当前位置:文档之家› 过控实验

过控实验

过控实验
过控实验

实验一:一阶单容上水箱对象特性测试实验

一、实验目的

1)、熟悉单容水箱的数学模型及其阶跃响应曲线。

2)、根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

二、实验设备

AE2000A型过程控制实验装置,万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、系统结构框图

单容水箱如图2-1-1所示:

图2-1-1单容水箱系统结构图

四、实验原理

阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号)。同时,记录对象的输出数据或阶跃响应曲线,然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

图解法是确定模型参数的一种实用方法,不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。

如图2-1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得:

(2-1-1)在零初始条件下,对上式求拉氏变换,得:

(2-1-2)式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,

K=R 2为过程的放大倍数,R 2为V 2阀的液阻,C 为水箱的容量系数。令输入流量Q 1(S )=R 0/S ,R 0为常量,则输出液位的高度为:

(2-1-3)

h(t)=KR 0(1-e -t/T )

(2-1-4)

当t →∞时,h (∞)=KR 0;当t=T 时,则有:

h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞)

因而有

K=h (∞)/R 0=输出稳态值/阶跃输入

(2-1-5)

式(2-1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-1-2所示。当由实验求得图2-1-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T ,该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,其理论依据是:

0000

()

()t

T t t dh t KR KR h e dt

T

T T

-==∞==

=

(2-1-6)

h1( t ) h1(∞ ) 0.63h1(∞)

0 T

图2-1-2 阶跃响应曲线

五、实验内容和步骤 1.设备的连接和检查

1) 检查电源开关是否关闭。

2) 关闭阀22,将AE2000A 实验对象的储水箱灌满水(至最高高度)。

3) 打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀门:阀

1、阀4、阀6,关闭动力支路上通往其他对象的切换阀门:阀

2、阀10、阀17、阀20。

4) 打开上水箱的出水阀8至适当开度。

2. 系统连线

1) 电源控制板上的三相电源、单相Ⅰ的空气开关、单相泵电源开关在关的位置。 2) 电动调节阀的~220V 电源开关打在关的位置。

3) 智能调节仪的~220V电源开关打在关的位置。

4) 如图2-1-3所示:将I/O信号接口板上的上水箱液位的钮子开关打到OFF位置。

5) 将上水箱液位+(正极)接到任意一个智能调节仪的1端(即RSV的+极),上

水箱液位-(负极)接到智能调节仪的2端(即RSV的负极)。

6) 将智能调节仪的4~20mA输出端的7端(即+极)接至电动调节阀的4~20mA

输入端的+端(即正极),将智能调节仪的4~20mA输出端的5端(即-极)接

至电动调节阀的4~20mA输入端的-(即负极)。

图2-1-3实验接线图

3.启动实验装置

1) 将实验装置电源插头2接到380V的三相交流电源。

2) 打开电源三相带漏电保护空气开关,电压表指示380V。

3) 打开总电源钥匙开关,按下电源控制屏上的启动按钮,即可开启电源。

4.实验步骤

1) 开启单相Ⅰ空气开关,根据仪表使用说明书和液位传感器使用说明调整好仪表各项

参数,仪表输出方式设为手动输出,初始值为0。

2) 启动计算机MCGS组态软件,进入实验系统相应的实验如图2-1-4所示:

3) 双击设定输出按钮,进行设定输出值的大小,或者在仪表手动状态下,按住仪表的

STOP键将仪表的输出值上升到所想设定的值,这个值根据阀门开度的大小来给定,一般初次设定值<25。开启单相泵电源开关,启动动力支路。将被控参数液位高度控制在20%处(一般为7cm)。

图2-1-4实验软件界面

4) 观察系统的被调量:上水箱的水位是否趋于平衡状态。若已平衡,应记录调节仪输

出值,以及水箱水位的高度h1和智能仪表的测量显示值并填入表2-1-1。

表2-1-1

5) 迅速增加仪表手动输出值,增加5%的输出量,记录此引起的阶跃响应的过程参数,

填入表2-1-2。可在上位软件上获得,以此数据绘制变化曲线。

表2-1-2

6) 直到进入新的平衡状态。再次记录平衡时的下列数据,并填入表2-1-3:

表2-1-3

7) 将仪表输出值调回到步骤5)前的位置,再用秒表和数字表记录由此引起的阶跃响

应过程参数与曲线。填入表2-1-4:

表2-1-4

8) 重复上述实验步骤。

六、实验报告要求

1) 推导式(2-1-1)。

2) 作出一阶环节的阶跃响应曲线。

3) 根据实验原理中所述的方法,求出一阶环节的相关参数。

七、注意事项

1) 做本实验过程中,阀8不得任意改变开度大小。

2) 阶跃信号不能取得太大,以免影响正常运行;但也不能过小,以防止对象特性的不

真实性。一般阶跃信号取正常输入信号的5%~15%。

3) 在输入阶跃信号前,过程必须处于平衡状态。

八、思考题

1) 在做本实验时,为什么不能任意变化阀8的开度大小?

2) 用两点法和切线法对同一对象进行参数测试,它们各有什么特点?

3) 实验中仪表测量值的误差对参数计算结果有无影响?请述理由。

实验二:二阶双容下水箱对象特性测试实验

一、实验目的

1)、熟悉双容水箱的数学模型及其阶跃响应曲线。

2)、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。

二、实验设备

AE2000A 型过程控制实验装置,上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、原理说明

图2-2-1双容水箱系统结构图

如图2-2-1所示:这是由两个一阶非周期惯性环节串联起来,被调量是第二水槽的水位h 2。当输入量有一个阶跃增加?Q 1时,被调量变化的反应曲线如图2-2-2所示的?h 2曲线。它不再是简单的指数曲线,而是呈S 形的一条曲线。由于多了一个容器,就使调节对象的飞升特性在时间上更加落后一步。在图中S 形曲线的拐点P 上作切线,它在时间轴上截出一段时间OA 。这段时间可以近似地衡量由于多了一个容量而使飞升过程向后推迟的程度,因此称容量滞后,通常以τC 代表之。设流量Q 1为双容水箱的输入量,下水箱的液位高度h 2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为:

2112()()* ()(*1)(*1)

s

H S K G S Q S T S T S e τ-==++

(2-2-1)

式中 K=R 3,T 1=R 2C 1,T 2=R 3C 2,R 2、R 3分别为阀V 2和V 3的液阻,C 1和C 2分别为

上水箱和下水箱的容量系数。由式中的K 、T 1和T 2须从由实验求得的阶跃响应曲线上求出。具体的做法是在图2-2-3所示的阶跃响应曲线上取:

图2-2-2变化曲线

图2-2-3阶跃响应曲线

1) h 2(t )稳态值的渐近线h 2(∞);

2) h 2(t )|t=t1=0.4 h 2(∞)时曲线上的点A 和对应的时间t 1; 3) h 2(t )|t=t2=0.8 h 2(∞)时曲线上的点B 和对应的时间t 2。

然后,利用下面的近似公式计算式(2-2-1)中的参数K 、T1和T2。其中:

2()K O h R ∞=

=输入稳态值

阶跃输入量

(2-2-1) 4)

1212t t T T 2.16

++≈

121

2

122

T T (1.740.55) (T T )t t ≈-+(2-2-2) 对于式(2-2-1)所示的二阶过程,0.32

G(S)=K/(TS +1)2

(此时T 1=T 2=T=(t 1+t 2)/2* 2.18 ) (2-2-3)

四、实验步骤 1.设备的连接和检查

1) 检查电源开关是否关闭。

2) 开通以丹麦泵、电动调节阀、涡轮流量计以及上水箱出水阀1、阀4、阀6、阀8

所组成的水路系统;关闭通往其他对象的切换阀10、阀20、阀17。 3) 将下水箱的出水阀9开至适当开度。

2.系统连线

接线如图2-2-4所示。

1) 电源控制板上的三相电源、单相Ⅰ的空气开关、单相泵电源开关在关的位置。

2) 电动调节阀的~220V电源开关打在关的位置。

3) 智能调节仪的~220V电源开关打在关的位置。

4) 将下水箱液位+接到任意一个智能调节仪的信号输入端1(即RSV的+极),下水

箱液位-(负端)接到智能调节仪的2端(即RSV的-极)。

5) 将智能调节仪的~20mA输出端的7端(即+极)接至电动调节阀的4~20mA输

入端的+端(即正极),将智能调节仪的4~20mA输出端的5端(即-极)接至

电动调节阀的4~20mA输入端的-(即负极)。

图2-2-4实验接线图

3.启动实验装置

1) 将实验装置电源插头接到380V的三相交流电源。

2) 打开电源三相带漏电保护空气开关,电压表指示380V。

3) 打开总电源钥匙开关,按下电源控制屏上的启动按钮,即可开启电源。

4.实验步骤

1) 开启单相Ⅰ空气开关,下水箱液位传感器输出信号为1~5V电压信号,调整好仪

表输入规格参数与其他各项参数,开始校准液位传感器的零位和增益,仪表输出方

式设为手动输出,初始值为0。

2) 启动计算机,进入实验系统相应的实验,界面如图2-2-5所示。

3) 开启单相泵电源开关,启动动力支路,手动将仪表的输出值迅速上升到小于等于

10,将被控参数液位高度控制在30%处(一般为5cm)。

4) 观察系统的被调量——水箱的水位是否趋于平衡状态。若已平衡,应记录调节仪输

出值、水箱水位的高度h2和智能仪表的测量显示值并填入表2-2-1。

表2-2-1

图2-2-5实验软件界面

5) 迅速增加仪表手动输出值,增加10%的输出量,记录此引起的阶跃响应的过程参

数,填入表2-2-2,可在上位软件上获得各项参数和数据,并绘制过程变化曲线。

表2-2-2

6) 直到进入新的平衡状态。再次记录测量数据,并填入表2-2-3:

表2-2-3

7) 将仪表输出值调回到步骤5)前的位置,再用秒表和数字表记录由此引起的阶跃响

应过程参数与曲线。填入2-2-4表:

表2-2-4

8) 重复上述实验步骤。

五、注意事项

1) 做本实验过程中,阀V2不得任意改变开度大小。

2) 阶跃信号不能取得太大,以免影响正常运行;但也不能过小,以防止对象特性的不

真实性。一般阶跃信号取正常输入信号的5%~15%。

3) 在输入阶跃信号前,过程必须处于平衡状态。

六、实验报告要求

1) 作出二阶环节的阶跃响应曲线。

2) 根据实验原理中所述的方法,求出二阶环节的相关参数。

3) 试比较二阶环节和一阶环节的不同之处。

七、思考题

1) 在做本实验时,为什么不能任意变化下水箱出水阀的开度大小?

2) 用两点法和用切线对同一对象进行参数测试,它们各有什么特点?

实验三:上水箱液位PID整定实验

一、实验目的

1) 通过实验熟悉单回路反馈控制系统的组成和工作原理。

2) 分析分别用P、P I和PID调节时的过程图形曲线。

3) 定性地研究P、P I和PID调节器的参数对系统性能的影响。

二、实验设备

AE2000A型过程控制实验装置,上位机软件,计算机,RS232-485转换器1只、串口线1根,实验连接线,万用表一只。

扰动

三、实验原理

图3-1-1 实验原理

图3-1-1为单回路上水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(P I D)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P、P I、P I D调节系统的阶跃响应分别如图3-1-2中的曲线①、②、③所示。

图3-1-2P、PI和PID调节的阶跃响应曲线

四、实验内容和步骤

1.设备的连接和检查

1) 检查电源开关是否关闭。

2) 打开上水箱的出水阀8至适当开度。

3) 将AE2000A 实验对象的储水箱灌满水(至最高高度)。

4) 打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀门:阀

1、阀4、阀6,关闭动力支路上其他阀门:阀

2、阀5、阀10、阀17、阀20。

图3-1-3上水箱液位PID参数整定控制接线图

2.系统连线

如图3-1-3所示.

1) 三相电源、单相Ⅰ空气开关打在关的位置。

2) 智能调节仪的~220V的电源开关打在关的位置。

3) 将I/O信号接口板上的上水箱液位的钮子开关打到OFF位置。

4) 将上水箱液位+(正极)接到任意一个智能调节仪的1端(即RSV的正极),将

上水箱液位-(负极)接到智能调节仪的2端(即RSV的负极)。

5) 将智能调节仪的4~20mA输出端的7端(即正极)接至电动调节阀的4~20mA

输入端的+端(即正极),将智能调节仪的4~20mA输出端的5端(即负极)接

至电动调节阀的4~20mA输入端的-(即负极)。

3.启动实验装置

1) 将实验装置电源插头接到380V的三相交流电源。

2) 打开电源三相带漏电保护空气开关,电压表指示380V。

3) 打开总电源钥匙开关,按下电源控制屏上的启动按钮,即可开启电源

4) 开启单相Ⅰ,调整好仪表各项参数(仪表初始状态为手动且为0)和液位传感器的

零位。

5) 启动智能仪表,设置好仪表参数。

4.比例调节控制

1) 启动计算机,进入实验系统,选择相应的实验,如图3-1-4所示:

图3-1-4实验软件界面

2) 打开电动调节阀和单相电源泵开关,开始实验。

3) 设定给定值,调整P参数。

4) 待系统稳定后,对系统加扰动信号(在纯比例的基础上加扰动,一般可通过改变设

定值实现)。记录曲线在经过几次波动稳定下来后,系统有稳态误差,并记录余

差大小。

5) 减小P重复步骤4,观察过渡过程曲线,并记录余差大小。

6) 增大P重复步骤4,观察过渡过程曲线,并记录余差大小。

7) 选择合适的P,可以得到较满意的过渡过程曲线。改变设定值(如设定值由50%

变为60%),同样可以得到一条过渡过程曲线。

8) 注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。

5.比例积分调节器(PI)控制

1) 在比例调节实验的基础上,加入积分作用,即在界面上设置I参数不为0,观察被

控制量是否能回到设定值,以验证P I控制下,系统对阶跃扰动无余差存在。

2) 固定比例P值(中等大小),改变P I调节器的积分时间常数值Ti,然后观察加阶

跃扰动后被调量的输出波形,并记录不同Ti值时的超调量σp。填入表3-1-1。

表3-1-1 不同Ti时的超调量σp

3) 固定I于某一中间值,然后改变P的大小,观察加扰动后被调量输出的动态波形,

据此列表记录不同值Ti下的超调量σp。填入表3-1-2。

表3-1-2 不同δ值下的σp

4) 选择合适的P和Ti值,使系统的阶跃响应为一条较满意的过渡过程曲线。此曲线

可通过改变设定值(如设定值由50%变为60%)来获得。

6.比例积分微分调节(PID)控制

1) 在PI调节器控制实验的基础上,再引入适量的微分作用,即把软件界面上设置D

参数,然后加上与前面实验幅值完全相等的扰动,记录系统被控制量响应的动态曲

线,并与实验(二)P I控制下的曲线相比较,由此可看到微分D对系统性能的影

响。

2) 选择合适的P、Ti和Td,使系统的阶跃响应为一条较满意的过渡过程曲线(阶跃

输入可由给定值从50%突变至60%来实现)。

3) 在历史曲线中选择一条较满意的过渡过程曲线进行记录。

7.用临界比例度法整定调节器的参数

在实现应用中,P I D调节器的参数常用下述实验的方法来确定。用临界比例度法去整定P I D 调节器的参数是既方便又实用的。它的具体做法是:

1) 待系统稳定后,逐步减小调节器的比例度δ(即1/P),并且每当减小一次比例度δ,

待被调量回复到平衡状态后,再手动给系统施加一个5%~15%的阶跃扰动,观察

被调量变化的动态过程。若被调量为衰减的振荡曲线,则应继续减小比例度δ,直

到输出响应曲线呈现等幅振荡为止。如果响应曲线出现发散振荡,则表示比例度调

节得过小,应适当增大,使之出现等幅振荡。

2) 当被调量作等幅荡时(如图3-1-5所示),此时的比例度δ就是临界比例度,用δk

表示之,相应的振荡周期就是临界周期T k。据此,按表3-1-3可确定PID调节器

的三个参数δ、Ti和T d。

图1-5具有周期T K的等幅振荡

表3-1-3 用临界比例度δk整定PID调节器的参数

3) 必须指出,表格中给出的参数值是对调节器参数的一个初略设计,因为它是根据大

量实验而得出的结论。若要就得更满意的动态过程(如:在阶跃作用下,被调参量

作4:1衰减振荡),则要在表格给出参数的基础上,对δ、Ti(或T d)作适当调整。

五、实验报告要求

1) 画出单容水箱液位控制系统的方块图。

2) 用接好线路的单回路系统进行投运练习,并叙述无扰动切换的方法。

3) 用临界比例度法整定调节器的参数,写出三种调节器的余差和超调量。

4) 作出P调节器控制时,不同δ值下的阶跃响应曲线。

5) 作出P I调节器控制时,不同δ和Ti值时的阶跃响应曲线。

6) 画出P I D控制时的阶跃响应曲线,并分析微分D的作用。

7) 比较P、P I I和P I D三种调节器对系统无差度和动态性能的影响。

六、思考题

1) 为什么要强调无扰动切换?

2) 定性分析三种调节规律的参数δ、(δ、Ti)和(δ、Ti和T d)对控制过程的影响?

3) 如何实现减小或消除余差?纯比例控制能否消除余差?

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

09自动化《过程控制系统》实验指导书

实验1 用曲线拟合法估计模型参数 实验目的: 1) 掌握用曲线拟合法测试对象动态特性; 2) 熟悉MATLAB 仿真平台。 实验原理: 图1.1 输入-输出过程模型 在如图1.1 所示的过程模型中,可以通过实验测试或依据积累的操作数据,用数学方法得出过程的经验模型。 在获取了输入输出数据后,进行曲线拟合,可采用计算机和相关的软件实现。首先根据实验数据和其它验前知识,假定对象的模型结构,然后最小化模型输出)(t y 和实际输出y(t)在采样点上的误差平方和,即 ∑=-=n i i i t y t y J 1 2))()((min 进行搜索时,当J 最小时相应的对象参数即为最优参数。式中,n 为计算数据的个数。优化的算法很多,如共轭梯度法、最速下降法、Powell 法、单纯型法、罚函数法等。 本实验利用MA TLAB 优化工具箱中的“lsqcurvefit”函数对过程阶跃响应曲线进行拟合,用户假定模型的结构,编写相应的fun 函数,即ym=fun (x , t ),其中x 为模型的参数向量,待确定,t 为时间向量。给出待估计参数的初始值x0,调用曲线拟合函数计算模型参数向量的估计值x ,格式为x = lsqcurvefit (fun , x 0, t , y ),其中y 为与时间向量t 对应的输出实验数据。 实验要求: 1) 用SIMULINK 工具箱搭建如图1.2所示的开环对象测试系统,模拟实验测试环节 获取输入输出数据,此处输入采用单位阶跃信号。设置合适的“start time”和“stop time”,使得能够得到一个完整的动态过程。仿真类型设置为“Fixed -step”,并设置合适的计算步长(0.01~0.1)。 输入输出数据保存在dataty.mat 文件中,设置变量名为ty ;run 之后,可在命令窗口中输入load dataty.mat 将数据文件中的数据读入工作空间中,然后用size(ty)查看

通信工程专业综合实验指导书

通信工程专业综合实验指导书 XX建筑大学 信息与电气工程学院 通信工程教研室 2009年3月

实验一、学习数字通信系统的SystemView仿真软件 一、实验目的 1.了解SystemView软件,学习数字通信系统SystemView仿真软件的使用方法,为实际的仿真应用打下良好的基础。 2.掌握软件设计和仿真的方法。 二、实验说明 SystemView是美国ELANIX公司推出的,基于Windows环境的用于系统仿真分析的可视化软件工具。使用它,用户可以用图符(Token)去描述自己的系统,无需与复杂的程序语言打交道,不用写代码即可完成各种系统的设计与仿真。 利用SystemView,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统,它可用于各种线性或非线性控制系统的设计和仿真。 SystemView的图符资源十分丰富,特别适合于现代通信系统的设计、仿真和方案论证。还可进行CDMA通信系统和数字电视业务的分析;用户还可以自己用C语言编写自己的用户自定义库。 SystemView能自动执行系统连接检查,给出连接错误信息或尚悬空的待连接端信息,通知用户连接出错并通过显示指出出错的图标。 在系统设计和仿真方面,SystemView还提供了一个真实而灵活的窗口用以检查、分析系统波形,也可完成对仿真运行结果的各种运算、频谱分析、滤波。 三、实验设备 四、实验内容 1.安装SystemView,对该软件有一个感性认识

根据SystemView安装软件说明,在电脑上安装SystemView软件。 2.了解SystemView设计窗口 启动SystemView后就会出现如图1所示的系统设计窗口。它包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计窗工作区。其中设计窗口工作区是用于设置、连接各种图符以创建系统,进行系统仿真等操作;提示栏用于显示系统仿真的状态信息、功能快捷键的功能信息提示和图符的参数显示;滚动条用于移动观察当前的工作区域。当鼠标器位于功能图符上时,则该图符的具体参数就会自动弹出显示。 3.了解SystemView图符库 SystemView的图标库可分为3种,即基本库、专业库以及用户扩展库。分别了解相关图库的功能,便于后续设计使用。 4.了解SystemView分析窗口

过程控制仪表实验报告

成绩________ 过程控制仪表及装置实验报告 班级:_______________________________________ 姓名:________________________________________ 学号:________________________________________ 指导老师:_____________________________________ 实验日期:_____________________________________

目录 实验一电容式差压变送器的校验 (2) 实验二热电阻温度变送器的校验 (5) 实验三模拟调节器开环校验 (8) 实验四模拟调节器闭环校验 (12) 实验五SLPC可编程调节器的编程设计与操作 (14) 实验六SLPC可编程调节器PID控制参数整定 (19) 1 实验一电容式差压变送器的校验 一、实验目的 1.了解并熟悉电容式差压变送器整体结构及各种部件的作用。 2.掌握电容式差压变送器的工作原理。 3.掌握电容式差压变送器的起点及终点调整、精度校验、迁移的调整方法。 二、实验项目 1.掌握气动定值器、标准电流表、标准压力表、标准电阻箱的使用方法。2.了解电容式差压变送器整体结构,熟悉各调节螺钉的位置和用途。 3.按照实验步骤进行仪表的起点、终点调整,进行精度、迁移校验。 三、实验设备与仪器 1.电容式差压变送器1台 2.标准电阻箱1个 3.气动定值器1个 4.标准电流表1台 5.标准压力表1个 6.大、小螺丝刀各1把 7.连接导线、气压导管若干 四、实验原理 实验接线如图2-1所示。

现代控制理论实验报告

现代控制理论实验报告

实验一系统能控性与能观性分析 一、实验目的 1.理解系统的能控和可观性。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台; 三、实验容 二阶系统能控性和能观性的分析 四、实验原理 系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。 对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中 则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。反之,当 时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。 系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间根据系统的输出能唯一地确定系统的初始状态,则称系统能观。为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式: 平衡时:

由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。由于iL与uc的耦合关系,因而输出uc的检测,能得到iL 的信息,即根据uc的观测能确定iL(ω) 五、实验步骤 1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。将阶跃信号发生器选择负输出。 2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。 3.将短路帽分别接到1K、3K处,重复上面的实验。 六、实验结果 表20-1Uab与Ucd的关系 Uab Ucd

过控控制系统综合设计实验

过程控制系统综合设计实验报告 项目:过程控制系统综合设计 班级:自动化133 姓名: 学号: 指导老师: 一:实验目的及要求 目的: 1.结合比值控制系统、串级控制系统、前馈反馈控制系统、解耦控 制系统的实施,掌握DDC系统应用,以及安装; 2.掌握P900系列智能调节器的参数整定与操作; 3.掌握各类标准信号的测定方法; 4.掌握传感器、执行器的使用; 5.掌握数学建模方法以及PID参数的整定方法。

要求: 1、按照实验指导书上的任务完成实验内容; 2、记录数据以及实验结果,保存实验结果图; 3、完成实验报告的设计,撰写,分析并处理实验结果; 4、进行答辩。

二:实验过程及实验结果 实验一、长滞后环节温度PID 控制实验 一、实验目的 1、熟悉纯滞后(温度)对象的数学模型及其阶跃响应曲线。 2、根据由实际测得的纯滞后(温度)阶跃响应曲线,分析加热系统的飞升特性。 二、实验器材 CS4100型过程控制实验装置 配置:C3000过程控制器、实验连接线。 三、实验原理 整个纯滞后系统如图4-1所示,加热水箱为纯滞后水箱提供热水,在加热水箱的出水口即纯滞后水箱的进水口装有温度传感器。纯滞后水箱,中间固定有一根有机玻璃圆柱,9块隔板呈环形排布在圆柱周围,将整个水箱分隔为9个扇形区间,热水首先流入A 区间,再由底部进入B 区间,流过B 区间后再由顶部进入C 区间,如此再依次流过D 、E 、F 、G 、H 最后从I 区间流出,测温点设在E 、H 区间,当A 区间进水水温发生变化时,各区间的水温要隔一段时间才发生变化,当进水水流流速稳定在1.5L/Min 时,与进水水温T1相比E 区间的水温T2滞后时间常数τ约为4分钟,H 区间的水温T3滞后时间常数τ约为8分钟。各隔板的上沿均低于水箱的外沿,这样如果水流意外过大则会漫过各隔板直接进入I 区间再流出。 A B C D E F G H I t2 t3 六号纯滞后水箱 五号加热水箱 调压 模块 手动设定 Q t1 图3-1 纯滞后系统示意图

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

现代控制理论 实验报告

实验三典型非线性环节 一.实验要求 1.了解和掌握典型非线性环节的原理。 2.用相平面法观察和分析典型非线性环节的输出特性。 二.实验原理及说明 实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路。 三、实验内容 3.1测量继电特性 (1)将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。 (2)模拟电路产生的继电特性: 继电特性模拟电路见图 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。 波形如下: 函数发生器产生的继电特性 ①函数发生器的波形选择为‘继电’,调节“设定电位器1”,使数码管右显示继电限幅值为3.7V。 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。实验结果与理想继电特性相符 波形如下:

3.2测量饱和特性 将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。 (2)模拟电路产生的饱和特性:饱和特性模拟电路见图3-4-6。 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。如下所示:

函数发生器产生的饱和特性 ①函数发生器的波形选择为‘饱和’特性;调节“设定电位器1”,使数码管左显示斜率为2;调节“设定电位器2”,使数码管右显示限幅值为3.7V。 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。波形如下: 。 3.3测量死区特性 模拟电路产生的死区特性 死区特性模拟电路见图3-4-7。 慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。如下所示:

A3000高级过程控制系统实验指导书V

HUATEC A3000过程控制实验系统 实验指导书 V3.0 华晟高科教学仪器编制

目录 第一章安全注意事项与设备使用 ................................................ - 1 - 1.1防止触电 ................................................................................. - 1 - 1.2防止烫伤 ................................................................................. - 2 - 1.3防止损坏 ................................................................................. - 2 - 1.4现场系统组成............................................................................ - 2 - 1.5控制系统组成............................................................................ - 2 - 第二章计算机测控系统实验 ..................................................... - 5 -实验1 实验系统认知 ....................................................................... - 5 - 实验2 ADAM4000模块的通讯和使用 ....................................................- 10 - 实验3 组态软件编程和数据获取.........................................................- 18 - 实验4 PLC系统通讯和使用...............................................................- 21 - 实验5 PLC Step7编程...................................................................- 28 - 实验6 现场总线技术与DCS实验 ........................................................- 33 - 第三章工艺设备和仪器仪表实验 .............................................. - 41 -实验1 温度、压力、液位和流量测量实验..............................................- 41 - 实验2 水泵负载特性测量实验 ...........................................................- 46 - 实验3 管道压力和流量耦合特性测量实验..............................................- 48 - 实验4 电动调节阀特性测量实验.........................................................- 51 - 实验5 调压器特性测量实验 ..............................................................- 53 - 实验6 变频器水泵控制特性测量实验 ...................................................- 55 - 第四章工业系统对象特性的测定研究......................................... - 59 -实验1 单容水箱液位数学模型的测定实验..............................................- 59 - 实验2 双容水箱液位数学模型的测定实验..............................................- 62 - 实验3 非线性容积水箱液位数学模型的测定实验 .....................................- 65 - 实验4 测定不同阻力下单容水箱液位数学模型实验...................................- 67 - 实验5 锅炉与加热器对象数学模型实验 ................................................- 70 - 实验6 滞后管数学模型实验 ..............................................................- 73 - 实验7 换热机组数学模型实验 ...........................................................- 76 - 第五章简单设计型控制实验 ................................................... - 80 -实验1 单闭环流量控制实验 ..............................................................- 80 - 实验2 单容水箱液位定值控制实验......................................................- 83 - 实验3 双容水箱液位定值控制实验......................................................- 89 - 实验4 三容水箱液位定值控制实验......................................................- 93 - 实验5 锅炉水温定值位式控制实验......................................................- 95 - 实验6 锅炉水温定值控制实验 ...........................................................- 99 - 实验7 换热器水温单回路控制实验.................................................... - 102 - 实验8 联锁控制系统实验............................................................... - 105 - 实验9 单闭环压力控制实验 ............................................................ - 109 - 第六章复杂设计型控制系统 .................................................. - 111 -实验1下水箱液位和进口流量串级控制实验.......................................... - 111 - 实验2 闭环双水箱液位串级控制实验 ................................................. - 120 - 实验3 换热器热水出口温度和冷水流量串级控制实验.............................. - 125 - 实验4 单闭环流量比值控制系统实验 ................................................. - 128 - 实验5 下水箱液位前馈反馈控制系统实验............................................ - 131 - 实验6 锅炉温度和换热器前馈反馈控制系统实验 ................................... - 135 - 实验7 管道压力和流量解耦控制系统实验............................................ - 138 -

WDT-IIIC综合实验指导书

第三章一机—无穷大系统稳态运行方式实验一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。

图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验

《过程控制系统》实验报告

《过程控制系统》实验报告 学院:电气学院 专业:自动化 班级:1505 姓名及学号:任杰311508070822 日期:2018.6.3

实验一、单容水箱特性测试 一、 实验目的 1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、 实验设备 1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。 三、 实验原理 图1 单容水箱特性测试结构图 由图 2-1 可知,对象的被控制量为水箱的液位 h ,控制量(输入量)是流入水箱中的流量 Q 1,手动阀 V 1 和 V 2 的开度都为定值,Q 2 为水箱中流出的流量。根据物料平衡关系,在平衡状态时02010=-Q Q (式2-1),动态时,则有dt dV Q Q = -21,(式2-2)式中 V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与 h 的关

系为Adh dV =,即dt dh A dt dV =(式2-3),A 为水箱的底面积。把式(2-3)代入式(2-2)得dt dh A Q Q =-21(式2-4)基于S R h Q =2,S R 为阀2V 的液阻,(式2-4)可改写为dt dh A R h Q S =-1,1KQ h dt dh AR S =+或()()1s 1+=Ts K s Q H (式2-5)式中s AR T =它与水箱的底面积A 和2V 的S R 有关,(式2-5)为单容水箱的传递函数。若令()S R S Q 01=,常数=0R ,则式2-5可表示为()T S KR S R K S R T S T K S H 11/000+-=?+= 对上式取拉氏反变换得()()T t e KR t h /01--=(式2-6),当∞→t 时()0KR h =∞,因而有()0/R h K ∞==输出稳态值/阶跃输入,当T t =时,()() ()∞==-=-h KR e KR T h 632.0632.01010,式2-6表示一阶惯性响应曲线是一单调上升的指数函数如下图2-2所示 当由实验求得图 2-2 所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数 T 。该时间常数 T 也可以通过 坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是 时间常数 T ,由响应曲线求得 K 和 T 后,就能求得单容水箱的传递函 数如式(2-5)所示。 如果对象的阶跃响应曲线为图 2-3,则在此曲线的拐点 D 处作一切线,它与时间轴交于 B 点,与响应稳态值的渐近线交于 A 点。图中OB 即为对象的滞后时间

综合实验试验指导书(一)

综合实验实验指导书 福建工程学院土木工程学院 2013年12月

学生实验守则 1、实验前应认真按教师布置进行预习,明确实验目的、要求,掌握实验内容、方法和步骤。 2、实验前的准备工作,经指导教师或实验技术人员检查,合格后方可进行实验。实验过程中认真观察各种现象,记录实验数据,不能马虎的抄袭。实验完毕必须整理好本组实验仪器,并经指导教师或实验技术人员验收后,方可离开。实验后,认真分析实验结果,正确处理数据,细心制作图表,做好实验报告。不符合要求者,应重做。 3、实验室内必须保持安静,不准高声喧哗打闹,不准抽烟,随地吐痰,乱抛纸屑杂物,不准做与实验无关的事。不准穿背心、裤衩、拖鞋(除规定须换专业拖鞋外)或赤脚进入实验室。 4、必须严格遵守实验制订的各项规章制度,认真执行操作规程。注意人身和设备安全。 5、爱护国家财物。节约水电和药品器材,不得动用他组的仪器、工具材料。凡损坏仪器、工具者应检查原因,填写报损单,并依照管理办法赔偿损失。 前言

为了达到预期目的,试验课必须注意以下几方面问题: 1、试验前认真预习指导书和课本有关内容,同时应复习其它已学有关课程的有关章节,充分了解各个试验的目的要求、试验原理、方法和步骤,并进行一些必要的理论计算。一些控制值的计算工作,试验前必须做好。 2、较大的小组试验,应选出一名小组长,负责组织和指挥整个试验过程,直至全组试验报告都上交后卸任,小组各成员必须服从小组长和指导教师的指挥,要明确分工,协调工作,不得擅离各自的岗位。 3、试验开始前。必须仔细检查试件和各种仪器仪表是否安装稳妥,荷载是否为零,安全措施是否有效,各项准备工作是否完成,要经指导教师检查通过后,试验才能开始。 4、试验时应严肃认真,密切注意观察试验现象,及时加以分析和记录,要以严谨的科学态度对待试验的每一步骤和每一个数据。 5、严格遵守实验室的规章制度,非试验用仪器设备不要乱动;试验用仪器、仪表、设备,要严格按规程进行操作,遇有问题及时向指导教师报告。 6、试验中要小心谨慎,不要碰撞仪器、仪表、试件和仪表架等。 7、试验结束后,要及时卸下荷载,使仪器、设备恢复原始状态,以后小心卸下仪器、仪表,擦净、放妥、清点归还,经教师认可并把试验记录交教师签字后离开。 8、试验资料应及时整理,按时独立完成试验报告,除小组分工由别人记录的原始数据外,严禁抄袭。 9、试验报告要求原始记录齐全、计算分析正确、数据图表清楚。 10、经教师认可,试验也允许采用另外方案进行。 试验一量测仪器的参观与操作练习

乐高实验指导书1

创新综合实验

目录 第一部分课程总览 (3) 第二部分综合实验 (6) Lab1 光电传感器自动跟踪小车 (6) Lab2 光电传感器测距功能测试 (8) Lab3 光电传感器位移传感应用 (12) Lab4 超声波传感器测试 (13) Lab5 超声波传感器位移传感应用 (17) 第三部分创新实验 a)双轮自平衡机器人; b)碰触传感机器人设计(基于Microsoft Robotics Studio平台); c)寻线机器人的仿真和建模及实例(基于Lejos-Osek 设计一个机器人的实例); d)自己提出一个合理的项目

第一部分 课程总览 1.目的与意义 提倡“素质教育”、全面培养和提高学生的创新以及综合设计能力是当前高等工科院校实验教学改革的主要目标之一。为适应素质教育的要求,高等工科院校的实验课程正经历着从“单一型”“验证型”向“设计型”“开放型”的变革过程。我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程涵盖了机械设备及加工过程测试控制相关的电子电路、传感器、信号处理、接口、控制原理、测控计算机软件等理论及技术,具有综合性、实践性强的特点,但目前各课程的实验教学存在着孤立、分散、缺乏系统性的问题。为促进机械工程学科学生对于计算机测控技术的工程创新设计能力、促进相关理论知识的理解和灵活应用,本机电一体化创新综合实验以丹麦乐高(LEGO)公司教育部开发的积木式教学组件-智力风暴( MINDSTORMS)为基础进行。 采用LEGO MINDSTORMS 为基础建立开放型创新实验室,并根据我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程设计多层次的综合创新实验设计项目,具有技术综合性和趣味性以及挑战性,能有效激发学生的学习兴趣,使学生在实践项目的过程中激发和强化他们的创造力、动手能力、协作能力、综合能力和进取精神;可使学生在实施项目的过程中对材料、机械、电子、计算机硬件、软件均有直观的认知并掌握机械工程测试与控制的综合分析设计能力。 2.实验基础 2.1 LEGO MINDSTORMS 控制器硬件 要求认识和理解RCX、NXT的基本结构,输入输出设备及接口,DCP传感器及接口,并熟练进行连接与操作。 2.2根据具体的实验要求选择适合的软件 ?Microsoft Robotics Studio基础 ?VPL编程 ?Microsoft Robotics Studio软件 ?Robolab软件 ?NXT软件 ?Matlab等等 2.3授课方式: 课堂讲授,编程以自学为主 参考书: a)LEGO快速入门 b)乐高组件和ROBOLAB软件在工程学中的应用 c)ROBOLAB2.9编程指南 d)ROBOLAB研究者指南

过程控制仪表实验报告解析

成绩________ 过程控制仪表及装置 实验报告 班级:_______________________________________ 姓名:________________________________________ 学号:________________________________________ 指导老师:_____________________________________ 实验日期:_____________________________________

目录 实验一电容式差压变送器的校验 (2) 实验二热电阻温度变送器的校验 (5) 实验三模拟调节器开环校验 (8) 实验四模拟调节器闭环校验 (12) 实验五SLPC可编程调节器的编程设计与操作 (14) 实验六SLPC可编程调节器PID控制参数整定 (19)

实验一电容式差压变送器的校验 一、实验目的 1.了解并熟悉电容式差压变送器整体结构及各种部件的作用。 2.掌握电容式差压变送器的工作原理。 3.掌握电容式差压变送器的起点及终点调整、精度校验、迁移的调整方法。 二、实验项目 1.掌握气动定值器、标准电流表、标准压力表、标准电阻箱的使用方法。2.了解电容式差压变送器整体结构,熟悉各调节螺钉的位置和用途。 3.按照实验步骤进行仪表的起点、终点调整,进行精度、迁移校验。 三、实验设备与仪器 1.电容式差压变送器1台 2.标准电阻箱1个 3.气动定值器1个 4.标准电流表1台 5.标准压力表1个 6.大、小螺丝刀各1把 7.连接导线、气压导管若干 四、实验原理 实验接线如图2-1所示。 图2-1 电容式差压变送器校验接线图 五、实验说明及操作步骤

现代控制理论实验报告河南工业大学

河南工业大学 现代控制理论实验报告姓名:朱建勇 班级:自动1306 学号:201323020601

现代控制理论 实验报告 专业: 自动化 班级: 自动1306 姓名: 朱建勇 学号: 201323020601 成绩评定: 一、实验题目: 线性系统状态空间表达式的建立以及线性变换 二、实验目的 1. 掌握线性定常系统的状态空间表达式。学会在MATLAB 中建立状态空间模型的方法。 2. 掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB 实现不同模型之 间的相互转换。 3. 熟悉系统的连接。学会用MATLAB 确定整个系统的状态空间表达式和传递函数。 4. 掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准 型、能控标准型和能观测标准型的方法。学会用MATLAB 进行线性变换。 三、实验仪器 个人笔记本电脑 Matlab R2014a 软件 四、实验内容 1. 已知系统的传递函数 (a) ) 3()1(4)(2++=s s s s G

(b) 3486)(22++++=s s s s s G

(c) 6 1161)(232+++++=z z z z z z G (1)建立系统的TF 或ZPK 模型。 (2)将给定传递函数用函数ss( )转换为状态空间表达式。再将得到的状态空间表达式用函 数tf( )转换为传递函数,并与原传递函数进行比较。 (3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。再将得到的对角 标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。 (4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。再将得到的能控标 准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。

过控实验指导书最新本科

《过程控制系统》 安阳工学院 电子信息与电气工程学院

一、实验目的 1.掌握双容水箱特性的阶跃响应曲线测试方法; 2.根据由实验测得双容液位的阶跃响应曲线,确定其特征参数K、T1、T2及传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验条件 1.THJ-3型高级过程控制系统实验装置; 2.计算机、组态王工控组态软件、RS232/485转换器1只、串口线1根; 3.万用表1只。 三、实验原理 图2-1 双容水箱对象特性测试系统

G(s)=G 1(s)G 2 (s)=1 2 1212 k k K T1T1(T1)(T1) s s s s ?= ++++ (2-1) 式中K=k 1 k 2 ,为双容水箱的放大系数,T 1 、T 2 分别为两个水箱的时间常数。 本实验中被测量为中水箱的液位,当上水箱输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-2所示。由图2-2可见,上水箱液位的响应曲线为一单调上升的指数函数(图2-2(a));而下水箱液位的响应曲线则呈S形曲线(图2-2(b) ),即下水箱的液位响应滞后了,它滞后的时间与阀F1-10和F1-11的开度大小密切相关。 图2-2 双容水箱液位的阶跃响应曲线 (a)中水箱液位(b)下水箱液位 双容对象两个惯性环节的时间常数可按下述方法来确定。在图2-3所示的阶跃响应曲线上求取: (1) h 2 (t)| t=t1 =0.4 h 2 (∞)时曲线上的点B和对应的时间t 1 ; (2) h 2 (t)| t=t2 =0.8 h 2 (∞)时曲线上的点C和对应的时间t 2 。 图2-3 双容水箱液位的阶跃响应曲线 然后,利用下面的近似公式计算式 阶跃输入量 输入稳态值 = ∞ = O h x ) ( K2 (2-2) 2.16 t t T T2 1 2 1 + ≈ + (2-3) ) 55 .0 74 .1( ) T (T T T 2 1 2 2 1 2 1- ≈ +t t (2-4) 0.32〈t 1 /t 2 〈0.46 由上述两式中解出T 1 和T 2 ,于是得到如式(2-1)所示的传递函数。 在改变相应的阀门开度后,对象可能出现滞后特性,这时可由S形曲线的拐点P 处作一切线,它与时间轴的交点为A,OA对应的时间即为对象响应的滞后时间τ。于是得到双容滞后(二阶滞后)对象的传递函数为: G(S)= )1 )(1 ( 2 1 + +S T S T K S eτ- (2-5)

相关主题
文本预览
相关文档 最新文档