当前位置:文档之家› 一种超高压输电线路恢复电压的精确计算方法

一种超高压输电线路恢复电压的精确计算方法

万方数据

万方数据

万方数据

万方数据

正弦交流电的有效值

非正弦交流电有效值的计算 交变电流的大小和方向随时间作周期性变化。为方便研究交变电流的特性,根据电流的热效应引入了有效值这一物理量。 定义:若某一交流电与另一直流电在相同时间内通过同一电阻产生相等的热量,则这一直流电的电压、电流的数值分别是该交流电的电压、电流的有效值。 教材中给出了正弦交流电的有效值I与最大值的关系,那么非正 弦交流电的有效值又该如何求解呢?其方法是从定义出发,根据热效应求解。 例1. 如图1所示的交变电流,周期为T,试计算其有效值I。 图1 分析:由图1可知,该交变电流在每个周期T内都可看作两个阶段的直流电 流:前中,,后中,。在一个周期中,该交变电流在电阻R上产生的热量为: ① 设该交变电流的有效值为I,则上述热量 ② 联立①、②两式,可得有效值为 例2. 如图2所示表示一交变电流随时间变化的图象,其中,从t=0开始的每个时间内的图象均为半个周期的正弦曲线。求此交变电流的有效值。 图2 分析:此题所给交变电流虽然正负半周的最大值不同,但在任意一个周期内,前半周期和后半周期的有效值是可以求的,分别为

设所求交变电流的有效值为I,根据有效值的定义,选择一个周期的时间,利用在相同时间内通过相同的电阻所产生的热量相等,由焦耳定律得 即 解得 例3. 求如图3所示的交变电流的有效值,其中每个周期的后半周期的图象为半个周期的正弦曲线。 图3 分析:从t=0开始的任意一个周期内,前半周期是大小不变的直流电,为 ,后半周期是有效值为的交变电流。 设所求交变电流的有效值为I,根据有效值的定义,选择一个周期的时间,利用在相同时间内通过相同的电阻所产生的热量相等,由焦耳定律得 即 解得 例4. 如图4实线所示的交变电流,最大值为,周期为T,则下列有关该交变电流的有效值I,判断正确的是() 图4

电流电压公式

(1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和... (1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和P=P1+P2 (2)并联电路 总电流等于遍地电流之和I=I1+I2 遍地电压相称U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和P=P1+P2 (3)统一用电器的电功率 ①定额功率比现实功率等于定额电压比现实电压的平方Pe/Ps=(Ue/Us)的平方 2.有关电路的公式 (1)电阻R ①电阻等于材料疏密程度乘以(长度除以横截平面或物体表面的大)R=疏密程度×(L÷S) ②电阻等于电压除以电流R=U÷I ③电阻等于电压平方除以电功率R=UU÷P (2)电功W 电功等于电流乘电压乘时间W=UIT(普式公式) 电功等于电功率乘以时间W=PT 电功等于电荷乘电压W=QT 电功等于电流平方乘电阻乘时间W=I×IRT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间W=U?U÷R×T(同上) (3)电功率P ①电功率等于电压乘以电流P=UI ②电功率等于电流平方乘以电阻P=IIR(纯电阻电路) ③电功率等于电压平方除以电阻P=UU÷R(同上) ④电功率等于电功除以时间P=W:T (4)电热Q 电热等于电流平方成电阻乘时间Q=IIRt(普式公式) 电热等于电流乘以电压乘时间Q=UIT=W(纯电阻电路 功率=1.732*定额电压*电流是三相电路中星型接法的纯阻性负载功率计算公式 功率=定额电压*电流是单相电路中纯阻性负载功率计算公式 P=1.732×(380×I×COSΦ)是三相电路中星型接法的感性负载功率计算公式 单相电阻类电功率的计算公式= 电压U*电流I 单相机电类电功率的计算公式= 电压U*电流I*功率因子COSΦ 三相电阻类电功率的计算公式= 1.732*线间电压U*线电流I (星形接法)

电能公式和电能质量计算公式大全

·电能公式和电能质量计算公式大全 电能公式和电能质量计算公式大全电能公式 电能公式有W=Pt,W=UIt,(电能=电功率x时间) 有时也可用W=U^2t/R=I^2Rt 1度=1千瓦时=3.6*10^6焦P:电功率 W:电功 U:电压 I:电流 R:电阻 T:时间 电能质量计算公式大全 1.瞬时有效值: 刷新时间1s。 (1)分相电压、电流、频率的有效值 获得电压有效值的基本测量时间窗口应为10周波。 ① 电压计算公式: 相电压有效值,式中的是电压离散采样的序列值(为A、B、C相)。 ② 电流计算公式: 相电流有效值,式中的是电流离散采样的序列值(为A、B、C相)。 ③ 频率计算: 测量电网基波频率,每次取1s、3s或10s间隔内计到得整数周期与整数周期累计时间之比(和1s、3s或10s时钟重叠的单个周期应丢弃)。测量时间间隔不能重叠,每1s、3s或10s间隔应在1s、3s或10s时钟开始时计。 (2)有功功率、无功功率、视在功率(分相及合相) 有功功率:功率在一个周期内的平均值叫做有功功率,它是指在电路中电阻部分所消耗的功率,以字母P表示,单位瓦特 (W)。

计算公式: 相平均有功功率记为,式中和分别是电压电流离散采样的序列值(为A、B、C相)。 多相电路中的有功功率:各单相电路中有功功率之和。 相视在功率 单相电路的视在功率:电压有效值与电流有效值的乘积,单位伏安(VA)或千伏安(kVA)。 多相电路中的视在功率:各单相电路中视在功率之和。 相功率因数 电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 计算公式: 多相电路中的功率因数:多相的有功功率与视在功率的比值。 无功功率:单相电路中任一频率下正弦波的无功功率定义为电流和电压均方根值和其相位角正弦的乘积,单位乏 (Var)。(标准中的频率指基波频率) 计算公式: 多相电路中的无功功率:各单相电路中无功功率之和。 (3)电压电流不平衡率(不平衡度) 不平衡度:指三相电力系统中三相不平衡的程度。用电压、电流负序基波分量或零序基波分量与正序基波分量的方均根百分比表示。电压、电流的负序不平衡度和零序不平衡度分别用、和、表示。 首先根据零序分量的计算公式计算出零序分量,如果不含有零序分量,则按照不含零序分量的三相系统求电压电流不平衡度。如果含有零序分量,则按照含有零

电缆电压降的计算

电流通过导体(或用电器)的时候,会受到一定的阻力, 但在电压的作用下,电流能够克服这种阻力顺利通过导体(或用电器), 但遗憾的是,流过导体(或用电器)后,电压再也没有以前那么高了,它下降了。而且电阻越大,电压下降的程度越大。 所以这种流过导体(或用电器)上(或两端)产生的电压大小的差别,就叫“电压降。 解决电压降的方法:增大导体的截面积。 如何计算电缆压降 问题1:电缆降压怎么算50kw300米采用vv电缆??? 25铜芯去线阻为R=0.0172(300/25)=0.2、其压降为U=0.2*100=20 也就是说单线压降为20V,2相为40V。 变压器低压端电压为400V400-40=360V,铝线R=0.0283(300/35)=0.25 其压降为U=0.25*100=25,末端为350V ,长时间运行对电机有影响 建议使用35铜芯或者50铝线25铜芯其压降为U=0.0172(300/35)=0.147(≈15V)15*2=30末端为370V 铝线U=0.0283(300/50)=0.1717*2=34末端为366V 可以正常使用(变压器电压段电压为400V) 50KW负荷额定电流I=P/1.732UcosΦ=50/1.732/0.38/0.8=50/0.53=94A 按安全载流量可以采用25平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/25=0.2欧、电压损失U=IR=94X0.2=18V 如果用35平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/35=0.15欧 电压损失U=IR=94X1.15=14V 选择导线的原则: 1)近距离按发热条件限制导线截面(安全载流量); 2)远距离在安全载流量的基础上,按电压损失条件选择导线截面,要保证 负荷点的工作电压在合格范围; 3)大负荷按经济电流密度选择。 为了保证导线长时间连续运行所允许的电流密度称安全载流量。 一般规定是:铜线选5~8A/mm2;铝线选3~5A/mm2。 安全载流量还要根据导线的芯线使用环境的极限温度、冷却条件、敷设

电压降计算方法80181

电缆电压降 对于动力装置,例如发电机、变压器等配置的电力电缆,当传输距离较远时,例如900m,就应考虑电缆电压的“压降”问题,否则电缆采购、安装以后,方才发觉因未考虑压降,导致设备无法正常启动,而因此造成工程损失。 一.电力线路为何会产生“电压降”? 电力线路的电压降是因为导体存在电阻。正因为此,所以不管导体采用哪种材料(铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的10%时一般是不会对线路的电力驱动产生后果的。 二.在哪些场合需要考虑电压降? 一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略“压降”的问题,例如线路只有几十米。但是,在一些较长的电力线路上如果忽略了电缆压降,电缆敷设后在启动设备可能会因电压太低,根本启动不了设备;或设备虽能启动,但处于低电压运行状态,时间长了损坏设备。 较长电力线路需要考虑压降的问题。所谓“长线路”一般是指电缆线路大于500米。 对电压精度要求较高的场合也要考虑压降。 三.如何计算电力线路的压降? 一般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:I= P/1.732×U×cosθ 其中: P—功率,用“千瓦”U—电压,单位kV cosθ—功率因素,用0.8~0.85 2 .计算线路电阻R 公式:R=ρ×L/S 其中:ρ—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入

L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:ΔU=I×R 举例说明: 某电力线路长度为600m,电机功率90kW,工作电压380v,电缆是70mm2铜芯电缆,试求电压降。 解:先求线路电流I I=P/1.732×U×cosθ=90÷(1.732×0.380×0.85)=161(A) 再求线路电阻R R=ρ×L/S=0.01740×600÷70=0.149(Ω) 现在可以求线路压降了: ΔU=I×R =161×0.149=23.99(V) 由于ΔU=23.99V,已经超出电压380V的5%(23.99÷380=6.3%),因此无法满足电压的要求。 解决方案:增大电缆截面或缩短线路长度。读者可以自行计算验正。 例:在800米外有30KW负荷,用70㎜2电缆看是否符合要求? I=P/1.732*U*COS?=30/1.732*0.38*0.8=56.98A R=ρL/S=0.018*800/70=0.206欧 △U=IR=56.98*0.206=11.72<19V (5%U=0.05*380=19) 符合要求。 电压降的估算 1.用途

有效值计算方法

1.如何计算几种典型交变电流的有效值? 答:交流电的有效值是根据电流的热效应规定的.让交变电流和直流电通过同样的电阻,如果它们在同一时间内产生的热量相等,就把这一直流电的数值叫做这一交流电的有效值. 解析:通常求交变电流的有效值的类型有如下几种: (1)正弦式交流电的有效值 此类交流电满足公式e =E m s in ω t ,i =I m s in ω t 它的电压有效值为E = 2 m E ,电流有效值I = 2 m I 对于其他类型的交流电要求其有效值,应紧紧把握有效值的概念.下面介绍几种典型交流电有效值的求法. (2)正弦半波交流电的有效值 若将右图所示的交流电加在电阻R 上,那么经一周期产生的热量应等于它为全波交流电时的1/2,即U 半2 T /R= 2 1( R T U 2 全),而U 全= 2 m U ,因而得U 半= 2 1U m ,同理得I 半= 2 1I m . (3)正弦单向脉动电流有效值 因为电流热效应与电流方向无关,所以左下图所示正弦单向脉动电流与正弦交流电通入电阻时所产生的热效应完全相同,即U = 2 m U ,I = 2 m I . (4)矩形脉动电流的有效值 如右上图所示电流实质是一种脉冲直流电,当它通入电阻后一个周期内产生的热量相当于直流电产生热量的 T t ,这里t 是一个周期内脉动时间.由I 矩 2 R T =( T t )I m 2RT 或( R U 2 矩) T = T t ( R u 2 m )T ,得I 矩= T t I m ,U 矩= T t U m .当 T t =1/2时,I 矩= 2 1I m ,U 矩=2 1U m . (5)非对称性交流电有效值

电流 电阻 电压 计算公式

电流电阻电压计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22

交流电有效值计算方法

交流电有效值计算方法 1?如何计算几种典型交变电流的有效值? 答:交流电的有效值是根据电流的热效应规定的?让交变电流和直流电通过同样的电阻, 如果它们在同一时间内产生的热量相等,就把这一直流电的数值叫做这一交流电的有效值解析:通常求交变电流的有效值的类型有如下几种: (1)正弦式交流电的有效值 此类交流电满足公式e=E m Sin w t,i =I m sin w t 对于其他类型的交流电要求其有效值,应紧紧把握有效值的概念流电有效值 的求法 (2)正弦半波交流电的有效值 若将右图所示的交流电加在电阻 2 1 电时的1/2,即卩U半2T/R=—( 2 U m 1 而U全=—=,因而得U半=一U m, 412 (3)正弦单向脉动电流有效值因为电流热效应与电流方向无关, 电阻 时所 产生 的热 效应 完全 相 同, 即 它的电压有效值为 E=E2, 电流有效值 ?下面介绍几种典型交 R上,那么经一周期产生的热量应等于它为全波交流 U全2T R 1 同理得I半=—I m. 2 所以左下图所示正弦单向脉动电流与正弦交流电通入 七,m 、2

2 2 于直流电产生热量的—,这里t是一个周期内脉动时间.由I矩2RT= ( — ) I m2RT或() T T R

T=T(牛)「得1矩=:T Im,U矩=4.当T=1/2时,1:2im,U矩、2Um. (5)非对称性交流电有效值 假设让一直流电压 U和如图所示的交流电压分别加在冋一电阻上,交变电流在一个周 期内产生的热量为Q1= 2 2 U1 T U2 T ..................... . .............. .. ,直流电在相等时间内产生的热量 R 2 R 2 2?—电压U o=1O V的直流电通过电阻R在时间t内产生的热量与一交变电流通过R/2时在同一时间内产生的热量相同,则该交流电的有效值为多少? 解:根据t时间内直流电压U o在电阻R上产生的热量与同一时间内交流电压的有效值U在电阻R/2 上产生的热量相同,则 3?在图示电路中,已知交流电源电压u=200si n10n t V,电阻R=10 Q ,则电流表和电压表读数分别为 A.14.1 A,200 V C.2 A,200 V 分析:在交流电路中电流表和电压表测量的是交流电的有效值,所以电压表示数为 200 V=141 V,电流值i=U= :00 R 衬2汉10 A=14.1 A. U2 T,根据它们的热量相等有 +U 2 ),同理有I = £(I 1I 22). 2 2 知=胡「所以U哼=5 2 V B.14.1 A,141 V D.2 A,141 V

断路器技术参数

断路器技术参数 参考标准:GB1984-2003;GB/T 11022-1999; 1、额定电压:126kV、252kV、550kV;(额定电压取值与IEC 60694不同) 2、额定绝缘水平: 表1 额定电压范围I的额定绝缘水平(与IEC 60694表1a中不完全一致) 额定电压 Ur kV(有效值)额定短时工频耐受电压Ud kV(有 效值) 额定雷电冲击耐受电压Up kV(峰 值) 通用值隔离断口通用值隔离断口 126 185 210 450 520 230 265 550 630 252 360 415 850 950 395 460 950 1050 460 530 1050 1200 表2 额定电压范围II的额定绝缘水平(与IEC 60694表2a中不完全一致) 额定电压Ur kV(有效值)额定短时工频耐受电 压Ud kV(有效值) 额定操作冲击耐受电压Us kV (峰值) 额定雷电冲击耐受电 压Up kV(峰值) 相对地和 相间 开关断口 和/或隔 离断口 相对地和 开关断口 相间隔离断口相对地和 相间 开关断口 和/或隔 离断口 550 630 800 1050 1680 1050(+ 450)1425 1425(+ 315) 680 1175 1760 1550 1550(+ 315) 3、额定频率:高压断路器额定频率的标准值为50Hz; 4、额定电流(Ir): 额定电流应当从GB/T 762规定的R10系列中选取:R10系列中包括数字:1,1.25,1.6,2,2.5,3.15,4,5,6.3,8及其与10n 的乘积。 5、额定短时耐受电流(I k) 额定短时耐受电流应当从GB/T 762规定的R10系列中选取:R10系列中包括数字:1, 1.25,1.6,2, 2.5, 3.15,4,5,6.3,8及其与10n 的乘积。 额定短时耐受电流等于额定短路开断电流; 6、额定峰值耐受电流: 额定峰值耐受电流应该等于2.5倍额定短时耐受电流,额定峰值耐受电流等于额定短路关合电流; 7、额定短路持续时间: 额定短路持续时间的标准值为2s;如果需要,可以选取小于或大于2s的值。推荐值为 0.5s,1s,3s和4s。 8、操动机构和辅助及控制回路的额定电源电压(Ua)

电压计算公式

电学公式定律总表 十三、电场 19 1. 两种电荷、电荷守恒定律、元电荷(e=1.60 x 10- C) 2. 库仑定律F=KQ i Q2/r2(在真空中)*F=KQ I Q2/ £r2(在介质中F:点电荷间的作用力(N) K:静电力常量K=9.0 x 109N -m f/C2Q i、Q2:两点荷的电量(C) 介电常数r:两点荷间的距离(m) 方向在它们的连线上,同种电荷互相排斥,异种电荷互相吸引。 3. 电场强度E=F/q (定义式、计算式)E :电场强度(N/C) q:检验电荷的电量(C)是矢量 2 4. 真空点电荷形成的电场E=KQ/ r r :点电荷到该位置的距离(m) Q:点电荷的电亘 5. 电场力F=qE F:电场力(N q:受到电场力的电荷的电量(C) E:电场强度(N/C) 6. 电势与电势差U A=£A/q U AB=U A- U B U AB =W AB/q=- △ ^/q 7. 电场力做功W AB= qU AB W AB:带电体由A到B时电场力所做的功(J) q: 带电量(C) U AB:电场中A、B两点间的电势差(V) ( 电场力做功与路径无关) 8. 电势能& A=qU A £ A:带电体在A点的电势能(J) q:电量(C) U A:A点的电势(V) 9. 电势能的变化厶知=SB- SA (带电体在电场中从A位置到B位置时电势能的差值) 10. 电场力做功与电势能变化厶彌二-W AB= -qU AB (电势能的增量等于电场力做功的负值) 11. 电容C=Q/U (定义式,计算式)C:电容(F) Q:电量(C) U:电压(两极板电势差)(V) 12. 匀强电场的场强E=U AB/d U AB:AB两点间的电压(V) d:AB两点在场强方向的距离(m ) 2 1/2 13. 带电粒子在电场中的加速(V o=0) W=A E K qu=mV t /2 V t=(2qU/m) 14. 带电粒子沿垂直电场方向以速度V)进入匀强电场时的偏转(不考虑重力作用的情况下)类似于平抛运动 l垂直电杨方向:匀速直线运动L=V)t (在带等量异种电荷的平行极板中:E=U/d) Y平行电场方向:初速度为零的匀加速直线运动d=at 2/2 a=F/m=qE/m 15. *平行板电容器的电容C= &S/4 uKd S:两极板正对面积d:两极板间的垂直距离 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分。(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直。(3)常见电场的电场线分布要求熟记,(见图、[教材B7、C178])。 (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有 关。(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面.导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面。(6)电容单位换算仆=10 6M F=1012P F (7 )电子伏(eV)是能量的单位,1eV=1.60 x 10-19J。(8)静电的产生、静电的防止和应用要掌握。 十四、恒定电流 1. 电流强度I=q/t I: 电流强度(A) q:在时间t内通过导体横载面的电量(C) t:时间(S) 2. 部分电路欧姆定律I=U/R I:导体电流强度(A) U:导体两端电压(V) R:导体阻值(Q ) 3. 电阻电阻定律R=p L/S p :电阻率(Q-m) L:导体的长度(m) S:导体横截面积(m2) 4. 闭合电路欧姆定律I =S /( r + R) S = I r + I R S =U内+U外 I:电路中的总电流(A) S :电源电动势(V) R:外电路电阻(Q ) r:电源内阻(Q)

断路器的各种技术性能

关于断路器的各种性能,在IEC62271-100.2001,〈〈高压开关设备和控制设备〉〉第100部分:高压交流断路器,以及我国国家标准GB1984-1989《交流高压断路器》中都规定了必备的各种性能。 一、额定电流 断路器正常使用环境条件规定为:周围空气温度不高于40℃,海拔不超过1000m。当使用在周围空气温度高于40℃(但不高于60℃时,在符合标准规定的最高允许温度下,允许降低负荷长期工作。标准上推荐周围空气温度每增高1K,减少电流的1.8%。当设备使用在海拔超过1000m(但不超过4000m)且最高周围空气温度为40℃时,规定的允许温升每超过100m(以1000m为起点)降低0.3%。现代高压SF6断路器,灭弧室中充有0.5MP a的SF6气体我国原机械部关于SF6断路器通用技术条件要求具有高度的密封性能允许年漏气率从下列数值中选取:每年1%和每年2%。 二、额定短时耐受电流 1、额定短时耐受电流又称额定热稳定电流,是在规定的短时间T内,断 路器闭合位置所能耐受的电流。流过这一电流期间,断路器的温度升 高应不超过规定的数值。我国标准规定的短时间为2S,但对于有些参 数等级的断路器标准上规定短时间为1S或3S。 2、额定峰值耐受电流 额定峰值耐受电流也即额定动稳定电流,是指断路器在闭合位置所能耐受的峰值电流,其值等于额定短路关合电流,是其额定短路开 断电流交流分量有效值的2.5倍。常用这一峰值电流I MC表示动稳定电 流。

3、额定电压及最高电压 额定电压是指断路器的标称电压,在规定的正常使用和性能条件下,能够连续运行的电压。断路器并能在系统最高工作电压下保持绝 缘;并能按规定的条件进行关合与开断。我国规定在220KV及以下电 压等级,系统额定电压的1.15倍即为最高电压;330KV及以上电压等级 是以额定电压的1.1倍作为最高工作电压。 4、额定绝缘水平及绝缘强度 5、额定开断电流 额定开断电流也即额定短路开断电流,是标志着高压断路器开断故障 能力的参数。这是指在规定的条件下,断路器能保证正常开断的最大 短路电流。断路器的额定短路开断电流一般比其所能开断的极限电流 值稍低,以资留有裕量。 6、瞬态恢复电压与工频恢复电压 瞬态恢复电压与工频恢复电压统称恢复电压。 电流过零时,假设断路器触头间弧隙电阻为无穷大,那麽瞬态恢复电压只决定于电路参数而与断路器无关。这种开断无直流分量的交流电流时的瞬态恢复电压为电网的固有瞬态恢复电压或预期瞬态恢复电压。在断路器标准中规定的瞬态恢复电压都是指电网固有瞬态恢复电压。我国标准上规定,出线端短路时的预期瞬态恢复电压,是断路器在出线端短路的条件下,所应能开断的回路的瞬态恢复电压极限值。 三相断路器开断时,电流首先过零的一相称为首开相,首开相所开断的电流是单相的,对于不同形式的短路,首开相开断过程中工频恢复时值是不同的。

电寿命试验

2.2电寿命试验 2.2.1概述 电器的电寿命是指在规定的接通和分断条件下,电器不需维修和不需更换任何零部件所能承受的有载操作次数。电器的电寿命试验时被试电器的触头(对接触器、低压断路器等电器来说,是指它们的主触头)是按产品标准中所规定的试验条件来接通和分断电路的(除此之外,接触器、低压断路器等电器还应按其产品标准中规定的试验条件进行其辅助触头的电寿命试验)。各种电器的产品标准中,除了规定其电寿命试验的试验条件外,还规定了其电寿命的次数,电器产品电寿命试验的目的就是为了考核电器在规定的试验条件下能否达到规定的电寿命次数。 2.2.2试验条件 1、电寿命试验的接通与分断条件 对于接触器,GB 14048.4-2003规定了不同使用类型时验证其电寿命的接通和分断条件,如表1所示。 表1 不同使用类型时接触器验证电寿命的接通和分断条件

注 cosφ的误差为±0.05,L/R的误差为±15%,试验电流的误差为±5%,试验电压的误差为±5%。 I—接通电流;IN—额定工作电流;U—外施电压;UN额定工作电压;IC—分断电流;Ur—工频或直流恢复电压。 接触器主触头使用类型的典型用途如表2所示。 表2 主触头的使用类型 表1中AC-3类型的电寿命试验条件是根据用交流接触器来控制电动机进行正常工作时(即起动及在运转中断开笼型电动机)的实际接通和分断情况来制定的。在笼型电动机起动瞬间,它相当于一个二次侧短路的变压器,所以电动机的起动电流比较大,一般均大于6倍电动机的额定电流,由于在起动笼型电动机时,电器的

接通电流就是电动机的起动电流,所以电器电寿命试验的接通条件定为I/IN=6、U/UN=1。如正常运转时电动机带额定负载,电动机定子电流等于其额定电流,则在运转中断开电动机时,电器触头断开的电流就是电动机的额定电流,故电器电寿命试验的分断条件中IC/IN定为1。下面再来分析运转中断开笼型电动机时电器触头上的电压,当电动机定子绕组断电瞬间,由于转子绕组对于电动机的磁路来说相当于一个短路线圈,所以它就立即感应出一个电流来阻止电动机磁路中主磁通的消失,这个转子电流产生一个磁通,此磁通相对于转子时静止的,但对于定子绕组来说,这个磁通相当于一个转速等于转子转速n的旋转磁场,这个旋转磁场切割定子绕组,在定子绕组中感应出电动势E,这个电动势在电动机绕组刚断电瞬间的大小与电压U相近,以后按指数规律衰减,其频率f=np/60,它小于电源电压的频率,且随着转子转速n的减小而降低。在电动机定子绕组断电瞬间,电器动、静触头间的电压Ur等于电源电压U与定子绕组感应电动势E瞬时值之和,由于在电动机定子绕组断电瞬间定子绕组感应电动势E的方向正好与电源电压U的方向相反,其大小又与电源电压相近,所以在电动机定子绕组断电瞬间电器动、静触头间电压Ur 的瞬时值接近于零,根据有关资料里的实测数据,这个电压值不超过0.17UN,据此,交流接触器电寿命试验分断条件中之Ur/UN定为0.17。 接触器电寿命的次数的确定原则是:从使用的角度出发,电寿命次数如能接近机械寿命的次数当然最好,但在电寿命试验时,与电器的其他零部件相比,触头部分的磨损更为厉害,除了由于在触头断开和闭合过程中动、静触头间的碰撞与摩擦产生机械磨损外,还由于电的原因造成了触头的电磨损。触头在断开电路时一般都会产生电弧,电弧的高温使触头表面金属材料熔化,由于磁场和气流等作用,熔化了的触头金属材料向周围喷射而散失,这就造成了触头断开过程中的电磨损,触头的电磨损不但产生在断开过程,在闭合过程中也会产生,这是由于在闭合过程中一般会产生触头弹跳,触头弹开时动、静触头间出现的金属桥及短弧都会使触头金属散失而造成触头闭合过程中的电磨损。随着触头磨损的增加,触头的厚度逐渐减小,触头的超程及终压力也随之逐渐减小,从而使触头温升逐渐增高。当触头磨损到一定程度使触头温升超过标准规定的允许数值或触头超程减小到接近于零,使触

电压有效值测量

低频电子线路课程设计 ----电压有效值测量电路 姓名:小杰 专业班级:通信工程(4)班 学号:xxxxxxxxx 实验时间:2013.11.25-2013.11.26

电压有效值测量电路 摘要:采用通用运放LM 324和检波二极管设计一个峰值半波整流电路,实现对正弦波电压有效值的测量,先设计电路图用Multisim软件进行仿真,再根据仿真的电路图在面包板上连接电路,用信号发生器和万用表检验实际电路是否符合要求。 一、设计任务与技术指标 1.设计任务 采用通用运放LM 324和检波二极管设计一个峰值半波整流电路,实现对正弦波电压有效值的测量。 2.技术指标 输入信号频率范围:0~100mV 上限频率:5KHz 电压显示:万用表直流档 电源电压:12V范围内可任选 二、设计要求 1.熟悉电路的工作原理。 2.根据技术指标通过分析计算确定电路形式和参数元件。 3.画出电路原理图。(元器件标准化,电路图规范化) 4.计算机仿真。 三、实验要求: 1、根据技术指标确定测试项目、测试方法和步骤。 2、确定实验所用仪器。 3、作出记录数据的表格。 4、完成实验。 四、实验原理 1、电路工作原理 下图为精密半波整流电路与电容滤波电路所组成的实验原理图,它属于反相型运放电路。当输入电压为正极性时,运放输出为负极性时,运放输出U o1 为负 极性,二极管D2导通、D1截止,输出电压U O 为零。当输入电压U I 为负极性时, U o1 为正极性,此时D1导通、D2截止,电路处于反相比例运算状态,输出电压 U O =-U I R f /R i。

图1. 仿真实验原理电路图

400V200kA合成试验系统——单相合成回路设计

400V/200kA合成试验系统——单相合成回路设计 国内外应用合成回路对高压断路器进行开断能力试验己经相当成熟。近年来,低压断路器的开断容量不断增加,使其在低压供电系统中的地位越来越重要,为了确保低压断路器在现场安全可靠地运行,本方案针对400V/200kA 低压合成回路试验系统进行研究、开发与设计,具有很好的经济意义和实用价值。 1. 单相合成回路设计 1.1 合成试验设计 本方案建立的低压合成回路的主电路原理图如图1. 1 所示,回路中的电压源和电流源均采用LC 振荡电路,试验所需的短路大电流和恢复电压皆由振荡电路提供。 1.1 合成试验回路接线原理图 C C 、L C为电流源的电容器、电抗器,M S为合闸开关,S a为辅助断路器,C ca、 R ca 为电压源回路,调节恢复电压用的调频电容、调频电阻,S 1 为被试断路器, F 为测量TRV器件、C h、L h、G h为高压源回路的电容、电感、点火球隙,C01、R01为试品瞬态恢复电压调节回路的电容、电阻,L50: 调节工频恢复电压为50赫兹。 图1. 1为两参数合成回路原理接线图,左半部分是为开断试验提供大的短路电流的电流源回路,右半部分为电压源回路,提供合成试验所需的瞬态恢复电压,根据合成试验要求,在电流过零并电弧熄灭后的阶段内,由电压源回路提供瞬态恢复电压,而在此期间电压源振荡放电的过程中也会提供小电流,它与短路

电流会叠加在一起,当短路电流过零后,其所需的恢复电压则由也压源部分的振荡回路提供。 根据经验,电流在过零前0.2ms 左右时,其弧隙电阻会变大,并且电流源的提供的电压较低导致短路电流无法维持正弦波形,电流会发生畸变,因此,电压源回路提供的恢复电压在此时投入,可以保证合成试验提供的低压断路器开断情况与电网中的实际开断条件相等价。 1.2 合成回路参数确定 图1.2为电压源回路等效电路图,充满电的电容器C h 经电感L n 振荡放电,提 供恢复电压,用来调节恢复电压大小的调频电容C 01和调频电阻R 01 与被试断路 器并联。试品断路器分闸以后,由于有调频回路中电容和电阻的作用,电压源回路会达到符合标准的恢复电压值。 图1.2 电压源回路等效电路 为了保证电流过零点附近的电流和电压的波形与实际情况相一致,则应满足在投入电压源后,被试开关中的电流i2(电压源提供的电流)过零时的变化率应与实际电力系统中短路电流i2(电流源提供的电流)过零时的变化率相同。 1.2.1 电流源设计及参数计算 图1 .3 为辅助开关开断电流源等效电路图,对电流源回路放电电流进行分析。图中C c是振荡放电的充电电容,L c是振荡电路电感,C oa是电流源回路,起调节辅助开关恢复电压作用的调频电容,R oa是导线电阻、各部件的内阻。 图1.3 辅助开关开断电流源等效电路图

电流、功率、电压、电阻计算公式

= 1.732 X U X I X COSφ 功率P =1.732X380X I X0.85 电流I = P / (1.732 X 380 X 0.85) 功率分有功和无功,有功P=U*I*(cos a);无功Q=U*I*(sin a);注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有

还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和P=P1+P2 ⑵并联电路 总电流等于各处电流之和I=I1+I2 各处电压相等U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和P=P1+P2 ⑶同一用电器的电功率 ①额定功率比实际功率等于额定电压比实际电压的平方Pe/Ps=(Ue/Us)的平方②

如何计算电缆压降

如何计算电缆压降 问题1:电缆降压怎么算 50kw 300米采用vv电缆??? 25铜芯去线阻为 R=0.0172(300/25)=0.2 其压降为U=0.2*100=20 也就是说单线压降为20V 2相为40V 变压器低压端电压为400V 400-40=360V 铝线R=0.0283(300/35)=0.25 其压降为U=0.25*100=25 末端为350V 长时间运行对电机有影响建议使用 35铜芯或者50铝线 25铜芯其压降为 U=0.0172(300/35)=0.147(≈15V)15*2=30 末端为370V 铝线 U=0.0283(300/50)=0.17 17*2=34 末端为366V 可以正常使用(变压器电压段电压为400V) 50KW负荷额定电流I=P/1.732UcosΦ=50/1.732/0.38/0.8=50/0.53=94A 按安全载流量可以采用25平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/25=0.2欧 电压损失U=IR=94X0.2=18V 如果用35平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/35=0.15欧 电压损失U=IR=94X1.15=14V 选择导线的原则: 1)近距离按发热条件限制导线截面(安全载流量); 2)远距离在安全载流量的基础上,按电压损失条件选择导线截面,要保证 负荷点的工作电压在合格范围; 3)大负荷按经济电流密度选择。 为了保证导线长时间连续运行所允许的电流密度称安全载流量。 一般规定是:铜线选5~8A/mm2;铝线选3~5A/mm2。 安全载流量还要根据导线的芯线使用环境的极限温度、冷却条件、敷设条件 等综合因素决定。 一般情况下,距离短、截面积小、散热好、气温低等,导线的导电能力强些, 安全载流选上限; 距离长、截面积大、散热不好、气温高、自然环境差等,导线的导电能力弱 些,安全载流选下限; 如导电能力,裸导线强于绝缘线,架空线强于电缆,埋于地下的电缆强于敷 设在地面的电缆等等。 问题2:55变压器,低压柜在距离变压器230米处。问变压器到低压柜需多粗电 缆 55KVA变压器额定输出电流(端电压400V):I=P/1.732/U=55/1.732/0.4≈80(A) 距离:L=230米,230米处允许电压为380V时,线与线电压降为20V,单根导线电压降:U=10V,铜芯电线阻率:ρ=0.0172 求单根线阻:R=U/I=10/80=0.125(Ω) 求单根导线截面:S=ρ×L/R=0.0172×230/0.125≈32(平方) 取35 平方铜芯电线。 55KVA的变压器,最大工作电流约80A,输出电压400V。

电压计算公式

十三、电场 1.两种电荷、电荷守恒定律、元电荷(e=×10-19C) 2.库仑定律F=KQ1Q2/r2(在真空中)*F=KQ1Q2/εr2(在介质中 F:点电荷间的作用力(N) K:静电力常量K=×109N·m2/C2 Q1、Q2:两点荷的电量(C) ε:介电常数 r:两点荷间的距离(m) 方向在它们的连线上,同种电荷互相排斥,异种电荷互相吸引。 3.电场强度E=F/q (定义式、计算式) E :电场强度(N/C) q:检验电荷的电量(C) 是矢量 4.真空点电荷形成的电场E=KQ/r2 r:点电荷到该位置的距离(m) Q:点电荷的电亘 5.电场力F=qE F:电场力(N) q:受到电场力的电荷的电量(C) E:电场强度(N/C) 6.电势与电势差U A=εA/q U AB=U A- U B U AB =W AB/q=- ΔεAB/q 7.电场力做功W AB= qU AB W AB:带电体由A到B时电场力所做的功(J) q:带电量(C) U AB:电场中A、B两点间的电势差(V) (电场力做功与路径无关) 8.电势能εA=qU AεA:带电体在A点的电势能(J) q:电量(C) U A:A点的电势(V) 9.电势能的变化ΔεAB =εB- εA (带电体在电场中从A位置到B位置时电势能的差值) 10.电场力做功与电势能变化ΔεAB= -W AB= -qU AB (电势能的增量等于电场力做功的负值) 11.电容C=Q/U (定义式,计算式) C:电容(F) Q:电量(C) U:电压(两极板电势差)(V) 12.匀强电场的场强E=U AB/d U AB:AB两点间的电压(V) d:AB两点在场强方向的距离(m) 13.带电粒子在电场中的加速(V o=0) W=ΔE K qu=mV t2/2 V t=(2qU/m)1/2 14.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类似于平抛运动 垂直电杨方向:匀速直线运动L=V o t (在带等量异种电荷的平行极板中:E=U/d) 平行电场方向:初速度为零的匀加速直线运动 d=at2/2 a=F/m=qE/m 15.*平行板电容器的电容C=εS/4πKd S:两极板正对面积 d:两极板间的垂直距离 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分。(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直。(3)常见电场的电场线分布要求熟记,(见图、[教材B7、C178])。(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关。(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面.导体内部合场强为零,导体内部没有净电荷,净电荷只分布于

相关主题
文本预览
相关文档 最新文档