当前位置:文档之家› 随机过程第2章 平稳过程与二阶矩过程

随机过程第2章 平稳过程与二阶矩过程

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

平稳随机过程

平稳随机过程 ?严格平稳随机过程 ?广义平稳随机过程 ?平稳随机过程自相关函数性质?各态历经过程

1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。 1111(,,,,,)(,,,,,) X N N X N N p x x t t t t p x x t t +?+?=如果X (t ) 是严格平稳的,则与t 无关。 (,)()X X p x t p x =即X(t)与X(t+?t)具有相同的统计特性。

二维概率密度 只依赖于τ,与t 1和t 2的具体取值无关。 12121212121221212 (,,,)(,,,) (,,,0)(,,) X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+?+?=-?=-=ττ=-

如果X (t )是严格平稳随机过程, 则 121212121212 (,)(,,,)() X X X R t t x x p x x t t dx dx R t t ∞ -∞ ==ττ=-?()()X X X m t xp x dx m ∞ -∞==?22 2()()()X X X X t x m p x dx ∞ -∞σ=-=σ ?

100200300400500 -4-3-2-101234Stationay Gaussian Noise 0100200300400500 -4 -3 -2-101234Non-stationay Gaussian Noise

最新随机过程练习(第二章)

随机变量巩固练习―――重点:“函数的函数”相关运算 定理 1 设X 为连续型一维随机变量,其概率密度函数为()X f x ,则对于Y =g(X)的概率密度函数,有下列结果: (1)若g(x)是严格单调可微函数,则Y=g(X)的概率密度函数为 (())'(),()0, X Y f h y h y y I f y y I ?∈?=???? 其中h(y)是y=g(x)的反函数. (2)若g(x)不是严格单调可微函数,则将g(x)在其定义与上分成若干个单调分支,在每个单调分支上应用(1)的结果得Y=g(X)的概率密度函数为 1122(())'()(())'(),()0, X X Y f h y h y f h y h y y I f y y I ?++∈?=???? 其中I 是在每个单调分支上按照(1)确定的y 的取值公共部分。 练习1 设~[,],tan 22X U Y X ππ-=,试求Y 的概率密度函数()Y f y . 练习2 设 随机变量X 在(0,1)区间内服从均匀分布,试求 (1)X Y e =的概率密度函数 (2)2ln Y X =-的概率密度函数

随机过程巩固练习 1 设随机过程(),(0,),X t Vt b t b =+∈∞为常数,V 为服从正态分布N(0,1)的随机变量。求:X(t)的一维概率密度函数、均值和相关函数。 2 设随机变量Y 具有概率密度函数f(y),令 (),0,0Yt X t e t Y -=>> 求随机过程X(t)的一维概率密度函数、均值和相关函数。 3 设有随机过程()cos()sin()X t A wt B Wt = +,其中w 为常数,A ,B 是相互独立的且服从正态分布2(0,)N σ的随机变量。求随机过程的均值和相关函数。 4 已知随机过程X(t)的均值函数()X m t 和协方差函数12(,),()X B t t t ?为普通函数,令()()()Y t X t t ?=+,求随机过程Y(t)的均值和协方差函数。 5 设随机过程()cos()X t A wt =+Θ,其中,A w 为常数,随机变量Θ服从(,)ππ-上 的均匀分布。令2()()Y t X t = ,求(,)Y R t t s + 6 设X(t)为实随机变量,x 为任意实数,令 1,()()0,()X t x Y t X t x ≤?=?>? 证明随机过程 Y(t)的均值函数和相关函数分别是X(t)的一维和二维分布函数。

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

随机过程-习题-第4章-01

4.1 设有一泊松过程(){}0,≥t t N ,求: (1)()(){}2211,k t N k t N P ==,用21t t 、的函数表示之; (2)该过程的均值和相关函数。 问该过程是否为平稳过程? (1) 解:首先, {}{}{}1111222211)()()()(,)(k t N P k t N k t N P k t N k t N P ====== 根据泊松过程的独立增量性质可知 {}{}) (1212121211221212!)()]([)()()(t t k k e k k t t k k t t N P k t N k t N P -----=-=-===λλ 于是, {}21 122! )(!)()(,)(1211122211t k k k k e k k k t t t k t N k t N P λλ----= == (2) 解:该过程的均值为 []()()t k t te e k t k t N E k k t k t k λλλλλλ=??? ? ??-==∑∑+∞=--+∞ =-110!1!)()( 根据泊松过程的独立增量过程性质可得其相关函数为(12t t >) [] ()[])] ([)]()([)]([)()()()()()(12121112121t N E t N t N E t N E t N t N t N t N E t N t N E +-=+-= 其中, )()]()([1212t t t N t N E -=-λ 12 1212)]([t t t N E λλ+= 于是,12t t >时的相关函数为 []121212 12121221)()()(t t t t t t t t t N t N E λλλλλ+=++-= 同理可得21t t >时的相关函数为 []221221)()(t t t t N t N E λλ+=

随机过程-习题-第4章

设有一泊松过程(){}0,≥t t N ,求: (1)()(){}2211,k t N k t N P ==,用21t t 、的函数表示之; (2)该过程的均值和相关函数。 问该过程是否为平稳过程? (1) 解:首先, {}{}{}1111222211)()()()(,)(k t N P k t N k t N P k t N k t N P ====== 根据泊松过程的独立增量性质可知 {}{}) (1212121211221212!)()]([)()()(t t k k e k k t t k k t t N P k t N k t N P -----=-=-===λλ 于是, {}21 122! )(!)()(,)(1211122211t k k k k e k k k t t t k t N k t N P λλ----= == (2) 解:该过程的均值为 []()()t k t te e k t k t N E k k t k t k λλλλλλ=??? ? ??-==∑∑+∞=--+∞ =-110!1!)()( 根据泊松过程的独立增量过程性质可得其相关函数为(12t t >) [] ()[])] ([)]()([)]([)()()()()()(12121112121t N E t N t N E t N E t N t N t N t N E t N t N E +-=+-= 其中, )()]()([1212t t t N t N E -=-λ 12 1212)]([t t t N E λλ+= 于是,12t t >时的相关函数为 []121212 12121221)()()(t t t t t t t t t N t N E λλλλλ+=++-= 同理可得21t t >时的相关函数为 []221221)()(t t t t N t N E λλ+=

第二章 随机过程汇总

第 2 章 随机过程 2.1 引言 ?确定性信号是时间的确定函数,随机信号是时间的不确定函数。 ?通信中干扰是随机信号,通信中的有用信号也是随机信号。 ?描述随机信号的数学工具是随机过程,基本的思想是把概率论中的随机变量的概念推广到 时间函数。 2.2 随机过程的统计特性 一.随机过程的数学定义: ?设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t) 是第i 次试验的样本函数或实现,每次试验得到一个样本函数,所有可能出现的结果的总体就构成一随机过程,记作)(t g 。 随机过程举例:

二.随机过程基本特征 其一,它是一个时间函数; 其二,在固定的某一观察时刻1t ,)(1t g 是随机变量。 随机过程具有随机变量和时间函数的特点。 ● 随机过程)(t g 在任一时刻都是随机变量; ● 随机过程)(t g 是大量样本函数的集合。 三.随机过程的统计描述 设)(t g 表示随机过程,在任意给定的时刻T t ∈1, )(1t g 是一个一维随机变量。 1.一维分布函数:随机变量)(t g 小于或等于某一数值x 的概率,即 })({);(1x t g P t x P ≤= 2.2.1 2.一维概率密度函数:一维概率分布函数对x 的导数. x t x P t x p ??= ) ;(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的二维分布 })(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.3 4.二维分布密度定义为 2 12121221212) ,;,(),;,(x x t t x x P t t x x p ???= 2.2.4 四.随机过程的一维数字特征 设随机过程)(t g 的一维概率密度函数为),(1t x p . 1.数学期望(Expectation) dx t x xp t g E t g );()]([)(1?∞ ∞ -==μ 2.2.5 2.方差(Variance)

《随机过程答案》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题完整答案,请搜淘宝 1、 设∑=-=N k k k k n U n X 1)cos(2ασ ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互 独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。 2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程, A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。 (1) 试画出此过程的样本函数,并问样本函数是否连续? (2) 试求此过程的相关函数,并问该过程是否均方连续? 3、 设}0),({≥t t X 是一实的零初值正交增量过程,且),(~)(2 t N t X σμ。令1)(2)(-=t X t Y ,0≥t 。试求过程}0),({≥t t Y 的相关函数),(t s R Y 。 4、 设有随机过程)sin(2)(Θ+=t Z t X ,+∞<<∞-t ,其中Z 、Θ是相互独立的随机 变量,)1,0(~N Z ,2/1)4/()4/(=-=Θ==ΘππP P 。问过程)(t X 是否均方可积过程?说明理由。 5、 设随机过程t Y t X t 2sin 2cos )(+=ξ,+∞<<∞-t ,其中随机变量X 和Y 独立同分 布。 (1) 如果)1,0(~U X ,问过程)(t ξ是否平稳过程?说明理由; (2) 如果)1,0(~N X ,问过程)(t ξ是否均方可微?说明理由。 6、 设随机过程});({+∞<<∞-t t X 是一实正交增量过程,并且0)}({=t X E ,及满足: {}+∞<<∞--=-t s s t s X t X E ,,)]()([2; 令:+∞<<∞---=t t X t X t Y ),1()()(,试证明)(t Y 是平稳过程。 7、 设0);sin()(≥=t Yt X t ξ,而随机变量X 、Y 是相互独立且都服从]1,0[上的均匀分布, 试求此过程的均值函数及相关函数。并问此过程是否是平稳过程,是否连续、可导? 8、 设}),({R t t X ∈是连续平稳过程,均值为m ,协方差函数为ττb X ae C -=)(,其中:R ∈τ,0,>b a 。对固定的0>T ,令?-=T ds s X T Y 01)(,证明:m Y E =}{, )]1()()[(2)(21bT e bT bT a Y Var -----=。 9、 设),,,0,0(~),(2221ρσσN Y X ,令tY X t X +=)(,以及?=t du u X t Y 0)()(,

第四章随机过程

(已经编辑到115页2008-3-20) 第四章随机过程 (电子版:盛艳霞OCR,编辑张学文2007.12 -2008.01) 1. 随机过程的概念及其分布律 原书91-132页90

第四章随机过程 为了从统计角度研究气象要素随时间和空间的变化,最好是利用近数十年发展起来的一个统计数学分支----随机过程和随机场理论。为研究气象信息随时间和空间的分布也要对随机过程有所了解。针对如上情况我们在这一章对随机过程的有关概念、性质和在气象上的个别应用作简要介绍。 1、随机过程的概念及其分布律 孤立的研究各点的气压、温度或风等气象要素时,我们把它看成随机变量(矢量)。这时可以分析它的期望值、方差、概率分布等等。 然而当把不同时刻的同一点的气压、温度或风连贯起来看时,这就是一连串的随机变量(矢量)。它们以时间为参数而有所变化。随机变量随某一参数(这里指时间)的变化给人们以过程的概念。所以就把随机变量随参数值的变化而变化的过程这一总体称为随机过程。 当掷骰子时,骰子出现的点数是随机变量。某次“3”点向上,就说这一次随机变量取值为3。而我们所谓的随机变量远不仅只有一个“3”,而应理解为很多次点子数的集合。同样地,随机过程一词也是指一个总体集合,而不是仅指某一时段的变量取值。例如说“春季北京的气温是一个随机过程”,则是指很多很多年的每年春季北京的气温的变化过程这个总体而言的。如1978年北京春季气温的变程仅是总体中的一个个例。它在随机过程中的地位和骰子为“3”点在随机变量中原书91-132页91

的地位是相当的。我们把这一条春季气温曲线称为这个随机过程的一个“现实”这样一个随机过程实际上是由无数具有同一的统计属性的现实组成的。 图4.1是乌鲁木齐冬季1月份的四年的气温曲线。它们就代表了1月气温这个随机过程的四个现实。而这一随机过程应为无数条这种曲线组成。如以T示表气温,y代表年代,d 代表日期,则一个随机过程可以表示为 T=T(y,d) (4.1) 图4.1 乌鲁木齐1月份气温曲线、 式中y有固定值时,例如y=1963年,则得到随机过程的一个现实。如d取固定值(如d=1)则T表示不同年份的这一天(元旦)的气温。这时同一d值不同y值的气温实为一随机变量。时常把这同一的时间d叫作“截口”。所以一个随机过原书91-132页92

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞ ? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞ ? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

随机过程作业题及参考答案(第二章)

第二章 平稳过程 P103 2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。试证 (1)若t T ∈,而{}12T =,,,则(){}12X t t =,,, 是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){} 0X t t ≥,不是平稳过程。 证明: 由题意,U 的分布密度为:()1 0220u f u π π?<

随机过程习题第2章

设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<< 121。试证明: )/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n 即一个马尔可夫过程的反向也具有马尔可夫性。 证明:首先,由条件概率的定义式得 ) ,,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++= 根据马尔可夫性将上式中的分子和分母展开,并化简得 ) () ()/()()/()/() ()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++== n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n 于是, )/() (),(),,/(1/11,1,,/1111++++++++++== n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。试证明: )/()/()/,(23/21/231/,2321231x x f x x f x x x f t t t t t t t = 证明:首先,由条件概率的定义式得 ) () ,,()/,(2321,,231/,2321231x f x x x f x x x f t t t t t t t = 然后,根据马尔可夫性将上式中的分子展开,并化简得 ) (),() /()() ()/()/()/,(221,23/2112/23/231/,22123211223231x f x x f x x f x f x f x x f x x f x x x f t t t t t t t t t t t t t t ==

第四章 平稳随机过程

第四章 平稳随机过程 第一节 平稳过程的概念 一、两类平稳过程 1.严平稳过程 定义1 设 为随机过程,如果对任意正整数n 及任意 , 及任意实数τ, T t t t n ∈+++τττ,,,21 ,可使n 维随机变量 与())(,),(),(21τττ+++n t X t X t X 有相同的分布,即 的n 维分布函数Fn 满足: ),,,;,,,(),,,;,,,(21212121τττ+++=n n n n n n t t t x x x F t t t x x x F 对一切 ,2,1,=i x i 成立 则称 为严平稳过程,(强平稳过程,狭义平稳过程)。 定理1设 为严平稳过程,如果对任意 ,则有 证:首先利用柯西—许瓦兹不等式 可以证明 ,即自相关函数存在。 又由于 为严平稳过程,故对任意 有相同的分布, 所以

再由s 、t 的任意性可知 又对任意 及任意τ,使 T t s ∈++ττ,,有 ))(),(())(),((ττ++t X s X t X s X 与同分布,于是 []) ,()()()]()([),(ττττ++=++==t s R t X s X E t X s X E t s R X X )(),0(s t R s t R s X X ---=记令τ 2.宽平稳过程 定义2 设有随机过程 ,且对任意t , ,如果 ) (),()(ττμX X X R t t R t =+=常数 则称 为宽平稳过程(弱平稳过程,广义平稳过程)。 以后涉及的平稳过程均指宽平稳过程。 严平稳过程与宽平稳过程的关系:严平稳过程不一定是宽平稳过程,宽平稳过程也不一定是严平稳过程,但对于二阶矩过程,严平稳过程就是宽平稳过程。正态过程的严平稳性与宽平稳性是等价的。 二、平稳过程的数字特征 设 为平稳过程,且 ,则 )]([t X E X =μ为常数,称其为均值。 )]()([)(ττ+=t X t X E R X 为其τ的一元函数, (自相关函数) )]([22t X E X =ψ为常数,(均方值)

随机过程-习题-第4章-02

4.17 4.18 4.19 设有图题4-19所示的电路,其中W 0(t )为输入的随机过程,W 0(t )为标准维纳过程(即4.18中的z (t ),且其1=β);其输出为)(t ξ=W 0(t )-W 0(t -1)。求)(t ξ的均值和相关函数。 图题4-19 解:由于W 0(t )为标准维纳过程,则E [W 0(t )]=0。因此 0)]1()([)]([00=--=t W t W E t E ξ )(t ξ的相关函数为 )]}1()()][1()({[),(2020101021----=t W t W t W t W E t t R ξ ) (t W

假设t 1t 2-1时,[t 1-1, t 1]和[t 2-1, t 2]是两个交叠的区间。分别用A ,B ,C 表示区间[t 1-1,t 2-1]、[t 2-1,t 1]和[t 1,t 2]。于是 )] (1[)1,min(2)1()]1()([2)]1([)]([} )]1()({[] [][][][][][][]E[)] )(E[(),(1221212010220120220102221t t t t t t t W t W E t W E t W E t W t W E B E C E B E B E C E A E B E A C B B A t t R --=---+=---+=--==+++=++=ββββξ 即 ???? ?<<-=1 ||,0 1|||] |1[),(21τττβξt t R 其中,12t t -=τ。 4.20 定义)1()(20-=-t t e W e t αασξ。其中,σ、α均为常数,0,0>>ασ,)(0?W 代表标准维纳过程,称)(t ξ为Ornstein-Uhlenbeck 过程,求)(t ξ的均值和相关函数。 解:显然,均值为 )]1([)]([20-=-t t e W E e t E αασξ 其中,)(0?W 为标准维纳过程,其均值为0。于是 0)]1([20=-t e W E α 相关函数为 )]1()1([)]()([),(21212020)(22121--==+-t t t t e W e W E e t t E t t R αααξσξξ 由于标准维纳过程的相关函数为

第二章随机过程基本概念.

2随机过程的基本概念 §2.1 基本概念 随机过程是指一族随机变量 . 对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 . 其研究对象是随机现象 ,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 . 一随机过程的定义 1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数 t ∈ T , X(e,t为建立在 S 上的随机变量, (2对每一个 e ∈ S , X(e,t为 t 的函数,那么称随机变量族 {X(e,t, t∈ T, e∈ S}为一个随机过程,简记为 {X(e,t, t∈ T}或 X(t。 ((((({} {} [](为随机序列。时,通常称 , 取可列集合当可以为无穷。 通常有三种形式: 参数一般表示时间或空间, 或有时也简写为一个轨道。 随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。 为即若用映射来表示注意:

t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X R S T t e X t 21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。则令 掷一均匀硬币, 例 , ( (cos (}, {1 t e X t X R t T e t H e t t X T H S =??íì====p2 随机过程举例 例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则 (1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..}, 且对于不同的 t, 是不同的随机变量 . (2对于固定的样本点 n, X(t=n是一个 t 的函数 . (即:在多长时间内来 n 个人 ? 所以 {X(t,t>0}为一个随机过程 . 相位正弦波。为随机过程,称为随机则令例 (

《随机过程》第4章离散部分习题及参考答案

湖南大学本科课程《随机过程》第4章习题及参考答案 主讲教师:何松华 教授 30.设X(n)为均值为0、方差为σ2的离散白噪声,通过一个单位脉冲响应为h(n)的线性时不变离散时间线性系统,Y(n)为其输出,试证: 2[()()](0)E X n Y n h σ=,22 20 ()Y n h n σσ ∞ ==∑ 证:根据离散白噪声性质,2 2 0()[()()]()0 X m R m E X n m X n m m σσδ?==+==? ≠? ()()()()()m Y n X n h n X n m h m ∞ ==?=-∑ 220 [()()]{()()()][()()]() ()()()()(0) m m X m m E X n Y n E X n X n m h m E X n X n m h m R m h m m h m h σδσ∞∞ ==∞∞ ===-=-===∑∑∑∑ 1212122 2 11220 2 1 2 1 2 212100 00 [()]{()()()()] [()()]()()[()()]() Y m m m m m m E Y n E X n m h m X n m h m E X n m X n m h m h m m m h m h m σσ δ∞∞ ==∞∞∞∞ ======--= --=-∑∑∑∑∑∑ (对于求和区间内的每个m 1,在m 2的区间内存在唯一的m 2=m 1,使得21()0m m δ-≠) 12 2 2110 ()()()m n h m h m h n σ σ ∞ ∞ ====∑∑(求和变量置换) 31.均值为0、方差为σ2的离散白噪声X(n)通过单位脉冲响应分别为h 1(n)=a n u(n)以及h 2(n)=b n u(n)的级联系统(|a|<1,|b|<1),输出为W(n),求σW 2。 解:该级联系统的单位脉冲响应为 12121 1 1 00()()()()()()() 1(/)() 1/n m m m m m n n n n n n m m n n m m h n h n h n h n m h m a u n m b u m b b a a b a b a a u n a b a a b ∞ ∞ -=-∞=-∞+++-===?= -=---?? ==== ?--?? ∑ ∑∑∑ 参照题30的结果可以得到

相关主题
文本预览
相关文档 最新文档