当前位置:文档之家› 半导体工业的发展概况(上)

半导体工业的发展概况(上)

半导体工业的发展概况(上)
半导体工业的发展概况(上)

半导体工业的发展概况(上)

1 半导体硅工业的发展

随着社会的发展,直到20世纪时,世人才发现硅具有半导体的性质。这些性质包括其电阻率随着温度的增加而递减、光电效应、热电效应、磁电效应、霍尔效应及其与金属接触的整流效应等。

继硅晶体管发明之后,虽然可利用乔赫拉斯基法来制备硅单晶体,但是由于直拉(CZ)法生长的硅单晶,因由于使用的石英坩埚会受到硅熔体的侵蚀而增加氧的沾污。为了获得高纯度的硅单晶体,1956年HenryTheurer发明了区熔法(FZ)[6]。区熔法因没有使用石英坩埚容器,故不存在氧污染的问题。之后,在1958年由于DashFI发明了一种五位错单晶生长法,才使得生长优质大直径硅单晶技术得到了不断发展。1958年,Kilby(基尔比)在美国德州仪器公司发明了集成电路[8],奠定了信息时代到来的基础。第一代IC(集成电路)问世后,半导体工业迅速得到了发展,晶片上的电子元器件的密度和复杂性,也就从小规模集成电路(SSI)向中规模集成电路(MSB、大规模集成电路(LSB、超大规模集成电路(VLSI)、甚大规模集成电路(ULSI)不断地发展。集成电路的应用范围相当广泛,按不同的用途集成电路的分类见图1所示”。

以硅材料为主的半导体专用材料已是电子信息产业最重要的基础、功能材料,在国民经济和军事工业中占有很重要的地位。全世界的半导体器件中有95%以上是用硅材料制成,其中85%的集成电路也是由硅材料制成。

2 国外半导体工业发展动态

随着IC工艺、技术的不断发展,硅单晶的直径尺寸越做越大,40多年来,小于中200mm的硅单晶片已经进入商业生产应用的水平,中300mm 的硅单晶抛光片也已在特征尺寸线宽小于0.13μm的IC器件工艺中得到了广泛应用,并已进入了研制、生产的阶段,中400mm的硅单晶也进入了开发、研究的阶段。纳米电子技术必将成为今后研究和发展的方向。

2.1 硅集成电路发展现状

制备集成电路用的硅单晶直径研制发展历史见表1所示。

*现尚处于开发、研究的阶段

Φ300mm硅单晶片与其它直径硅单晶片的比较见表2。

根据《国际半导体技术路线指南International Technology Roadmap Semiconductors》(ITRS)1998年、2000年、2001年、2003年在近期、远期中对IC用硅抛光片的技术要求预测报道[10],关于未来15年内的半导体制造技术分析,对集成电路芯片的特征尺寸变化及对硅抛光片的几何尺寸加工精度有了更严格要求。参见图2、图6和表3表6。

美国英特尔公司最初创始人之一的Gordon Moore(戈登·摩尔)先生首先预测到集成电路芯片的容量(集成度)会逐年递增翻番,而价格上则是相应的逐年递减,认为单个微处理器芯片的性能增长是按照指数曲线、几何级数的规律增长,在对数图上呈现的是一条直线型的发展趋势,而且一直到今天这种发展趋势都得到了事实的验证。

根据1965年Gordon Moore的《摩尔定律》预言:芯片上晶体管的数目每隔18-24个月就将增加1倍。事实上在一个芯片上的晶体管数目已经由1969年的2300个增长到2000年Pentium 4微处理器的4200万个,即增长了1.8万多倍。目前,已能在一个芯片上集成108个晶体管。

20世纪90年代末,集成电路、微处理器的芯片制造工艺已从“微米级”、“深亚微米级”进入到“纳米电子级”的系统单芯片时代,在一个芯片上,可集成包括CPU、DSP、逻辑电路、模拟电路、射频电路、存储器和其他电路模块及嵌入软件等,并相互连接构成完整的系统。到2004年后,小于90nm的制造工艺将会被运用到大量的芯片生产之中。

在过去近40多年里,全球半导体产业的发展一直是遵循着这条《摩尔定律》而得到了高速的发展。

当然,目前对关于《摩尔定律》还能适用多久,已经存在着有两种不同的看法:一种观点认为10年内《摩尔定律》仍然有效;另外一种观点则认为《摩尔定律》将面临着难以克服的障碍,最终会影响《摩尔定律》的继续引用。

当前关于《摩尔定律》还能适用多久的争论实质上就是对缩小芯片的特征尺寸的争论。

但是《摩尔定律》的原创者、英特尔公司创始人之一的Gordon Moore 博士于2003年12月10日,在美国旧金山召开的一次国际会议上向与会的著名芯片设计人员、工程师们曾讲过,《摩尔定律》的未来将取决于芯片设计人员的创新能力,并同时鼓励他们迎接新的挑战。

美国英特尔公司微处理器的发展就是这条《摩尔定律》的明证。图3所示为美国英特尔公司对微处理器的发展及预测。

美国英特尔公司自1969年推出世界上第一块4位微处理器芯片4004,集成度是2300个晶体管、于2000年推出微处理器芯片Pentiun 4,集成度是4200万个晶体管。目前,已能在一个芯片上集成108个晶体管。英特尔公司预言,2010年将推出集成度为10亿个晶体管的微处理器,其性能为1 000亿/s。

随着VLSI技术的发展,CMOS电路的集成度也不断提高,电路线宽尺寸大约每隔3年就会缩小了约30%。

根据《国际半导体技术路线》在近期、远期中对IC用硅抛光片的技术要求预测集成电路芯片的特征尺寸变化见表3-表5、图4。

据全球晶圆厂半导体协会(Fabless Semiconductor Association,FSA)统计,在2003-2004年间集成电路芯片的特征尺寸仍然是以0.18μm为主流产晶,约占总量的35%-41%。但0.13μm产品的使用量将逐步增加,在2003年的第一季度中200mm和中300mm的0.13μm产品分别占有量是6%和2%,预测到第四季度中200mm和中300mm的

0.13μm产品占有量分别可提升到15%和4%、并于2004年提高到

Φ200mm和Φ300mm的0.13mm产品分别占有量的20%和9%。

相反,0.35μm和0.25μm产品将从2002年的15%和23%大幅度减为2004年的9%和10%。

在2004年采用0.09μm技术的Φ300mm实际需求量,将占芯片总量的1%-2%。

从表5可知,ULSI技术为了扩大动态随机存储器(DRAM)容量,在30多年来,IC芯片制造商找到了在一个晶圆片上能生产集成度的容量向

4G-16G推进、增大芯片容量的办法是:缩小IC芯片的特征尺寸或增大晶圆片的直径。

目前全世界销售的硅片中,按其面积统计,在2001年,Φ150mm、

Φ200mm与Φ300mm硅片产量共占全球硅片市场的84%,预计在2005年可增长到90%。

预计在进入21世纪后,由于纳米电子技术的迅速发展,将加速硅片市场中由小尺寸芯片向大尺寸芯片市场的转换,Φ300mm的硅片将被大量使用,以达到提高生产效率与降低成本之目标。

表6显示出以动态随机存储器(DRAM)为代表的集成电路发展与硅片直径的关系。从表中可以看出,IC芯片集成度的提高部分可依靠集成电路的特征尺寸的缩小,部分也可依靠增大芯片的直径尺寸。

动态随机存储器(DRAM)每更换一代产品,IC芯片的面积就要增大约50%左右。如果硅片直径不变,那么硅片所得到的芯片就要减少约1/3。另外,如果硅片上作出的芯片愈多,其成本也可随之下降。据测算,对同一种电路,如果使用Φ150mm硅片的成本以100计,则使用Φ200mm 硅片的成本约为75,使用Φ300mm硅片的成本则约为50。

根据对IC硅芯片的生产成本分析可知,相对于Φ200mm芯片,Φ300mm 芯片的晶方(Die)产出是中200mm芯片的2.4倍,由于在芯片制造过程

中,不论是对Φ200mm芯片还是Φ300mm芯片所需要的制造工时是差不多的,因此即使建设Φ300mm芯片厂初期所需购买设备等投资庞大,但从长期发展看,Φ300mm芯片厂可使每一个芯片的晶方(Die)整体生产成本降低约30%以上。

Φ300mm相对于Φ200mm及相对于Φ150mm芯片的产出效益(以DRAM 为例)比较,见表7。

根据美国摩托洛拉公司统计分析(以1998年产品为例)的Φ300mm与

Φ200mm芯片的成本比较表可知[13]:

以0.25μm CMOS电路进行核算,以存储器标准芯片计算,使用Φ300mm 芯片比用Φ200mm芯片可降低约33%。

以逻辑IC电路标准芯片计算,使用Φ300mm芯片比用Φ200mm芯片可降低约41%。

据美国菲尼克斯市场研究公司Semico高级分析师的报道[14],按最简单的方法计算,虽然Φ300mm芯片面积比Φ200mm芯片面积大了2.25倍,但其运行费用仅仅只增加约30%,一旦英特尔公司的6座采用0.13μm工艺的晶圆芯片工厂全部启动生产,到2003年其晶圆芯片的生产成本可降低约25%。

美国IBM公司也声称,其单片Φ300mm芯片成本也可降低约30%-40%。

另据TI公司分析,以生产基带处理芯片为例,在一片Φ200mm芯片上只能生产出1500-2500个芯片,而在一片Φ300mm芯片上却能生产出5000-6000个芯片,可使其生产成本可降低约40%,又由于在Φ300mm 芯片生产可采用更小的特征尺寸工艺致使其生产能力得到进一步的提高,这样一条Φ300mm芯片生产线能使得成本节约近60%。

又如,台湾力晶半导体公司估计,在Φ300mm芯片上能生产出1000个128MDRAM芯片,即使这条Φ300mm生产线产量只达到70%时,其一个128 M DRAM芯片的生产成本可保持在2.5美元以下,其生产净利润率也可超过约40%,同样在中300mm芯片上能生产出800个256 M DRAM芯片,则可使其256 M DRAM芯片的生产成本可降低至3.5

美元,这要比2001年底的8美元降低了60%。

从上可知,由于Φ300mm芯片厂有明显的大产能与低生产成本的优势,故国际上几个主要半导体比芯片制造商为了取得更大的生产效益,降低生产成本,适应当前国际集成电路技术的发展需要,对Φ300mm芯片厂均有开发、研究、增加投资来扩建Φ300mm的芯片厂的扩大建设计划。

当前集成电路已从Φ200mm向Φ300mm芯片过渡。据Stmico公司预测,2002年全球Φ300mm芯片已占芯片总产量的5%,2006年将增加到35%。另据Dataquest公司预测,2001年全球Φ300mm芯片生产设备销售已占全球设备销售总额的25%,2002年大约占35%-40%,2005年将会占65%。

但是建设Φ300mm IC芯片生产线需要投入大量资金,没有足够的技术和资金是无法涉及此高科技领域。例如若建设一条月产3万片256 M DBAMΦ300mmic芯片生产线投资高达16亿美元,若建设一条月产2万片多层铜线互连256 M DRAM Φ300mmic芯片生产线投资高达17.8亿美元。目前,此类项目中设备投资约占总投资的80%-90%”51。

有人估算将来造一座小于0.10μm工艺的IC芯片工厂的费用将高达百亿美元,比建一座核电站还贵!所以资金的投入将成为今后发展半导体产业的障碍。

(未完待续)

全球和中国半导体产业发展历史和大事记

全球和中国半导体产业发展历史和大事记 1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。 1956年,我国提出“向科学进军”,根据国外发展电子器件的进程,提出了中国也要研究半导体科学,把半导体技术列为国家四大紧急措施之一。中国科学院应用物理所首先举办了半导体器件短期培训班。请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。在五所大学――北京大学、复旦大学、吉林大学、厦门大学和南京大学联合在北京大学开办了半导体物理专业,共同培养第一批半导体人才。培养出了第一批著名的教授:北京大学的黄昆、复旦大学的谢希德、吉林大学的高鼎三。1957年毕业的第一批研究生中有中国科学院院士王阳元(北京大学微电子所所长)、工程院院士许居衍(华晶集团中央研究院院长)和电子工业部总工程师俞忠钰(北方华虹设计公司董事长)。 1957年,北京电子管厂通过还原氧化锗,拉出了锗单晶。中国科学院应用物理研究所和二机部十局第十一所开发锗晶体管。当年,中国相继研制出锗点接触二极管和三极管(即晶体管)。 1958年,美国德州仪器公司和仙童公司各自研制发明了半导体集成电路(IC)之后,发展极为迅猛,从SSI(小规模集成电路)起步,经过MSI(中规模集成电路),发展到LSI(大规模集成电路),然后发展到现在的VLSI(超大规模集成电路)及最近的ULSI(特大规模集成电路),甚至发展到将来的GSI (甚大规模集成电路),届时单片集成电路集成度将超过10亿个元件。 1959年,天津拉制出硅(Si)单晶。 1960年,中科院在北京建立半导体研究所,同年在河北建立工业性专业化研究所――第十三所(河北半导体研究所)。 1962年,天津拉制出砷化镓单晶(GaAs),为研究制备其他化合物半导体打下了基础。 1962年,我国研究制成硅外延工艺,并开始研究采用照相制版,光刻工艺。 1963年,河北省半导体研究所制成硅平面型晶体管。 1964年,河北省半导体研究所研制出硅外延平面型晶体管。 1965年12月,河北半导体研究所召开鉴定会,鉴定了第一批半导体管,并在国内首先鉴定了DTL型(二极管――晶体管逻辑)数字逻辑电路。1966年底,在工厂范围内上海元件五厂鉴定了TTL电路产品。这些小规模双极型数字集成电路主要以与非门为主,还有与非驱动器、与门、或非门、或门、以及与或非电路等。标志着中国已经制成了自己的小规模集成电路。 1968年,组建国营东光电工厂(878厂)、上海无线电十九厂,至1970年建成投产,形成中国IC产业中的“两霸”。 1968年,上海无线电十四厂首家制成PMOS(P型金属-氧化物半导体)电路(MOSIC)。拉开了我国发展MOS电路的序幕,并在七十年代初,永川半导体研究所(现电子第24所)、上无十四厂和北京878厂相继研制成功NMOS电路。之后,又研制成CMOS电路。 七十年代初,IC价高利厚,需求巨大,引起了全国建设IC生产企业的热潮,共有四十多家集成电路工厂建成,四机部所属厂有749厂(永红器材厂)、871(天光集成电路厂)、878(东光电工厂)、4433厂(风光电工厂)和4435厂

水泥业的发展现状

水泥业的发展现状文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、我国水泥业的发展现状以及行业预测 1、水泥产业在国名经济中的地位 在国民经济建设中,水泥是不可或缺的基础原材料。作为重要的基础产业,水泥行业的发展程度成为一个国家社会发展水平和综合实力的重要衡量指标。我国经济正处于高速发展期,基础设施建设成为国内投资最主要的方式。因此,水泥作为最主要的原材料之一,必然也处于扩张阶段。据相关资料统计,改革开放时,我国水泥产量仅为6524万吨,经过30来年的发展,到2010年,我国的水泥总产量已达到了亿吨。其总产量连续25年位居世界第一。据行业内专家预测到2011年,我国的水泥总产量将到达20亿吨左右。 图1 中国近五年水泥总产量 2.我国水泥行业缺陷分析 伴随着我国经济的高速发展,水泥工业作为重要的基础原料产业,实现了自身的膨胀式发展,为我国近年来的城乡发展和基础设施建设做出了巨大的贡献。随着国际水泥产业技术的进步,我国也在不断的探索新型工业化道路,比如,今年来大规模推广应用的新型干法水泥技术。这大大有利于我国产业机构的升级以及缓和资源与发展之间的冲突。但我们应清楚的认识到我国水泥产业发展的现状,即大而不强的局面还没有得到真正的改变。与发达国家相比,我国水泥行业主要面临以下几个方面的问题: (1)我国水泥行业与下游行业长期处于价格结构失衡的状态。国际上水泥与钢铁的价格比一般是1:3,而中国却达到了1:10。国外水泥价

格每吨均价在70-100美元,而我国水泥价格远远低于国际水平,每吨售价仅仅40美元左右。 (2)我国水泥行业生产集中度和市场集中度都远远低于国际发达国家水平,水泥行业的过于分散造成市场的恶性竞争。与世界通行标准和发达国家相比,我国水泥行业排名前四家的企业集中度为%,比世界通行规定的低集中度标准还低%,比美国1978年的水泥集中度低%。 (3)我国水泥行业长期处于供求失衡的状态,产业布局不合理,造成产能分配不均匀。由于水泥是一种区域性极强的“短腿”产品,如果在一定区域内集中过多的企业会导致市场买卖双方力量失衡,以及企业之间的无序竞争。比如,由于近年来北京的快速发展,引来了不少水泥企业落户北京周边,北京市场已出现水泥供大于求的局面,价格低于其他地区,企业效益明显降低。 (4)我国水泥行业技术水平大大低于国际平均水准,粗放式的发展导致造成大量资源的浪费。在低水平重复建设的过程中,小型立窑水泥企业(即"小水泥")在数量上的超常发展,导致了目前我国水泥工业企业平均规模小,整体技术水平低,生产工艺落后,产品档次不高。尽管当前我国在积极发展新型干法水泥,但是由于此生产线成本高,需要一定的企业规模才能产生经济效应。因此,进行行业内部之间的企业重组迫在眉睫。 3.我国水泥行业前景分析

半导体产业现状、发展路径与建议

半导体产业现状、发展路径与建议 摘要:在当前数字时代、智能时代,半导体无处不在,对科技和经济发展、社会和国家安全都有着重大意义。半导体产业属于高度资本密集+高度技术密集的大产业,经历了由美国向日本和美日向韩国、中国台湾的两次产业转移,每次转移均伴随着全球消费需求周期变化以及产业垂直精细化分工。而当前中国已成为全球最大的半导体消费国,同时也是全球消费电子制造中心,这会推动半导体产业进一步向中国移转。在已经到来的半导体行业第三次产业转移中,中国将成为最大获益者。准确把握半导体行业发展趋势,正确制定支持策略,对于半导体行业业务机遇、加强服务实体经济和科技创新的能力具有重要意义。 关键词:半导体产业;现状;发展路径;建议 1我国半导体产业的发展现状 1.1技术处于追赶期,仍有相当差距 据中国半导体行业协会统计,中国半导体呈现“设计-制造-封测”两头大中间小的格局。分领域看,国内芯片设计业增速最快,为27%,与美国等全球先进企业差距不断缩小。封测业因成本和市场地缘优势,发展相对较早,具有较强的国际竞争力。但是在制造方面,国内企业与全球先进水平还存在较大差距,难以掌握核心技术和关键元件,生产线采用的技术落后于国际先进水平至少一代,核心技术甚至要落后三代。例如,台湾地区就明令禁止向大陆相关工厂提供最尖端的生产工艺,只允许引进落后一代的技术。从芯片制造领域细分来看,目前处理器市场已有中国公司具备参与国际竞争的能力,但在存储芯片市场,国内企业几乎是一片空白。目前中国三大存储芯片企业——长江存储、合肥长鑫、福建晋华等正加紧建设存储芯片工厂,最快在2018年开始投产,不久的将来中国将成为与日韩比肩的存储芯片生产地。其中,规模最大的为紫光集团旗下的长江存储,主要采用3DNANDFlash技术;合肥长鑫、福建晋华则以DRAM存储芯片为主。 1.2中国半导体行业迎来黄金发展期 从行业趋势判断,中国半导体行业正面临前所未有的战略机遇,可谓是天时地利人和。天时,首先是摩尔定律已近极限,为后来者提供了追赶的空间。摩尔定律揭示了信息技术进步的速度,尽管这种趋势已经持续了超过半个世纪,摩尔定律仍应该被认为是观测或推测,而不是一个物理或自然法则。由于硅半导体的发展趋近物理极限,芯片性能不可能无限制翻番,其性能的提升越来越困难。当芯片发展到7纳米以后,发展速度会降低。在2013年年底之后,晶体管数量密度预计只会每三年翻一番,该定律一般预计将持续到2015年或2020年。而在向新的发展方向和领域突破时,半导体行业重新划定了新的起跑线,这为后来者提供了追赶的时机。其次,随着数字经济的发展,芯片不仅仅应用于电脑、手机,还包括云计算服务器,无人驾驶的智能汽车上,以及物联网上的芯片,芯片应用领域的迅速扩大,为后来者站稳市场脚跟创造了新的机会。地利,中国已经成为全球最大的半导体消费市场,本土化、国产化需求成倍增长。同时,中国芯片制造领域也在持续发力,经过多年自主创新和国际并购,在半导体行业积累了一定的技术和人才,在产业布局和个别环节上出现了具有一定竞争力的企业,为后续实现赶超和跨越式发展打下了良好基础。人和,中国具有稳定的政治环境和政策基础,支持半导体行业的发展已经被提升到国家战略高度,出台了明确的发展规划,在政策和资金上给予大力扶持。 1.3国家战略支持

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

l电力工业发展概况

l电力工业发展概况 近几年来随着国民经济的快速进展.电力行业进入了新的一轮景气循环,都市化和重化工业的高速增长带动了电力需求强劲增长,全国的电力短缺差不多从2003年17省扩展到2004年的24省。由于新增装机投产速度仍旧低于实际用电增长,导致电力需求矛盾日益加剧。据电力行业最新统计快报显 示:2004年高峰期间用电缺口至少达3 000 kW·h,全国用电总量达到21 735亿kW·h.同比增长14.9%。据初步估算,用电增长仍连续高于经济增长速度,电力弹性系数估量达到1.65。据最新推测,2005年我国电力供应缺口大约为23 000 MW,但从总体上来看,用电紧张问题趋于缓解。电力行业十五规是:2005年发电量达到16 140亿kW·h,发电装机容量达到3.55亿kW,2005年火电占72.4%、水电占24.5%、核电占2.4%、新能源占0.7%。 2 电力工业进展中存在的问题 近几年来,我国电力工业,专门是火力发电得到了前所未有的进展,但同时也存在诸多不合理的因 素,这些因素不利于国民经济的可连续进展。 2.1 电力产业结构不合理 我国的资源国情决定了我国能源结构以火电为主.水电、核电、风电所占比重较小.电力结构进展不平稳。“十五”期间,国家加大力度进行火电建设,火力发电自2002年后进入暴发式增长,2004年火电机组新装机容量超过2002年新装机容量近一倍。随着三峡电站开始

发电,水电装机的比重大大提高。秦山、大亚湾、广东岭澳、田湾核电站的相继建成,终止了我国长期无核电的历史。自1979年以来.我国在开发利用风能、地热能、潮汐能、太阳能等方面也取得了较大进展,新能源从无到有。另外,近年来一批大型水电、核电项目的开工建设,将对电力行业的盈利格局产生较大阻碍,水、核电的进展将挤占一定的市场空间,电力结构不平稳的状况有了专门大改善.但火电为主的格局短期内可不能改变。 2.2 环境污染严峻 据推测和规划,为满足快速进展的经济对电力需求的增长,我国的火力发电装机容量将从2002年底的2.64 X lO5 MW增加到2018年的4.9 X 105 MW,2020年将达到6.05 X 10 MW。’依照我国能源的消耗结构状况,用于火力发电的一次能源85%来自煤炭,以2002年发电煤耗381 g/(kW·h)运算,估量到2018年需消耗的发电用煤约为13.9亿t。如此大量的煤炭燃烧带来以下几方面的阻碍: (1)排放大量的SO2、NO 、CO2及烟尘等,造成严峻的环境污染。近几年来,“沙尘暴”那个名词不断充斥着我们的耳朵,但又有多少人明白,沙尘暴与火力发电之间有着剪不断的紧密关联。因为火力发电不仅带来大量的CO:、粉尘等污染物,同时带来的还有密集的SO 排放,它使植被严峻退化,使青山变成秃岭,使水源变成沙源。我国以煤为主的能源结构造成了严峻环境污染,据有关部门统计,由大气污染造成的经济缺失相当于GDP的2%~3%。 (2)一次能源分布不平稳。电煤长距离输送给运输业造成繁重的

我国水泥业的发展现状

一、我国水泥业的发展现状以及行业预测 1、水泥产业在国名经济中的地位 在国民经济建设中,水泥是不可或缺的基础原材料。作为重要的基础产业,水泥行业的发展程度成为一个国家社会发展水平和综合实力的重要衡量指标。我国经济正处于高速发展期,基础设施建设成为国内投资最主要的方式。因此,水泥作为最主要的原材料之一,必然也处于扩张阶段。据相关资料统计,改革开放时,我国水泥产量仅为6524万吨,经过30来年的发展,到2010年,我国的水泥总产量已达到了18.7亿吨。其总产量连续25年位居世界第一。据行业内专家预测到2011年,我国的水泥总产量将到达20亿吨左右。 图1中国近五年水泥总产量

2.我国水泥行业缺陷分析 伴随着我国经济的高速发展,水泥工业作为重要的基础原料产业,实现了自身的膨胀式发展,为我国近年来的城乡发展和基础设施建设做出了巨大的贡献。随着国际水泥产业技术的进步,我国也在不断的探索新型工业化道路,比如,今年来大规模推广应用的新型干法水泥技术。这大大有利于我国产业机构的升级以及缓和资源与发展之间的冲突。但我们应清楚的认识到我国水泥产业发展的现状,即大而不强的局面还没有得到真正的改变。与发达国家相比,我国水泥行业主要面临以下几个方面的问题:(1)我国水泥行业与下游行业长期处于价格结构失衡的状态。国际上水泥与钢铁的价格比一般是1:3,而中国却达到了1:10。国外水泥价格每吨均价在70-100美元,而我国水泥价格远远低于国际水平,每吨售价仅仅40美元左右。 (2)我国水泥行业生产集中度和市场集中度都远远低于国际发达国家水平,水泥行业的过于分散造成市场的恶性竞争。与世界通行标准和发达国家相比,我国水泥行业排名前四家的企业集中度为11.78%,比世界通行规定的低集中度标准还低

【发展战略】我国半导体产业的现状和发展前景

五、半导体篇 ——我国半导体产业的现状和发展前景 电子信息产业已成为当今全球规模最大、发展最迅猛的产业,微电子技术是其中的核心技术之一(另一个是软件技术)。现代电子信息技术,尤其是计算机和通讯技术发展的驱动力,来自于半导体元器件的技术突破,每一代更高性能的集成电路的问世,都会驱动各个信息技术向前跃进,其战略地位与近代工业化时代钢铁工业的地位不相上下。 当前,世界半导体产业仍由美国占据绝对优势地位,日本欧洲紧随其后,韩国和我国台湾地区也在迅速发展。台湾地区半导体工业已成为世界最大的集成电路代工中心,逐步形成自己的产业体系。 我国的微电子科技和产业起步在50年代,仅比美国晚几年。计划经济时期,由于体制的缺陷和其间10年“文革”,拉大了和国际水平的差距。进入80年代,我国面对国内外微电子技术的巨大反差和国外对我技术封锁,我们没有能够在体制和政策上及时拿出有效应对措施。国有企业无法适应电子技术的快节奏进步,国家协调组织能力下降,科研体制改革缓慢,以致1980~1990年代我国自主发展半导体产业的努力未获显著效果。 “市场‘开放’后,集成电路商品从合法、不合法渠道源源涌入,集成电路所服务的终端产品,以整机或部件散装的形式,也大量流入,但人家确实考虑到微电子的战略核心性质,死死卡住生产集成电路的先进设备,不让进口,在迫使我们落后一截,缺乏竞争力的同时,又时刻瞄准我们科研与生产升级的潜力,把我们的每一次进步扼杀在萌芽状态,冲垮科技能力,从外部加剧我们生产与科研的脱节,迫使我们不得不深深依赖他们。……我们的产业环境又多多少少带有计划色彩,不能很快与国际接轨,其中特别是对微电子产业发展有重大影响的企业制度、资本市场、税收政策、科研体制等,又不适应市场经济要求,使得我们在国际竞争中缺乏活力”。1 20世纪90年代,我国半导体产业的增长速度达到30%以上,但其规模仅占世界半导体子产业的1%,仅能满足大陆半导体市场的不足10%。即使“十五”期间各地计划的项目都能如期实施,到2005年,我国半导体产业在世界上的份额,顶多占到2%~3%。自己的设计和制造水平和国际先进水平的差距很大,企业规模小、重复分散、缺乏竞争力,基本上是跨国公司全球竞争战略的附庸,自己的产业体系还没有成形。 我国半导体产业如此落后的现状,使得我国的经济、科技、国防现代化的基础“建筑在沙滩上”。在世界微电子技术迅猛发展的情况下,我国如不努力追赶,就会在国际竞争中越来越被动,对我国未来信息产业的升级和市场份额的分配,乃至对整个经济发展,都可能造成十分不利的影响。形势逼迫我国必须加快这一产业的发展。“十五”计划中,加快半导体产业的发展被放在重要地位,这是具有重大意义的。 发展中国家要追赶国际高科技产业的步伐,一般都会面临技术、资金、管理、市场的障碍。高科技的产业化是一个大规模的系统工程,需要科研和产业的紧密结合,以及各部门的有效协调,而这些都不是单个企业所能跨越得过去的。在市场机制尚未成熟到有效调动资源的情况下,高层次的组织协调和扶持是必需的。构建具有较高透明度的政策环境和市场环境。有助于鼓励高科技民营企业进入电路设计业领域,鼓励生产企业走规模化和面向国内市场自主开发的路子,形成产业群体。 1许居衍院士,2000年。

电力系统的现状与发展趋势

我国电力系统的现状与发展趋势 马宁宁 (曲阜师范大学电气信息与自动化学院邮编: 276826) 摘要:我国电力系统情况复杂,为了能够深入了解我国电力系统的发展形势,对我国电力的系统进行了调查。 我国电力系统的整体现状比较好,随着经济的增长,电力需求也越来越大,但是存在地区的差异。电源结构也存在在一些问题,要调整这种电源结构,需从以下三个方面着手:一是每一种电源尤其火电需要进行技术进步调整;二是水电、火电及其他发电形式的比例应合理调整;三是电源布局也应调整。我国煤炭资源储藏量不少,但分布极不合理。负荷高的地方如华东地区基本没有煤,煤大部分集中在西北部或华北北部。而适宜建水电的地方大部分在西部。水能资源不少,但分布不合理。应该通过电网建设调整布局使电力资源得到最大优化我国幅员辽阔各种可再生资源比较丰富,要充分利用可再生资源,能够实现绿色电能的效果。 关键词:电力系统、能源、电源结构 China's electric power system status and development trend Ma Ningning (Qufu Normal university electricity information and automated institute zip code: 276826) Abstract:The more complicated the situation of China's electric power system, in order to understand the depth of China's electric power system development situation of China's electricity system were investigated. China's electric power system's overall status quo is better, with economic growth, electricity demand is also growing, but the existence of regional differences. Power structures also exist on some issues, it is necessary to adjust the power structure, to begin from the following three aspects: First, every kind of fire power, in particular the need for technological progress adjustment; Second, hydropower, thermal power and other forms of power generation should be proportional

我国电力系统现状和发展趋势

. .. . 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,

总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机组21台,是世界上拥有百万千瓦超超临界机组最多的国家;30万千瓦及以上火电机组占全部火电机组的比重提高到69.43%,火电机组平均单机容量已经提高到2009年的10.31万千瓦。在6000千瓦及以上电厂火电装机容量中,供热机组容量比重为 22.42%,比上年提高了3个百分点; 三、电网建设不断加强。随着电源容量的日益增长,我国电网规模不断扩大,电网建设得到了不断加强,电网建设得到了迅速发展,输变电容量逐年增加。2009年,电网建设步伐加快,全年全国基建新增220千伏及以上输电线路回路长度41457千米,变电设备容量27756万千伏安。2009年底,全国220千伏及以上输电线路回路长度39.94万千米,比上年增长11.29%;220千伏及以上变电设备容量17.62亿千伏安,比上年增长19.40%。其中500千伏及以上交、直流电压等级的跨区、跨省、省骨干电网规模增长较快,其回路长度和变电容量分别比上年增长了16.64%和25.97%。目前,我国电网规模已超过美国,跃居世界首位; 四、西电东送和全国联网发展迅速。我国能源资源和电力负荷分布的不均衡性,决定了“西电东送”是我国的必然选择。西电东送重点在于输送水电电能。按照经济性原则,适度建设燃煤电站,实施西电东送;

我国电力行业的发展现状与趋势

我国电力行业的发展现状与趋势 1我国电力行业的发展 新中国成立前我国电力工业发展状况 1882年,英籍商人等人招股筹银5万两,创办上海电气公司,安装1台16马力蒸汽发电机组,装设了15盏弧光灯。1882年7月26日下午7时,电厂开始发电,电能开始在中国应用,几乎与欧美同步,并略早于日本。 从1882年到1949年新中国成立,经历了艰难曲折、发展缓慢的67年,其间67年电力发展基本状况是一个十分落后的百孔千疮的破烂摊子,电厂凋零,设备残缺,电网瘫痪,运行维艰,技术水平相当落后,。 到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位,与发达国家差距较大。 新中国成立后的我国电力工业发展状况 1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。 改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业实行"政企分开,省为实体,联合电网,统一调度,集资办电"的方针,大大地调动了地方办电的积极性和责任,迅速地筹集资金,使电力建设飞速发展,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。 从1988年起连续11年每年新增投产大中型发电机组按全国统计口径达1,500万千瓦。各大区电网和省网随着电源的增长加强了网架建设,从1982到1999年底,中国新增330千伏以上输电线路372,837公里,新增变电容量732,690MVA,而1950至1981年30年期间新增输电线路为277,257公里,变电容量70360MVA。 改革开放以来到上世纪末,我国发电装机和发电量年均增长率分别为%、%。发电装机容量继1987年突破1亿千瓦后,到1995年超过了2亿千瓦,2000年达到了3亿千瓦。发电量在1995年超过了1万亿千瓦时,到2000年达到了万亿千瓦时。 进入新世纪,我国电力工业进入历史上的高速发展时期,投产大中型机组逐年上升,2004年5月随着三峡电站7#机组的投产,我国电源装机达到4亿千瓦,到2004年底发电装机总量达到亿千瓦,其中:水、火、核电分别达10830、32490、万千瓦。2004年发电量达到21870亿千瓦时。2000~2004年,5年净增发电装机容量14150万千瓦,2004年我国新增电力装机容量5100万千瓦,超过美国在1979年创造的年新增装机4100万千瓦的世界历史最高记录。预计今年新增装机容量约为6000万千瓦,年末装机容量将超过5亿千瓦。

我国电力系统现状及发展趋势

WoRD文档下载可编辑 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 ‘、八— 1. 刖言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年, 到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达 到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开 放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国 的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年 均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009 年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82. 6%。水电装机占总装机容量的24.5%, 核电发电量占全部发电量的2. 3%,可再生能源主要是风电和太阳能发电,总量微乎 其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地, 截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的 2.4%,装机容量约910万千瓦,为全国电力装机总量的 1.14%、世界在役核电装机总量的 2.3%。

中国水泥工业发展状况分析

一、水泥产能增长放缓、价格上涨趋势仍存。 2010年全国水泥产量为18.68亿吨,与2010年初中国建材流通协会预测的18.7亿吨非常相近,同比增长15.5%。全年销售收入预计6800亿,同比增长25%,利润将达到540亿,同比增长超35%。 水泥行业2011年总体趋势是向好的。从产能上看,2011年预计新增产能约9000万吨,淘汰落后产能约1 亿吨,总产能比去年略减一些,约为22.5亿吨。从需求上看,在2011年,“4万亿刺激政策”对水泥向上的 推动效应已大大减弱,但其大多数工程仍然在建,对水泥需求的支撑作用还在,而水利、高铁等建设的兴 起也使水泥需求得到了一定保障。特别是住建部推出的1000万套保障性住房建设,将带来水泥需求的新增 量约1.5亿吨。另外,城镇化建设,区域开发,都将使水泥需求保持一定增长速度,由于水泥产销率通常稳 定在98%左右(这是水泥的特性所决定的),预计2011年水泥产量将达21.4亿吨。 从2011年水泥价格上看,由于总产能并未增加,需求仍在增长,而煤炭价格上涨预期不断增强,水泥 平均价格仍会有所上涨,但不会超过2010年11月特殊情况下的价格(拉闸限电造成的价格猛涨)。行业利润 也将进一步提升。 中国水泥工业发展状况分析 -------------------------------------------------- 2010-7-14 一.现状特点及问题 水泥工业是国民经济发展、生产建设和人民生活不可缺少的基础原材料工业。随着我国经济的发展,水泥产业已达到相当大的规模,2009年我国水泥产量16.5亿吨,占世界水泥总产量50%以上,已连续20多年居世界第一位。水泥工业总产值5,000多亿元,占我国建材行业总产值的三分之一以上。 进入新世纪以来,我国水泥工业发生了突破性的变化。从单纯的数量增长型转向质量效益增长型;从技术装备落后型转向技术装备先进型;从劳动密集型转向投资密集型;从管理粗放型转向管理集约型;从资源浪费型转向资源节约型;从满足国内市场需求型转向面向国内外两个市场需求型。实现上述根本转变的原因,是进入新世纪以来新型干法水泥生产技术的快速发展和应用。在产业政策的正确引导下,体现出以下特点: 1.结构调整步伐加快,全面进入新型干法水泥时代 实现“低投资,国产化”是中国全面进入新型干法水泥时代的关键,海螺集团、山水集团是实践这一过程的先行者。我国新型干法水泥的飞速发展,源于对新型干法水泥工艺技术的研究和装备的开发、设计、制造取

半导体发展现状与发展趋势

半导体发展现状与发展趋势 学院:机电学院班级:材成102 学号:5901210080 姓名:雷强强 摘要:半导体照明具有节能、环保、寿命长、尺寸小等优点,能够应用在各种各样的彩色和白色照明领域。发展半导体照明产业具有重大意义,能缓解能源危机,改善环境污染问题,有利于国民经济可持续发展。本文在介绍半导体照明特点的基础上,论述了半导体照明研究进展,分析了我国半导体照明产业发展面临的相关技术问题,最后对半导体照明工程发展趋势作了展望。 关键词:半导体照明、发光二极管、节能与环保 引言: 1879年,爱迪生发明了第一只作为热辐射电光源的碳丝白炽灯,使人类从漫长的火光照明时代进入了电气照明时代,第一次革命性地改变了人们的照明方式,拉开了人类现代文明的帷幕。 照明电光源经历了白炽灯、荧光灯、高强度气体放电灯三代产品,光效不断提高,耗电量不断下降,对人类社会的发展起了至关重要的作用。今天,人们在关注光照效率的同时,更注重照明方式对环境的影响。随着科学技术的进步,又一种新型电光源---发光二极管

照明(LED)即半导体照明,真正引发了电光源照明技术的质变,以其体积小、寿命长、耐闪烁、抗震动、色彩丰富、安全可控、节能环保、无紫外线和红外线辐射等全面优势掀起了第四次电光源技术革命,将电光源照明推进到节能环保的时代。 半导体照明应用的意义,绝不亚于前几次照明领域的技术革命。因为半导体照明将作为最有效的节能和环保的手段,将通过改善人类生存环境、发展照明的新概念和新模式来改善和提高人类的生活质量。 1.半导体照明的特点 1.1 半导体照明的机理 所谓半导体照明,是指利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合,释放出过剩能量引起光子反射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。LED 的核心PN 结,具有正向导通、反向截止等特性。当PN 结施加正向电压,电流从LED 的阳极流向阴极时,半导体晶体发出从紫外到红外不同颜色的光线,光的强弱与电流大小有关,电流越大,发光亮度越高[1]。 1.2 半导体照明的优点 在同样亮度下,半导体灯的电能消耗仅为白炽灯的八分之一,因此半导体照明的应用将大大节约能源,同时还将减少二氧化碳的排放量[2]。2003 年,我国照明用电共2292 亿度。按照每年增长5%计算,到2010 年,照明用电可达3225 亿度以上。假如到2010 年有三分

日本水泥工业的现状及发展趋势

日本水泥工业的现状及其发展趋势 四川建材学院韩立达王林 1 日本水泥工业的现状 八十年代,当世界经济发展明显放慢之时,日本经济却从1986年底开始持续60个月的增长,创下了日本战后经济景气的最长纪录。而且经济增长率一直居西方主要资本主义国家之首。1987年至1990年,年平均增长率为5.3%,1991年达4.6%,社会各方面的需求不断扩大,给水泥工业的发展带来了蓬勃生机。 1.1水泥工业呈现持续增长势头 1990年度日本GNP比上年增长5.7%,民用住宅比1989年增长10.2%,民间投资增长13.6%,而国家固定资产完成率比上一年增长3.1%。由于建筑业的迅猛发展,日本水泥工业出现逐年增长势头(见表1)。 表1 日本水泥生产量和销售量 1.1.1水泥产、销量逐年增加 从1987年开始,日本水泥产销量开始回升,1987年至1990年4年间产量从7424.4万t增加

到8684.9万t,年平均增长率为5.4%,销量(含进口)从7493.8万t增加到9024.0万t,年均增长率为5.6%。设备能力的平均利用率也大幅度提高,1990年达88.1%,比1989年高出6.6个百分点。1990年的实际需求较之上年增长10%。就水泥品种而言,1990年硅酸盐水泥大幅度增加,其中普通硅酸盐水泥较1989年增长10.3%,达6654.9万t,占全年水泥总产量的76.6%,快硬和超快硬水泥达363.1万t,较上年增加5.7%,但中热水泥和耐硫酸盐水泥则出现了下降趋势,混合水泥也出现了负增长,其所占的比重开始减少。 1.1.2大量采用现代化生产工艺 日本各种窑型的生产能力及现有水泥窑如表2所示。 表2 日本各种窑型台数及生产能力(*为推算值) 从表2可以看出,从1988年起日本已完全淘汰了湿法生产,NSP窑稳定在56条,其产量占总产量的80%以上。SP窑有增有降,产量占总产量的15%~18%之间。立波尔窑逐年减少,带余热锅炉窑则基本稳定在5台左右,后两种窑型的水泥产量仅占总产量的2%~4%。此外,日本的规模经济效益非常明显,1990年全国拥有各种类型的水泥窑81台,水泥总产量为8684.9万t,平均每台窑年产量为107.2万t,约为我国水泥窑平均年产量的50倍。

关于中国半导体产业发展的现状分析和趋势展望

关于中国半导体产业发展的现状分析和趋势展望 摘要:步入二十一世纪的第十个年头,伴随着中国经济实体的繁荣发展,中国的半导体产业即将进入产业大发展的战略机遇期,如何把握机遇更好更快的发展半导体产业成为了未来中国经济发展的重点之一。中国半导体设计、制造、封测共同发展,结构日渐优化,产业链逐步完善,形成了相互促进共同发展的良好互动的大好局面。然而,由于各式各样的原因,半导体产业同时也面临着种种困难和挑战,如何制定科学合理的发展战略则成为了产业发展的重中之重。总之,中国半导体产业的发展充满机遇和挑战。 关键词:半导体产业科学发展产业调整战略优化 正文: 一、中国半导体产业的现状及分析 中国的半导体市场需求强劲,市场规模的增速远高于全球平均水平。不过,产业规模的扩大和市场的繁荣并不表明国内企业分得的份额更大,相反,中国的半导体市场正日益成为外资公司的乐土。国内半导体公司的发展面临强大的压力,生存环境堪忧。从两大分支上看,分立器件由于更新换代较慢、对技术和制造的要求较低、周期性也不明显,因而更适合国内企业,加上国际低端分立器件产能的转移,国内企业能够在低端市场获得优势。而从产业链环节上看,我们相对看好设计业,认为本土设计公司有突破的可能。基于政策支持、市场需求和产能转移,我们判断半导体行业在国内有很大的增长潜力。 二、长三角半导体产业的集群效应 我国尤其是长三角地区的半导体产业在国际半导体产业转移过程中获得了极好的发展机会,半导体产业初步形成了有一定规模的半导体产业集群,大大地推动了长三角地区的产业结构升级和带动了地区经济的发展。目前长三角地区已经成为我国集成电路产业的重镇,在国际半导体产业版图也占有极其重要的一席之地。但是应该认识到,长三角地区的半导体产业集群还只是如低廉的劳动力成本、地方政府提供的土地与财税优惠政策等基本生产要素驱动所形成的。这种低层次生产要素无法构成我国半导体产业的长久竞争优势,很快就会被以低成本比较优势的后起之秀所取代。长三角地区目前已经具有较好的半导体产业集群基础,国内又有极为庞大的内需市场,在国际半导体产业大转型的产业背景下,我们应转变传统靠低成本比较优势来招徕产业投资的观念,而应积极建立促进半导体产业高层次生产要素产生的机制,来提升长三角地区半导体产业集群的国际竞争力。 There was favorable opportunity for semiconductor industry development in China, esp. the Changjiang River delta, during the global industry transferring. There is semiconductor industrial cluster in this area and it improves the industry structures greatly and drives the economy development. The Changjiang River delta has been being as the most important area of China Semiconductor industry and it also is important in global semiconductor market.But we have to say that the semiconductor industrial clusters in the Changjiang River delta is initiated by generalized factors such as low labor cost, privilege policy of finance and landing provided by local governments. These generalized factors cannot be the competitive strength in long term and will be replaced soon by other area with low-cost comparison strength. The Changjiang River delta has good foundation of semiconductor industrial clusters and there is a huge marketing, so we should take proactive actions to buildup the environment and system to encourage high-level factors generating for semiconductor industry, during the transforming time of industry. Only in this way, we can promote the global competitive strength of the semiconductor industry in the Changjiang River delta. 三、南昌半导体照明成为国家半导体照明工程产业化基地

相关主题
文本预览
相关文档 最新文档