当前位置:文档之家› 化工设计贮罐设计说明书

化工设计贮罐设计说明书

化工设计贮罐设计说明书
化工设计贮罐设计说明书

目录

前言 (2)

第1章设计参数的选择

1.1 设计要求与数据

1.1.1设计要求 (2)

1.1.2 设计数据 (2)

1.1.3 贮罐容积 (2)

1.2 设计温度 (3)

1.3 设计压力 (3)

1.4 主体设备和零部件材料选择 (3)

第2章设备的结构

2.1 罐体壁厚设计 (3)

2.2 封头壁厚设计 (4)

2.3 鞍座 (4)

2.4 人孔 (5)

2.5 人孔补强确定 (6)

2.6 法兰的选用 (6)

2.7 接口管 (6)

2.8 主体设备尺寸和零部件尺寸 (7)

2.9 设备总装配图 (7)

前言

卧式贮罐比立式贮罐易运输、设计合理、工艺先进、自动控制,符合GMP 标准要求,古采用卧式贮罐。

第1章设计参数的选择

1.1 设计要求与数据

1.1.1设计要求

(1)主体设备和零部件材料选择;

(2)主体设备尺寸和零部件尺寸计算及选择规格;

(3)设备壁厚以及封头壁厚的计算和强度校核;

(4)各种接管以及零部件的设计选型;

(5)设备支座的的设计选型;

(6)法兰的设计选型;

(7)设备开孔及开孔补强计算;

(8)设计图纸要求1号图纸一张,包括设备总装配图,至少画三个重要构件的局部图;技术特性表,接管表和总图材料明细表。要求比例适当,字体规范,图纸整洁。

1.1.2 设计数据

表1-1 设计数据

序号项目数值单位备注

1 设备名称乙烯贮罐

2 公称直径2200 ㎜

3 贮罐长度4000 ㎜

4 最大工作压力 2.

5 MPa

5 贮存介质乙烯

6 工作地点宜宾

7 其他要求100%无损检测

1.1.3 贮罐容积

贮罐的容积=封头的容积+筒体的容积

由钢制筒体的容积、面积及质量表,可查得公称直径为2200㎜的筒体,1米高的容积为3.8013m,可得筒体的容积为:3.801×4=15.2043m;由JB/T4337

—95可查得公称直径为2200㎜,直边高度为50㎜的椭圆形封头的容积为

1.583m ;可得贮罐的容积为:15.204+1.58×2=18.3643m

1.2 设计温度

由于在宜宾最高温度为42°C 左右,因此设计温度为42°C 。 1.3 设计压力

设计压力取最大压力的1.1倍,即2.5*1.1=2.75MPa

1.4 主体设备和零部件材料选择

(1)筒体和封头的材料选择

乙烯腐蚀性很小,贮罐可用普通低合金钢;大型化工容器采用普通低合金钢16MnR,制造,质量比用碳钢减轻1/3;而且根据GB150-1998表4-1,选用筒体和封头材料为低合金钢16MnR (钢材标准为GB6654)。 (2)鞍座的材料选择

根据JB/T4731,鞍座选用材料为Q235-A 。 (3)地脚螺栓的材料选择

地脚螺栓选用符合GB/T 700规定的Q235,Q235的许用应力[]147bt MPa σ=。 (4)零部件的材料选择

优质低碳钢的强度较低,但塑性好,焊接性能好。在化工设备制造中常用作热交换器列管、设备接管、法兰的垫片包皮。优质中碳钢的强度较高、韧性较好,但焊接性能较差,不适宜做化工设备的壳体,但可作为换热设备管板,强度要求较高的螺栓、螺母等;所以零部件的材料用优质低碳钢。

第2章 设备的结构

2.1 罐体壁厚设计

根据前面所作的分析,可知本乙烯贮罐选用16MnR 制作罐体和封头。

设计壁厚: , 式中:p 表示设计压力,

p=2.75MPa(表压);D i =2200㎜;[]t

σ =163MPa (钢板许用应力表);

?=1.0

(双面对接焊缝,100%探伤,焊接头系数

?表);2

1

C

C C +=,其中1c =0.8

(钢

[]

c p pD t

i

d +-=?σδ2

板负偏差1c

表),2C =1㎜(低合金钢单面腐蚀)。数据代入上式可得:

5.208.0175.2116322200

75.2=++-???=d δ㎜

圆整后取n δ=22㎜厚的16MnR 钢板制作罐体。

2.2 封头的计算

虽然半球形封头质量轻,壁厚薄,但是制造难度大,一般中、低压小型设备都不宜采用。在相同受力条件下,碟形封头的壁厚比相同条件下的椭圆形封头要厚一些,并且蝶形封头的球面部分与过渡区连接处会产生局部高应力,受力没有椭圆形封头好;平板封头结构简单,制造方便,但只在压力不高、直径较小的容器中使用;标准椭圆形封头制造较容易,受力比碟形封头好,故本设计可采用标准椭圆形封头。

设计壁厚 ,按下列公式计算;

式中:

?=1.0(钢板的最大宽度为3米,该贮罐的直径为2.2米,故封头需将

钢板焊后冲压);其他符号同前面。

4.208.017

5.25.0116322200

75.2=++?-???=d δ㎜

考虑冲压减薄量,圆整后取 =22㎜厚的16MnR 钢板制作封头。校核

罐体与封头水压试验强度,根据下列公式:

?

δδσe e i T T D P 2)(+=

≤s σ9.0 式中:[][]125.325.15.225.125.1=?===p p

p t

T σσMpa ≈3.1Mpa ,

e δ =c n -δ =22-1.8=20.2㎜,s σ=325Mpa (钢板许用应力表)

1

2.202)

2.202200(1.3??+=

T σ≈170.36≤s σ9.0=0.9×325=292.5Mpa

上式成立,所以水压试验满足强度要求。

2.3 鞍座

首先粗略计算鞍座负荷。 贮罐总质量:4321m m m m m +++=

n δ[]2

15.02c c p

pD t

i

d ++-=?σδn δ

式中:1m 为罐体质量,㎏;2m 为封头质量,㎏;3m 为水质量,㎏;4m 为附件质量,㎏。

(1)罐体总质量

DN=2200㎜,n δ=22㎜的筒节,每米质量为1q =1204㎏/m(钢制筒体的容积、面 积及质量表),故1m =L q 1=1204×4=4816㎏ (2)封头质量2m

DN=2600㎜,n δ=22㎜,直边高度h=50㎜(标准椭圆形封头的直边高度表)的椭圆形封头,其质量为2q =987㎏/m (普通低合金钢椭圆形封头的质量表),故

2m =22q =2×987=1974㎏

(3)水的质量3m

由于乙烯密度小于水的密度,故可用水测试。水的密度在4℃时最大,为1000kg/3m

3m =γαV ,式中:α为装料系数,取0.7;V 为贮罐容积,V=筒对V V + =2×1.58+

3.801×4=18.3643m ;γ为水在4℃时的密度为1000㎏/3m 。所以 3m =18.364×0.7×1000=1285

4.8㎏ (4)附件质量4m

人孔约重200㎏,其他接口管的总和按300㎏,故4m =500㎏ 设备总质量:4321m m m m m +++==1204+1974+12854.8+500=16532.8N 2

8

.98.165322?==

mg Q =81010.72N ≈81.011KN 每个鞍座只承受约81.011KN 负荷,所以选用轻型带垫板包角为120o的鞍座即: JB/T4712-92 鞍座A2200-F; JB/T4712-92 鞍座A2200-S 。

2.4 人孔

根据贮罐 是在常温及最高工作压力为2.5Mpa 的条件下工作,人孔标准应按公称压力为2.5Mpa 的等级选取。但考虑人孔盖直径较大较重,故选用水平吊盖人孔,该人孔结构有吊钩和销轴,检修时只须松开螺栓将盖板绕销轴旋转一个

1m

角度,由吊钩吊住,不必将盖板取下。

该人孔标记为:HG21524—95 人孔TG I V(A.G)450-2.5

2.5 人孔补强确定

同于人孔的筒节不是采用无缝钢管,故不能直接选用补强圈标准。根据GB150中8.3,当设计压力小于或等于2.5MPa 时,在壳体上开孔,两相邻开孔中心的间距大于两孔直径之和的两倍,且接管公称外径不大于89mm 时,接管厚度满足要求,不另行补强,故该储罐中只有DN=450mm 的人孔需要补强。 由于筒体内经在以上,且考虑清洗、检修方便。本设计所选用的人孔筒节内径=450mm ,壁厚为10㎜.故补强圈尺寸为:补强圈内径1D =484㎜,外径2D =760㎜,补强圈的厚度按下式估算:

12D D d e n -=

δδ=484

760)

8.122(450--?≈33㎜

12D D d e -=

δδ补=484

760)

8.122(450--?=32.9㎜

考虑到罐体与人孔筒节均有一定的壁厚裕量,所以补强圈取32mm 厚。

2.6 法兰的选用

由于压力容器的最大设计压力为2.5MPa ,故可选用乙型平焊法兰或长颈对焊法兰,但该容器的接口法兰直径均为DN=2200mm ,故用长颈对焊法兰。

2.7 接口管

本贮罐设有以下接口管: (1)乙烯进料管

采用φ18㎜×1.5㎜无缝钢管。管的一端切成45o,伸入贮罐内少许。配用具有凸面密封的长颈对焊管法兰,法兰标记:HG 20592 法兰WN15—2.5 RF Q235A.

根据GB150中8.3,当设计压力小于或等于2.5MPa 时,在壳体上开孔,两相邻开孔中心的间距大于两孔直径之和的两倍,且接管公称外径不大于89mm 时,接管厚度满足要求,不另行补强,因此接管公称直径小于89mm ,故不用补强。 (2)乙烯出料管

采用可拆的压出管φ14㎜×2㎜,将它用法兰固定在接口管φ18㎜×1.5㎜内。罐体的接口管法兰用HG 20592 法兰WN15—2.5RF Q235A 。与该法兰相配并焊接在压出管的法兰上,其连接尺寸和厚度与HG 20592 法压兰WN15—2.5 RF Q235A 相同,但其内径为14mm (见总装图的局部放大图),乙烯出管的端部法兰(与液化乙烯输送管相连)采用HG 20592 法兰WN10—2.5 RF Q235A.这些小管都不必补强,压出管伸入贮罐2.5m 。

(3)排污管

贮罐在右端最底部安设排污管,管子规格:φ18㎜×1.5㎜,管端焊有一与

截止阀J41W—16相配的管法兰HG 20592 法兰WN15—2.5RF Q235A ,排污管与

罐体连接处焊有一厚度为10mm的补强圈。

(4)液面计接管

本贮罐采用玻璃管液面计BIW PN2.5, L=1000mm,HG5—227—80两支。与

液面计相配的接口管尺寸为φ14㎜×2㎜:,管法兰 HG 20592 法兰WN10—2.5RF

Q235A 。

(5)放空管接口管

采用无缝钢管,采用φ14㎜×2㎜无缝钢,管法兰 HG 20592 法兰WN10—2.5

RF Q235A。

(6)安全阀接口管

安全阀接口管尺寸由安全阀泄放量决定。本贮罐选用φ14㎜×2㎜的无缝钢

管,管法兰 HG 20592 法兰WN10—2.5 RF Q235A。

2.8主体设备尺寸和零部件尺寸

序号名称长度(㎜)

1 罐体的公称直径2200

2 罐体的壁厚22

3 罐体的长度4000

4 封头的直边高度50

5 封头的壁厚22

6 封头的短半轴长550

7 鞍座中心距罐体边550

8 人孔的内径 450

2.9 设备总装配图

贮罐的总装配图示如大图所示,各零部件的名称、规格、尺寸、材料等见明细表。

参考文献

1、中华人民共和国国家标准.GB 150—1998钢制压力容器[]S.北京:中国标准出版社,1998.

2、GB/9119-2000国标法兰

3、JB4712-1992鞍式支座

4、JB T4731-2005钢制卧式容器

5、GB_T700-2006碳素结构钢

6、谭蔚.化工设备设计基础(第二版)[]M.天津:天津大学出版社,2007.

7、郑晓梅.化工制图[M].北京:化学工业出版社,2001.

立式储罐课程设计说明书

立式贮罐设计 前言 玻璃钢罐分为立式、卧式机械缠绕玻璃钢储罐、运输罐、反应罐、各种化 工设备,玻璃钢卧式罐、立式贮罐、运输罐、容器及大型系列容器、根据所用(贮存或运输)介质选用环氧呋喃树脂、改性或聚酯树脂、酚醛树脂为粘结剂, 由高树脂含量的耐腐蚀内衬层、防渗层、纤维缠绕加强层及外表保护层组成。 玻璃钢具有耐压、耐腐蚀、抗老化、使用寿命长、重量轻、强度高、防渗、 隔热、绝缘、无毒和表面光滑等特点。机械缠绕玻璃钢容器可以通过改变树脂 系统或采用不同的增强材料来调整产品的物理化学性能以适应不同介质和工 作条件需要,通过结构层厚度、缠绕角和壁厚设计制不同压力,是纤维缠绕复 合材料的显著特点。 由于有以上的特点,玻璃钢贮罐可广泛应用于石油、化工、纺织、印染、 电力、运输、食品酿造、给排水、海水淡化、水利灌溉及国防工程等行业。储 存各种腐蚀性介质可以耐多种酸、碱、盐和有机溶剂,主要应用于石油、化工、 制药、印染、酿造、给排水、运输等行业,适应于盐酸、硫酸、硝酸、醋酸、 双氧水、污水、次氯酸钠等多种产品的贮存、运输,也可作地下油槽、保温储槽、运输槽车等[1]。 本设计为容积180,贮存质量分数为的硫酸,使用温度为90℃的立式贮罐,设计中分别从造型、性能、结构、工艺、零部件、防渗漏、安装、检验等八个方面做了说明、计算和设计,整体介绍了立式贮罐的设计流程、方法及主要事项,最终设计出了满足设计要求的立式贮罐。

1.造型设计 1.1设计要求 立式玻璃设计,容积为140,贮存质量分数为的醋酸,使用温度为常温,拱形顶盖设计。 1.2贮罐构造尺寸确定 贮罐容积V140,取公称直径为D3800, 则贮罐高度为(式1.1)初定贮罐结构尺寸为D H 1.3拱形顶盖尺寸设计 与锥形顶盖相比,其结构简单、刚性好、承载能力强,是立式贮罐广为使用的一种形式。为取得罐顶和罐壁等强度,罐顶的曲率半径与贮罐直径差值不超过20%。即 (式1.2)式中——拱顶球面曲率半径,; ——贮罐内径,,等于。 取罐顶高为h,r为转角曲率半径,r小则h小,一般取此时[1]。 所以 1.4贮罐罐底设计 罐体和罐底的拐角处理,对贮罐设计极为重要。尤其是立式贮罐底部附近的受力较为复杂,应引起足够的重视。一般在拐角处都应设计成一定的圆弧过渡区,圆弧半径不应小于38。如果罐壳和罐底分开制造,则应注意在罐壳和罐底的结合处内外进行有效的补强。拐角区域的最小厚度等于壳壁和底部的组合厚度。拐角区

空气储罐设计

设计要求 1、设计题目:空气储罐的机械设计 2、最高工作压力:0.8 MP a 3、工作温度:常温 4、工作介质:空气 5、全容积:163 m 设计参数的选择: 设计压力:取1.1倍的最高压力,0.88MP<1.6属于低压容器。 筒体几何尺寸确定:按长径比为3.6,确定长L=640000mm,D=1800mm 设计温度取50 因空气属于无毒无害气体,材料取Q345为低合金钢,合金元素含量较少,其强度,韧性耐腐蚀性,低温和高温性能均优于同含量的碳素钢,是压力容器专用钢板,主要用于制造低压容器和多层高压容器! 封头设计:椭圆形封头是由半个椭圆球面和短圆筒组成,球面与筒体间有直边段。直边段可以避免封头和和筒体的连接焊缝处出现经向曲率突变,以改善曲率变化平滑连续,故应力分布比较均匀;且椭圆形封头深度较半球形封头小得多,易冲压成型,在实际生产中多有模具,是目前中低压容器应用较多的封头。 因此选用以内径为基准的标准型椭圆形封头为了防止热应力和边缘应力的叠加,减少应力集中,在封头和筒体连接处必须有一段过渡的直边段,直边段的高度依据标准选择。封头材料与筒体相同,选用头和筒体连接处必须有一段过渡的直边段,直边段的高度依据标准选择。 选材和筒体一致Q345R

接管设计3.4 接管设计优质低碳钢的强度较低,塑性好,焊接性能好,因此在化工设备制造中常用作热交换器列管、设备接管、法兰的垫片包皮。优质中碳钢的强度较高,韧性较好,但焊接性能较差,不宜用作接管用钢。 由于接管要求焊接性能好且塑性好。故选择 20 号优质低碳钢的普通无缝钢管制作各型号接管 3.5 法兰设计法兰连接的强度和紧密性比较好,装拆也比较方便,因而在大多数场合比螺纹连接、承插式连接、铆焊连接等型式的可拆连接显得优越,从而获得广泛应用。 平焊法兰连接刚性较差,只能在低压,直径不太大,温度不高的情况下使用。由于Q345R 为碳素钢,设计温度 50℃ <300℃,且介质无毒无害,可以选用带颈平焊法兰,即 SO 型法兰。 储罐的设计压力较小要保证法兰连接面的紧密性,必须合适地选择压紧面的形状。 对于压力不高的场合,常用突台形压紧面。突面结构简单,加工方便,装卸容易,且便于进行防腐衬里。储罐由于设计压力为 0.88MPa,空气无毒无害,可选择突面(RF)压紧面。 由于法兰钢件的质量较大,需要承受大的冲击力作用,塑性、韧性和其他方面的力学性能也较高,所以不用铸钢件,可以采用锻钢件。接管材料为 20 号钢,法兰材料选用 20Ⅱ锻钢。 3.6接管与法兰分配 3.6.6 N1、N2空气进、出口公称尺寸 DN250,接管尺寸? 273 x6 。接管采用无缝钢管,材料为 20 号钢。伸出长度为 150mm 。 选取 0.88MPa 等级的带颈平焊突面法兰,材料选用 20Ⅱ,法兰标记为:SO300-2.5 RF3.6.2 N3排污口; 公称尺寸 DN40,接管采用 45 x3.5 无缝钢管,材料为 20 号钢,外伸长度为150mm。选取 0.88MPa 等级的带颈平焊突面法兰,材料选用 20Ⅱ,法兰标记为:SO40-1.6 RF 3.6.3 N4安全阀口公称尺寸 DN80,接管采用?89 x4 无缝钢管,材料为 20 号钢,外伸长度为 150mm。根据 GB12459-99,选用 90°弯头;弯头上方仍有一定

储罐课程设计

目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................. I I 第一章绪论 (1) 1.1液化石油气储罐的用途与分类 (1) 1.2液化石油气特点 (1) 1.3液化石油气储罐的设计特点 (2) 第二章工艺计算 (3) 2.1设计题目 (3) 2.2设计数据 (3) 2.3设计压力、温度 (3) 2.4主要元件材料的选择 (4) 第三章结构设计与材料选择 (5) 3.1筒体与封头的壁厚计算 (5) 3.2筒体和封头的结构设计 (6) 3.3鞍座选型和结构设计 (7) 3.4接管,法兰,垫片和螺栓的选择 (10) 3.5人孔的选择 (15) 3.6安全阀的设计 (15) 第四章设计强度的校核 (19) 4.1水压试验应力校核 (19) 4.2筒体轴向弯矩计算 (20) 4.3筒体轴向应力计算及校核 (20) 4.4筒体和封头中的切向剪应力计算与校核 (21) 4.5封头中附加拉伸应力 (22) 4.6筒体的周向应力计算与校核 (22) 4.7鞍座应力计算与校核 (23) 第五章开孔补强设计 (26) 5.1补强设计方法判别 (26) 5.2有效补强范围 (26) 5.3有效补强面积 (27) 5.4.补强面积 (28)

氢气储罐设计说明书

目录 前言 (3) 1 方案确定 (4) 1.1选择容器类型式 (4) 1.1.1 压力容器分类 (4) 1.1.2、封头形式的确定 (5) 1.2 材料的确定 (6) 2 设计计算 (8) 2.1 确定设计参数 (8) 2.1.1 工作压力、设计压力、计算压力 (8) 2.1.2 设计温度 (9) 2.1.3 厚度计算 (9) 2.1.4设计温度下的需用应力 (10) 2.1.5 焊接接头系数 (10) 2.2 容器相关量的确定 (11) 2.2.1 计算过程 (11) 2.2.2 筒体尺寸确定 (12) 2.3 容器强度校核 (13) 2.4 确定各工艺接管的公称通径及位置 (14) 3 结构设计 (17) 3.1 人孔选择 (17) 3.2人孔补强 (17) 3.3 支座的选择及校核 (20) 3.3.1支座的设计要求 (20) 3.3.2支座的选择及校核 (20) 4 总结与体会 (24)

5 谢辞 (25) 6 参考文献 (26)

前言 随着我国石油化工业的迅速发展,国家对清洁环保型能源越发的重视。化工业接触的都是危险品,因此对这些危险品的控制相当重要。以氢气为例,它就是易燃物质,储存的时候也要确保安全。因此对于氢气储罐有一定的设计要求。 氢气密度低,比容大,只有高压储运才能有效。氢气性质稳定,不容易跟其他物质发生化学反应,所以氢气的腐蚀性较小。但氢气在点燃加热等情况下易发生爆炸燃烧等现象,所以在储运的时候要格外小心对环境条件的控制。 本设计完成了6m3立式氢气储罐的设计,并对氢气储罐在设计、制造安装、使用、维护与定期检验提出了相应的安全技术要求。设计的氢气公称直径为1400mm,壁厚为6mm,对筒体与封头做了水压试验强度校核;对人孔的补强做了计算,计算补强圈的厚度为6mm ;选择了支座类型为A2型耳式支座。 本次设计各项参数均按照相关标准决定,主要有GB150-98《钢制压力容器》,《压力容器安全技术监察规程》,JB/T 4736-2002《补强圈》,HG 20592~20614-97《钢制管法兰、垫片、紧固件》,JB/T 4725-1992《耳式支座》,HG 21520-1995《垂直吊盖带颈平焊法兰人孔》等。 本次设计流程为:首先进行结构设计,确定为立式筒体储罐;然后进行材料选择,为Q345R;再进行设计计算、强度校核与及零部件选型;最后进行开孔补强计算、安全阀的选型与校核。 1 方案确定

立式储罐现场制作工程施工组织设计方案

海利化工股份 杂环项目现场制作储罐 施工方案 海利工程安装 2014年7月1日

目录 一、工程概况 二、编制说明和编制依据 三、施工准备 四、储罐的预制 五、储罐起升方式 六、储罐组对、安装 七、储罐的焊接 八、储罐检验 九、质量要求和保证质量措施 十、安全、文明施工要求 十一、资源需求配置计划

本工程是海利化工股份在海利农药化工投资兴建杂环项目配套原材料和产品储藏的灌区子项工程,共有立式圆筒形钢制焊接储罐8台,其中100m32台,200m36台,制作安装总吨数约为10吨,其中不锈钢约6.7吨,储罐具体规格、材质如下表。 二、编制说明和编制依据 2.1编制说明 由于本工程预制、组对、焊接工作量较大,且存在多出交叉作业,大大增加了本工程施工难度,为更好贯彻公司的质量方针,为建设单位提供满意的优质工程和服务,我公司将集中优势兵力,合理组织安排施工,坚持质量第一,严格控制过程,安全文明施工,确保按期完成,全力以赴争创优质工程,为达到上述目标,特编制本方案指导施工。 2.2编制依据 1)海利工程咨询设计提供的设计图纸 2)《立式圆筒形钢制焊接储罐施工及验收规》GB50128-2005 3)《立式圆筒形钢制焊接油罐设计规》GB50341-2003 4)《石油化工立式圆筒型钢制贮罐施工工艺标准》SH3530-93 5)《现场设备、工业管道焊接施工及验收规》GB50236-? 6)《钢制压力容器焊接规程》/T4709-2000 7)《焊接接头的基本形式与尺寸》 GB985-88 8)《石油化工设备安装工程质量检验评定标准》SH3514-2001

3.1施工现场准备 3.1.1 施工现场按照公司的要求进行布置,场地平整,施工用水、电、路畅通。 3.1.2土建基础施工完毕,基础经交接合格,具备施工条件。 3.1.3各类施工人员配备齐全,特种设备操作人员具备相应的资质。 3.1.4施工用各类机具落实到位,并运现场至按规定位置就位。 3.1.5材料、半成品、成品、废品堆放场地明确。 3.1.6安全防护措施落实到位,消防设施准备齐全。 3.2施工技术准备 3.2.1认真阅读各项施工技术文件。 3.2.2施工前组织工程技术人员审查图纸,熟悉图纸、设计资料及有关文件,并进行施工图纸会审。 3.2.3根据图纸要求和现场情况,编制可行的施工技术方案,并经各级主管部门审批合格。 3.2.4各专业工种经过技术培训,取得相应书,施工前储罐排板图应绘制完成; 3.2.5施工前由杂环项目部非标制作技术人员对全体施工人员进行技术和安全交底。 3.3基础验收 3.3.1在储罐安装前,必须按土建基础设计文件检查基础施工记录和验收资料,并按下列规定对基础表面尺寸复查,合格后方可安装。 3.3.2储罐基础表面尺寸,应符合下列规定: 3.3.2.1基础中心标高允许偏差不得大于±20mm;中心座标偏差不应大于20mm; 3.3.2.2支承罐壁的基础表面,其高差应符合下列规定:每10m弧长任意两点的高差不得大于6mm; 3.3.2.3当罐壁置于环梁之上时,环梁的半径不应有正偏差,当罐底板置于环梁侧时,环梁的半径不得有负偏差。

化工设计贮罐设计说明书

目录 前言 (2) 第1章设计参数的选择 1.1 设计要求与数据 1.1.1设计要求 (2) 1.1.2 设计数据 (2) 1.1.3 贮罐容积 (2) 1.2 设计温度 (3) 1.3 设计压力 (3) 1.4 主体设备和零部件材料选择 (3) 第2章设备的结构 2.1 罐体壁厚设计 (3) 2.2 封头壁厚设计 (4) 2.3 鞍座 (4) 2.4 人孔 (5) 2.5 人孔补强确定 (6) 2.6 法兰的选用 (6) 2.7 接口管 (6) 2.8 主体设备尺寸和零部件尺寸 (7) 2.9 设备总装配图 (7)

前言 卧式贮罐比立式贮罐易运输、设计合理、工艺先进、自动控制,符合GMP 标准要求,古采用卧式贮罐。 第1章设计参数的选择 1.1 设计要求与数据 1.1.1设计要求 (1)主体设备和零部件材料选择; (2)主体设备尺寸和零部件尺寸计算及选择规格; (3)设备壁厚以及封头壁厚的计算和强度校核; (4)各种接管以及零部件的设计选型; (5)设备支座的的设计选型; (6)法兰的设计选型; (7)设备开孔及开孔补强计算; (8)设计图纸要求1号图纸一张,包括设备总装配图,至少画三个重要构件的局部图;技术特性表,接管表和总图材料明细表。要求比例适当,字体规范,图纸整洁。 1.1.2 设计数据 表1-1 设计数据 序号项目数值单位备注 1 设备名称乙烯贮罐 2 公称直径2200 ㎜ 3 贮罐长度4000 ㎜ 4 最大工作压力 2. 5 MPa 5 贮存介质乙烯 6 工作地点宜宾 7 其他要求100%无损检测 1.1.3 贮罐容积 贮罐的容积=封头的容积+筒体的容积 由钢制筒体的容积、面积及质量表,可查得公称直径为2200㎜的筒体,1米高的容积为3.8013m,可得筒体的容积为:3.801×4=15.2043m;由JB/T4337

乙烯低温贮罐制作及安装工程监理细则

B13新浦化学工业(泰兴)有限公司VCM项目工程 监理实施细则 (低温乙烯贮罐) 内容提要: 专业工程特点 监理工作流程 监理工作控制目标及控制要点 监理工作方法及措施 项目监理机构(章): 专业监理工程师: 总监理工程师: 日期: 江苏省建设厅监制

一、工程概况: 1、工程名称:新浦化工氯乙烯项目乙烯低温贮罐制作及安装工程; 2、建设单位:新浦化学(泰兴)有限公司; 3、设计单位:上海工程化学设计院有限公司 4、施工单位:上海石化安装检修工程公司 5、监理单位:上海申峰工程建设监理有限公司 6、工程概况: 本工程为新浦化学(泰兴)有限公司乙烯低温贮罐,该 贮罐为双层钢结构立式贮罐,主要技术参数如下: 6.1 外罐(直径×高度)?35000×27600 外罐主体材料16MnR 内罐(直径×高度) ?33000×26400 内罐主体材料X12Ni5 6.2 物料名称:乙烯比重:568kg/m3。 6.3 贮罐工作温度:外罐-20~500C; 内罐-104~500C 该双层钢结构贮罐罐底板设计为搭接焊,罐壁板为对接焊,顶板为搭接焊。 贮罐制作安装工作特点是工作量大,室外作业,施工条件差,影响因素多,随机因素多,投入人力物力多等不利于焊接施工的特点。

二、目标分解 1、质量目标 2、HSE管理目标 三、设计要求适用规范及质量标准 1、低温乙烯贮罐设计施工图及技术文件 2、《现场设备、管道焊接工程施工及验收规范》GBJ50236-98

3、《工业安装工程质量检验评定统一标准》GB50252-98 4、《电器无损检测》JB4730-94 5、《钢制化工室焊接规范》JB4709-2000 6、《钢制焊接常压电器》JB/T4735-97 7、《立式圆筒形低温储罐施工技术规程》SH/T4735—2002 8、《石油化工设备和管道涂料防腐技术规范》SH3022-1999 9、《涂装前钢材表面锈蚀等级和防腐等级》GB8923-88 10、《管道与钢结构的现场涂漆规定》SP-74-V11-MS-0002 11、《钢板验收规范》GB/T3274-1988 12、《大型焊接、低压贮罐的设计和建造》API620标准 13、经审批的监理规划、施工组织设计 14、设计交底、图纸会审及设计变更单

储罐设计

《化工容器设计》课程设计说明书 题目: 学号: 专业: 姓名: I 目录 1 设计 (1) 1.1工艺参数的设定 (1) 1.1.1设计压力 (1) 1.1.2筒体的选材及结构 (1) 1.1.3封头的结构及选材 (2) 1.2 设计计算 (2) 1.2.1 筒体壁厚计算 (2) 1.2.2 封头壁厚计算 (3)

1.3压力实验 (4) 1.3.1水压试验 (4) 1.3.2水压试验的应力校核: (4) 1.4附件选择 (4) 1.4.1 人孔选择及人孔补强 (4) 2.4.3 进出料接管的选择 (6) 1.4.4 液面计的设计 (8) 1.4.5 安全阀的选择 (8) 1.4.6 排污管的选择 (8) 1.4.7 鞍座的选择 (8) 1.4.8鞍座选取标准 (9) 1.4.9鞍座强度校核 (10) 1.4.10容器部分的焊接 (11) 1.5 筒体和封头的校核计算 (11) 1.5.1 筒体轴向应力校核 (11) 1.5.2 筒体和封头切向应力校核 (13) 2 液氨储罐的泄漏及处理方法............................................................. 错误!未定义书签。 2.1 液氨泄漏的危害 .............................................................................. 错误!未定义书签。 2.2 泄漏的危害 ...................................................................................... 错误!未定义书签。 2.2 .1 生产运行过程中危险性分析······································错误!未定义书签。 2.2.2 设备、设施危险性分析 ············································错误!未定义书签。 2.3液氨储罐泄漏事故的应急处置措施 .............................................. 错误!未定义书签。

氢气化学品技术说明书

氢气安全技术说明书 危险性类别:第2.1易燃气体 侵入途径:吸入 健康危害:本品在生理上是惰性气体,仅在高度浓度时,由于空气中氧分压降低才引起窒息。在很高的分压下,氢气可呈现出麻醉作用。 环境危害:该物质对环境无害 爆炸危险:1.与空气混合能形成爆炸性混和物,遇热或明火即会发生爆炸。 2.氢气比空气轻得多,在室内使用和储存时,漏气上升滞留屋顶不易排出,遇火星会引起爆炸。 3.氢气与氟、氯、溴等卤素会剧烈反应 第三部分急救措施 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止立即进行人工呼吸。就医。 第四部分消防措施 危险特性:氢气极易燃烧,燃烧时,其火焰无颜色,肉眼无法看见。与空气或氧气混合能形成爆炸性混合物,遇热或明火即会发生爆炸。与氟、氯、溴等卤素会剧烈反应。氢气瓶或氢气储罐内存在压力,当温度升高时,气瓶或储罐内的压力也随着升高,它们在火灾中存在爆裂的可能性。 灭火剂:雾状水:泡沫、二氧化碳、磷酸铵干粉 氢气储罐/氢气瓶出现火灾时的消防措施:在确保人身安全的情况下,切断气源。疏散人员远离火灾区,并往上风处撤离。对着火区进行隔离,防止人员入内。可能的话,将那些处在火灾区附近、未受火直接影响的氢气瓶转移到安全地段。如氢气无法切断的话,可让气体燃烧,直到气瓶、储罐内的氢气烧完为止。 注意:这种处理方法是假设火势可以控制的前提下采用的,而且,氢气燃烧过程中,应持续用水对气瓶、储罐进行冷却,直到氢气完全烧尽为止,避免气瓶、储罐因过热而发生爆炸事故。如有可能,站在安全位置上进行灭火。并用水对着火的气瓶/储罐、以及着火区附近的所有压力容器进行冷却,直到它们完全冷却为止。不得设法搬动或靠近被火烘热的气瓶/储罐。如果火势很大或者失去控制,应立即向消防队报告,告知对方着火的详细地点以及着火的原因。火灾解除后,不得使用遭受过火灾的氢气瓶,应将它们退还给林德气体公司!禁止使用受到火灾影响的储罐。 第五部分泄漏应急处理 应急处理:首先切断所有的火源,勿使其燃烧,同时关闭阀门等措施,制止泄漏。并用雾状水保护关闭阀门的人员。 第六部分操作处置与储存 操作处置瓶装氢气时应注意的安全事项: a)必须保证工作场所具备良好的通风条件、空气中的氢气含量必须低于1。 b)应妥善保护氢气瓶和附件,防止

制氢干燥说明书(中电制氢)

CHE-5000氢气发生器(原料氢气再生) 操作使用手册 编制:-------------- 校核:--------------- 审批:--------------- 扬州中电制氢设备有限公司 2010.04.12

1、简述 1.1、氢气的性质和用途: 氢是自然界分布最广的元素之一,它在地球上主要以化合状态存在于化合物中。在大气层中的含量却很低,仅有约1ppm(体积比)。氢是最轻的气体。它的粘度最小,导热系数很高,化学活性、渗透性和扩散性强(扩散系数为0.63cm2/s,约为甲烷的三倍),它是一种强的还原剂,可同许多物质进行不同程度的化学反应,生成各种类型的氢化物。 氢的着火、燃烧、爆炸性能是它的主要特性。氢含量范围在4-75%(空气环境)、4.65-93.9%(氧气环境)时形成可爆燃气体,遇到明火或温度在585℃以上时可引起燃爆。 压力水电解制出的氢气具有压力高(1.6或3.2MPa)便于输送,纯度高(99.8%以上)可直接用于一般场合,还可以通过纯化(纯度提高到99.999%)和干燥(露点提高到-40~-90℃)的后续加工,可以作为燃料、载气、还原或保护气、冷却介质,广泛应用于国民经济的各行各业。 1.2、水电解制氢原理: 利用电能使某电解质溶液分解为其他物质的单元装置称为电解池。 任何物质在电解过程中,在数量上的变化服从法拉第定律。法拉第定律指出:电解时,在电极上析出物质的数量,与通过溶液的电流强度和通电时间成正比;用相同的电量通过不同的电解质溶液时,各种溶液在两极上析出物质量与它的电化当量成正比,而析出1克当量的任何物质都需要1法拉第单位96500库仑(26.8安培小时)的电量。水电解制氢符合法拉第电解定律,即在标准状态下,阴极析出1克分子的氢气,所需电量为53.6A/h。经过换算,生产1m3氢气(副产品0.5m3氧气)所需电量2390Ah,原料水消耗0.9kg。

卧式储罐人孔设计

Hefei University 《化工机械与设备》过程考核之二——常用零部件设计 题目: 2.5MPa卧式储罐人孔设计 系别:化学材料与工程系 班级:10化工(三) 姓名:何文龙 学号:1003023004 队别:Team 5 队员:朱广佳(队长)、吴凯、何文龙 教师:胡科研 日期:2011-12-02

《化工机械与设备》过程考核之二 ......................................... 错误!未定义书签。一前言 (3) 1.1 设计人孔的目的 (3) 1.2 人孔附图 (3) 二人孔的机械设计 (5) 2.1选择人孔 (5) 2.2核算人孔补强 (5) 2.3机械设计标准参数 (6) 2.3.1.碳素钢、低合金钢类 (6) 2.3.2 不锈钢类 (7) 2.3.3 人孔的PN2.5DN明细表 (8) 三人孔工艺设计: (9) 3.1人孔的功能类型: (9) 3.2材料的选择 (9) 3.3人孔种类的划分 (9) 3.3.1、以通信管块容量划分 (9) 3.3.2、以人孔的通向划分 (9) 3.3.3、以人孔上覆承受负荷能力划分 (9) 3.4 人孔直径及人孔中心距底板尺寸 (10) 四总结 (10) 五参考文献 (10)

一前言 1.1 设计人孔的目的 人孔是安装在卧式储罐上部的安全应急装置。通常与防火器、机械呼吸阀配套使用,既能避免因意外原因造成罐内急剧超压或真空时,损坏储罐而发生事故,又有起到安全阻火作用,是保护储罐的安全装置。具有方便维修,定压排放、定压吸入、开闭灵活、安全阻火、结构紧凑、密封性良好、安全可靠等优点。 1.2 人孔附图 图—1 人孔俯视图

2立方空气储罐设计

目录 任务书 (2) 第一章空气储罐产品概要 (3) 第二章空气储罐材料的选择 (4) 第三章空气储罐的结构设计 (4) 3.1圆筒厚度的设计 (5) 3.2封头厚度的计算 (5) 3.3接管的设计 (5) 3.4支座的设计 (6) 3.4.1支座选型 (6) 3.4.2鞍座定位 (6) 第四章强度计算 (6) 5.1水压试验应力校核 (6) 5.2工作应力计算及校核 (7) 5.2.1圆筒轴向应力计算及校核 (7) 5.2.3周向应力计算及校核 (8) 第五章空气储罐的制造工艺 (10) 5.1空气储罐的制造工艺流程 (10) 5.2空气储罐的焊接工艺 (11) 5.2.1接管焊接 (11) 5.2.2纵缝和环缝焊接 (12)

5.3空气储罐的焊接检验 (13) 5.3.1无损检测 (14) 5.3.2耐压试验 (14) 第六章课程设计心得体会 (15) 参考文献 (16) 任务书 2m3空气储罐的焊接工艺设计 设计参数 序号名称指标 1 设计压力P c(MPa) 1.0 2 设计温度(℃)100 3 最高工作压力(MPa)0.95 4 最高工作温度(℃)95 5 工作介质压缩空气 6 主要受压元件的材料Q235-B 7 焊接接头系数Φ0.9 8 腐蚀裕度C2(mm) 1.2 9 厚度负偏差(C1)0.8 9 全容积() 2.0 10 容器类别第一类 设计要求 (1)更具给定的条件来选定容积的几何尺寸,即确定筒体的内径、长度、封

头类型等,然后确定有关的参数,如容器材料、需用应力、壁厚附加量、焊缝系数等。 (2)设计筒体和封头壁厚;进行强度计算;焊接接头设计;附件设计等。 (3)撰写设计说明书:能以“工程语言和格式”阐明自己的设计观点、设计方案的优劣以及设计数据的合理性;按照设计步骤、进程,科学地编排设计说明书的格式与内容叙述简明。 第一章空气储罐概要 空气储罐的特点 空气储罐主要是指用于储存或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用,如氢气储罐、液化石油气储罐、石油储罐、液氨储罐等。储罐内的压力直接受温度影响,且介质往往易燃、易爆或有毒。储罐的结构形式主要有卧式储罐、立式储罐和球形储罐。 压力容器的外壳由筒体、封头、密封装置、开孔接管、支座及安全附件六大部件组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书

10立方米液氨压力容器储罐设计说明书

目录 第一章工艺设计 任务书*************************************** 储量***************************************** 备的选型及轮廓尺寸*************************** 第二章机械设计 结构设计 2.1.1 筒体及封头设计 材料的选择********************************** 筒体壁厚的设计计算 封头壁厚的设计计算 2.1.2 接管及接管法兰设计 接管尺寸选择********************************* 管口表及连接标准***************************** 接管法兰的选择***************************** 紧固件的选择******************************* 2.1.3 人孔的结构设计 密封面的选择****************************** 人孔的设计******************************** 2.1.4 核算开孔补强**************************** 2.1.5 支座的设计

支座的选择********************************** 支座的位置********************************** 2.1.6液面计及安全阀选择 2.1.7总体布局 2.1.8焊接接头设计 强度校核 小结

课程设计任务书 1.设计目的: 设计目的 1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。 2)掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案的可行性研究和论证。 3)掌握电算设计计算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。 4)掌握工程图纸的计算机绘图。 2.设计内容 1)设备工艺、结构设计; 2)设备强度计算与校核; 3)技术条件编制; 4)绘制设备总装配图; 5)编制设计说明书。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 1)设计说明书:主要内容包括:封面、设计任务书、目录、设计方案的分析和拟定、各部分结构尺寸的设计计算和确定、设计总结、参考文献等; 2)总装配图设计图纸应遵循国家机械制图标准和化工设备图样技术要求有关规定,图面布置要合理,结构表达要清楚、正确,图面要整洁,文字书写采用仿宋体、内容要详尽,图纸采用计算机 绪论 1、任务说明

乙烯贮罐设计说明书

化工设备课程设计乙烯贮罐设计说明书 院系:生命科学与食品工程学院09级4班学号: 090604019 姓名: 杨灵 二〇一一年六月

目录 第一章设计参数的选择 (2) 一、设计要求与数据: (2) 二、设计压力: (2) 三、设计温度: (2) 四、主要元件材料选择: (2) 第二章设备的结构设计 (3) 一、罐体壁厚设计 (3) 二、封头壁厚设计 (3) 三、鞍座 (3) 四、人孔 (5) 五、人孔补强确定 (6) 六、法兰选用 (6) 七、接口管 (6) 八、设备总装备图 (7)

第一章设计参数的选择 一、设计要求与数据: 表1:设计数据 项目数值单位备注 序 号 1 名称液化乙烯储罐 2 最大工作压力 2.2 MPa 3 工作温度40 4 公称直径1600 mm 5 筒体长度3019 mm 6 容积7.32 3m 7 贮存介质液化乙烯 8 其他要求100%无损检测 二、设计压力: 设计压力取最大工作压力的1.1倍,即2.42MPa 三、设计温度: 工作温度为:40 设计温度取:35+5=40 四、主要元件材料选择: 筒体材料的选择: 根据GB150-1998表4-1,选用筒体和封头材料为低合金钢16MnR(钢材标准为GB6654)。16MnR适用范围:考虑有一定大气腐蚀,壁厚较大()的压力容器。鞍座材料的选择: 根据JB/T4731,鞍座选用材料为Q235-A

地脚螺栓的材料选择: 地脚螺栓选用符合GB/T 700规定的Q235,Q235的许用应力[]147 bt MPa σ= 第二章设备的结构设计 一、罐体壁厚设计 根据所学知识对材料作分析可知,本设计贮罐选用16MnR制作罐体和封头。 设计壁厚: 式中:p为表压(设计压力):. (双面对接焊缝,100%探伤),取, 代入公式为 圆整后,取厚的16MnR钢板制作罐体。 二、封头壁厚设计 从工艺操作和定性分析可知:半球形封头受力最好,壁厚最薄,重量轻,但深度大,制造较难,中、低压小设备不宜采用;碟形封头的深度可通过过度半径加以调节,但由于碟形封头母线曲率不连续,存在局部应力,故受力不如椭圆形封头;标准椭圆形封头制造比较容易,受力状况比碟形封头好,故本设计可采用标准椭圆形封头。 其壁厚按下列公式计算: 因钢板自身的性质决定,封头需并焊后冲压,考虑冲压减薄量,圆整后取14mm 厚的16MnR钢板制作封头。 校核罐体与封头液压试验强度,由公式有: . . 所以 液压试验满足强度要求。 三、鞍座 首先粗略计算鞍座负荷 贮罐总质量 其中为罐体质量,Kg;为封头质量,Kg;充液质量,Kg;为附件质量,Kg.

乙烯乙烷精馏工艺设计说明书

化工原理课程设计 乙烯-乙烷精馏塔工艺设计说明书 学院(系):化工与环境生命学部 专业:能源化学工程 学生姓名:杨旭 学号:201341260 指导教师:董宏光 评阅教师: 完成日期:2016年7月7日 - 1 -

目录 第 1章概述......................................................... - 4 - 第2章方案流程简介.................................... 错误!未定义书签。 2.1精馏装置流程................................................ - 5 - 2.2 工艺流程....................................... 错误!未定义书签。 2.2.1工艺流程.............................................. - 5 - 2.2.2能量利用.............................................. - 5 - 2.3 设备选用....................................... 错误!未定义书签。 2.4 处理能力及产品质量要求......................... 错误!未定义书签。 2.5 设计的目的和意义 - 6 - 第3章精馏塔工艺设计............................................... - 7 - 3.1 设计条件.................................................... - 7 - 3.1.1 工艺条件.............................................. - 7 - 3.1.2 操作条件:........................................... - 7 - 3.1.3 塔板形式:............................................ - 7 - 3.1.4 处理量:.............................................. - 7 - 3.1.5 安装地点:............................................ - 7 - 3.1.6 塔板设计位置:........................................ - 7 - 3.2 物料衡算及热量衡算........................................ - 8 - 3.2.1 物料衡算............................................. - 8 - 3.2.2 热量衡算............................................. - 8 - 3.3 塔板数的计算........................................... - 9 - 3.3.1相对挥发度的查取...................................... - 9 - 3.3.2最小回流比计算:..................................... - 10 - 3.3.3 逐板计算过程:...................................... - 10 - 3.4 精馏塔工艺设计............................................. - 11 - 3.4.1 物性数据............................................. - 11 - 3.4.2 板间距和塔径的初步选取............................... - 11 - 3.4.3校核................................................. - 12 - 3.4.4塔板负荷性能图....................................... - 14 - 3.4.4 塔高的计算........................................... - 16 - 第4章再沸器的设计................................................ - 16 - - 2 -

氢气安全技术说明书(2014最新)

化学品安全技术说明书 产品名称:氢气按照GB/T 16483、GB/T 17519编制修订日期:2013年11月15日SDS编号: 最初编制日期:2012年版本:2.1 第1部分化学品及企业标识 化学品中文名称:氢 化学品俗名或商品名:氢气 化学品英文名称:hydrogen 企业名称: 地址: 邮编: 传真电话号码: 联系电话: 电子邮件地址: 企业应急电话: 第2部分危险性概述 GHS危险性类别: 易燃气体类别1 加压气体类别2 标签要素: 象形图:

警示词:危险 危险性说明:极易燃气体,含压力下气体如受热可爆炸。 防范说明: ·预防措施: 远离热源、明火,使用不产生火花的工具作业。 采取防止静电措施,容器和接收设备接地、连接。 使用防爆电器、通风、照明及其他设备,生产和使用装置安装气体探测报警装置。 ·事故响应: 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。 建议应急处理人员戴自给正压式呼吸器,穿消防防护服,尽可能切断泄漏源。 合理通风,加速扩散。如有可能,将漏出气用排风机送至空旷地方或装设喷头烧掉。漏气容器要妥善处理,修复、检验后再用。 ·安全储存: 易燃压缩气体,储存于阴凉、通风仓间内。 仓内温度不宜超过30℃。远离火种、热源。 防止阳光直射。应与氧气、压缩空气、卤素(氟、氯、溴)、氧化剂等分开存放。 切忌混储混运。储存间内的照明、通风等设施应采用防爆型,开关设在仓外。 配备相应品种和数量的消防器材。 禁止使用易产生火花的机械设备和工具。 ·废弃处置: 本品对环境不会造成影响,可直接排入大气。处置前应参照国家和地方有关法规。 物理和化学危险:本品是惰性气体,仅在高浓度时,由于空气中氧分压降低才引起窒息。在很高的分压下,可呈现出麻醉作用。易燃,遇热或明火会发生爆炸。健康危害: 吸入:在高浓度时,由于空气中氧分压降低才引起窒息。在很高的分压下,可呈现出麻醉作用。 皮肤接触:无影响。 眼睛接触:无影响。 食入:食入无毒。 环境危害:对环境不会造成影响,可直接排入大气。

柴油储罐设计说明书

钢制焊接常压容器设计说明(计算)书 编写:郭攀 审核:曾淦伟 批准:庆东 日期2018年3月21日省博来特石油设备安装分公司

一、设计概述 该产品为钢制焊接常压容器,盛装介质为柴油。柴油的理化特性包括:外观与性状:稍有粘性的棕色液体,熔点(℃):-18,相对密度(水=1):0.87-0.9,沸点(℃):282-338,闪点(℃):38,引燃温度(℃):257。该产品罐体为卧式单层容器,罐体横截面为圆形,封头为标准椭圆形,主体材质为Q235B,设计容积为1m3。 该产品设计按照NB/T 47003.1-2009《钢制焊接常压容器》的要求进行,设计计算按照NB/T 47042-2014《钢制卧式容器》的有关规定进行。

二、基本参数表 参数名称数值单位参数名称数值单位 设计压力p 0.09 MPa 圆筒直径Di 100 mm 计算压力p c0.09 MPa 圆筒平均半径R a500 mm 圆筒材料Q235B 圆筒名义厚度δo 6 mm 封头材料Q235B 圆筒有效厚度δe 4.5 mm 鞍座材料Q235B 封头名义厚度δhn7.75 mm 圆筒材料常温许用应力[σ] 160 MPa 封头有效厚度δhe 6.25 mm 封头材料常温许用应力[σ]h160 MPa 鞍座垫板名义厚度δre 6 mm 圆筒材料设计温度下许用应 力 160 MPa 鞍座腹板名义厚度b o 6 mm 鞍座材料许用应力[σ]sa160 MPa 两封头切线间距离L 154 mm 地脚螺栓材料许用应力[σ]bt59 MPa 圆筒长度L c 150 mm 圆筒材料常温屈服强度R eL235 MPa 封头曲面深度h i250 mm 圆筒材料常温弹性模量E 2.06 × 105 MPa 鞍座轴向宽度b 200 mm 圆筒材料设计温度下弹性模 量E12.06 × 105 MPa 鞍座包角θ120 (°) 圆筒材料密度ρS 7.85 × 10-6 kg/mm 3 鞍座底板中心至封头切线 距离A 200 mm 封头材料密度ρh 7.85 × 10-6 kg/mm 3 焊接接头系数φ0.85 操作时物料密度ρo 8.4 × 10-7 kg/mm 3 设计温度20 ℃

液氨储罐设计参数的确定设计说明书

液氨储罐设计参数的确定设计说明书第一章绪论 1.1设计符号说明 英文字母 α———容器的设计寿命,y; D———贮罐径,mm; i []tσ———钢板的许用应力,MPa P———液氨的饱和蒸汽压,MPa C———钢板厚度负偏差, mm; 1 C———介质的腐蚀裕量, mm; 2 希腊字母 δ———罐体计算厚度, mm; δ———罐体设计厚度, mm; d δ———罐体的名义厚度, mm; n δ———罐体的有效厚度, mm; e ?———圆整值,mm λ———腐蚀速率,y mm/ φ———焊接接头系数

1.2 设计任务 设计一液氨贮罐。工艺条件:温度为40℃,氨饱和蒸气压MPa 28m。 .1,容积为3 55 1.3 设计思路 综合运用所学的机械基础课程知识,本着认真负责团结合作的态度,对储罐进行详细设计。在设计过程中综合考虑了经济性,实用性,安全可靠性,各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有实际意义,并考虑到结构方面的要求,合理地进行设计,研究出最佳方案。 1.4 设计特点 容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。 各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。 1.5设计要求及成果 1. 确定容器材质; 2. 确定罐体形状及名义厚度; 3. 确定封头形状及名义厚度; 4. 确定支座,人孔及接管,以及开孔补强情况

5. 编制设计说明书以及绘制设备装配图1(A2)。 1.6技术要求 (一)本设备按GBl50-1998《钢制压力容器》进行制造、试验和验收 (二)焊接材料,对接焊接接头型式及尺寸可按GB985-80中规定(设计焊接接头系φ) 数0.1 = (三)焊接采用电弧焊,焊条型号为E4303 (四)壳体焊缝应进行无损探伤检查,探伤长度为100% 第二章液氨储罐设计参数的确定 2.1.设计温度与设计压力的确定 液氨储罐通常置于室外,罐液氨的温度和压力直接受到大气温度的影响,在夏季液氨储罐经太阳暴晒,随着气温的变化,储罐的操作压力也在不断变化。根据设计任务书的要求,所设计液氨贮罐的最高使用温度为40℃,查表可知40℃时液氨的饱和蒸汽压为1.55MPa。《压力容器安全监察规程》规定液化气体储罐必须安装安全阀,设计压力可取最大操作压力的1.05-1.10倍。取1.10倍最大操作压力为设计压力,所以设计压力p = 1.10×(1.05? 1.1) = 1.595MPa,故取设计压力p=1.6MPa。 2.2.罐体和封头的材料的选择 选择容器用钢必须综合考虑:容器的操作条件,如设计压力、设计温度、介质特性和操作压力等;材料的使用性能,如力学性能、物理性能、化学性能(主要是耐腐蚀性

相关主题
文本预览
相关文档 最新文档