵工程施工技术指南》铁建设【2010】241号(9)《铁路混凝土工程施工技术指南》铁建设【2010】241号(10)《高速铁路工程测量规范》(TB10601-2009) (11)《铁路工程基本作业施工安全技术规程》(TB10301-2009)(12)《铁路桥涵工程施工安全技术规程》(TB10303-2009) (13)《建筑钢结构焊接技术规程》(JTJ81-2002) (14)《钢结构工程施工质量验收规范》(GB50205-2001) (15)《钢结构设计规范》(GB50017-2003) 1.2 工程概况 新建深圳至茂名铁路江门至茂名段站前工程JMZQ-6标段位于广东省阳江市境内,起止里程为DK245+200~DK290+200。施工总平面位置示意图见图1-1。 本标段栈桥设计总长度为3311.6米。钢栈桥主要分布在四座特大型桥梁:西部沿海特大桥、那龙河2#特大桥、漠阳江特大桥、阳阳高速特大桥。钢栈桥详细统计见表1-1。本方案主要以那龙河2#特大桥127#墩-130#墩段钢栈桥为例进行介绍。 钢栈桥及施工平台总体布置图见图1-2。

钢栈桥施工方案

施工方案
一、概述
酉水河特大桥, 位于湖南省保靖县郊区, 本桥 7#、 8#主桥墩处于酉水河中, 大型船舶难以进入施工, 只能变水上施工为陆上,本工程采用搭设钢栈桥作为混 凝土的运输通道,及各种材料、机具,和施工人员通行。采用钢平台作为主墩桩 基施工平台。 根据设计地面标高及水文资料,钢栈桥从 6#墩岸边附近起,沿桥轴线至 7# 墩,长 90m;从 8#墩岸边附近起,沿桥轴线至 8#墩,长 30m。 钢平台与栈桥施工同步进行, 每个主墩设置一个钢平台并与施工栈桥连成一 个整体大平台,以增加钢平台和栈桥的稳定性。 栈桥和钢平台桩位平面布置示意图见 (附件 1 栈桥和钢平台桩位平面布置示 意图)
二、钢栈桥施工
2.1 钢栈桥设计要点:
钢栈桥长度:7#墩:90m;8#墩:30m。 设计荷载:荷载 60 吨 栈桥桥面宽度:按双向两车道设计,桥面宽 6m,旁边设栏杆防护网,设人 行道。 栈桥桥面标高:根据设计水文资料及施工要求,确定栈桥顶高为:207m。 栈桥根据现场地形、地貌,河床变化及施工要求,桥跨布置为: 10×9m= 90m;1×3m+3×9m=30m 栈桥基础为直径 Φ 630, 壁厚 10mm 的钢管桩 , 桩长根据地貌、河床变化为 25~40m 不等, 栈桥桩之间水平连接采用 20 槽钢连接,斜撑用 20 槽钢连接。陆 上桩设 2 层平联,水上桩设 4 层平联,每两层平联间距 5m。栈桥上部结构为 6

片贝雷梁拼装而成,每 2 片一组,贝雷梁上按 0.3 米间距依次铺设 I16 的横向分 配梁、桥面δ =10mm 钢板。最后安装栏杆、防滑条等附属结构。
2.2 栈桥设计
1、 栈桥布置 钢栈桥长:90m+30m。 2、 栈桥荷载形式 根据施工现场实际情况, 栈桥荷载形式如下: 1)履带吊-50 2)砼运输车(汽车超-20) 3、栈桥结构形式 栈桥结构形式见(附件 1 栈桥结构形式图) 4、栈桥基础 钢栈桥基础采用钢管桩直径Φ 630mm,壁厚 10mm。桩尖设置 50cm 长加强箍, 以防钢管桩卷口、变形。为保证栈桥与后方连接,在栈桥轴线上采用浆砌块石砌 筑一挡土墙桥台,作为栈桥起始墩,挡土墙顶部浇注 50cm 厚 C30 砼作为台帽, 栈桥贝雷梁安装在台帽上,起始墩总宽 8m、高 3.38m,墙背回填内磨擦角较大的 宕渣,并分层夯实,起始墩顶标 205.5m。 5、栈桥上部构造 栈桥上部构造采用 2I40 作为栈桥下横梁,其上搁置“321”军用贝雷梁 3 组,每组间距 1.6m,每组 2 片,每片间距 90cm。每两组贝雷架之间设置 L75× 50×5 不等边角钢竖向剪刀撑和平连。竖向剪刀撑按每个整个断面每 3 米布置 2 根(两根型钢间呈八字型,相连断面呈“倒八”字型) ,平联每 6 米布置一道, 剪刀撑和平连与贝雷架之间采用螺栓连接。贝雷梁上搁置 I16 横向分配梁,间距 30cm,桥面板采用 10mm 厚钢板铺设。
2.3 栈桥施工

相关主题
文本预览
相关文档 最新文档