当前位置:文档之家› 传动轴设计计算书

传动轴设计计算书

传动轴设计计算书
传动轴设计计算书

上海同济同捷科技有限公司企业标准

TJI/YJY·03·72-2005

传动轴设计计算书编制规则

2005-08-10 发布2005-08-16 实施上海同济同捷科技有限公司发布

TJI/YJY·03·72-2005

前言

为使底盘传动轴设计计算书在设计编制时,做到设计计算内容全面、正确,格式规范、统一,便于管理和检查评审,特制定本标准。

本标准中的各项要求,既是工程技术人员在计算书设计编制时,应该达到技术要求;又是检查评审传动轴设计计算书的依据。

本标准于2005年8月16日实施。

本标准的附录A为规范性附录。

本标准由上海同济同捷科技有限公司提出。

本标准由上海同济同捷科技有限公司质量与项目管理中心负责归口管理。

本标准主要起草人:李国华

TJI/YJY·03·72-2005

传动轴设计计算书编制规则

1范围

本标准规定了传动轴设计计算书的格式及内容

本标准适用于底盘传动轴新产品开发设计及改型设计

2规范性引用文件

QC/T 3-92 汽车产品图样及设计完整性

3术语和定义

4要求

4.1设计计算书的格式见规范性附录A。

4.2设计计算书应包括封面、目录、正文、参考文献等四个部分。

4.3传动轴设计计算书应包含的计算内容

4.3.1轴管扭转应力校核

4.3.2花键挤压应力校核

4.3.3滑移量校核

附录 A

(规范性附录)

传动轴设计计算书范本

密级:

编号:传动轴设计计算书

项目名称:R11汽车设计项目

项目编号:ETF-TJKJ090-BDRC

项目代码:AM-11

编制: 日期:

校对: 日期:

审核: 日期:

批准: 日期:

上海同济同捷科技有限公司

2004年11月18日

目录

1 概述 0

1.1 任务来源 0

1.2 传动轴基本介绍 0

1.3 传动轴滑移端滑移量简图 (1)

1.4 计算的目的 (1)

2 传动轴设计的输入条件 (1)

3 传动轴的校核计算 (2)

3.1 轴管直径的选择及校核 (2)

3.2 轴管的扭转应力的校核 (3)

3.3 传动轴花键齿侧挤压应力的校核 (5)

3.4 滑移线的校核 (5)

4 结论 (6)

参考文献 (7)

1 概述

1.1 任务来源

根据《R11、R12型汽车设计开发项目》合同的规定,按照双方确认的设计依据和要求,并依据总布置的要求对传动轴选型并作局部修改。

1.2 传动轴基本介绍

本车采用前置横置发动机前驱动的结构型式,前桥既转向又驱动,传动轴输入端采用球面滚轮万向节,它为近似等速万向节,传动轴输出端采用球笼式万向节,它为等速万向节,这种带有万向节的传动轴用于不同轴心的两轴之间甚至在汽车行驶过程中相对位置不断变化的两轴之间传递动力。

结构型式见图1-1 :

图1-1

1.3 传动轴滑移端滑移量简图

图1-2 结构简图

1.4 计算的目的

校核传动轴的直径、轴管的扭转应力、传动轴花键齿侧挤压应力和滑移线的校核。

2 传动轴设计的输入条件

表2-1 发动机与传动部分基本参数

型号宝马 Tritec

发动机最大转矩T emax

(N m/rpm)149/4500

发动机

发动机最大功率N emax

(kW/rpm)85/6000

一档i g1 3.5

二档i g2 1.95

三档i g3 1.36

四档i g40.97

五档i g50.81 变速器各档速比

倒档i gr 3.417

主减速比i0 3.941

表2-1 传动轴两端花键参数

球笼端(暂定) 滑套端 圆齿根,齿面配合 ANSI B 92.1 JIS B 1602-1961

齿数 25 25 模数 1.05833 1.05833 压力角 45° 30° 分度圆直径 26.458 26.458 成型直径 25.57 25.4 小径 25.05/25.30 24.816/24.613 大径 27.07/27.42 27.508/27.254 螺旋角

22’/25’

3 传动轴的校核计算 3.1 轴管直径的选择及校核

根据所传动最大转矩、额定转速和传动轴长度。 参考同类车型选取:

D =24.6mm

D -轴管外径及内径 mm 。

两端自由支撑、壁厚均匀的等截面传动轴的计算临界转速

n c (r/min)为:

2

28

1.2x10

n c L D =①

(3)

1)

其中:

D -轴管的外径最细端(在这里是花键的底径) mm ; L -传动轴的支承长度,取两万向节之中心距:mm 。

各参数取值如下:

D=24.6mm

左传动轴长L=350.5mm,右传动轴长L=608.5mm,取其中较长的一个L=608.5mm

代入得:n c=7973r/min

实际上传动轴的最大转速n max=n e/(i g xi0),r/min

其中:

n e-发动机的额定转速,r/min;

i g-变速器传动比;

i0-主减速器传动比。

各参数取值如下:

n e=6000 r/min

变速器传动比取最小值,i g =0.81

主减速比:i0=3.941

代入得:n max=1880r/min

由于传动轴动平衡的误差的影响,实际临界转速要低于计算的值n c。因此需要引进安全系数K,

K=n c/n max=1.2~2.0,

代入数值后K=7973/1880=4.24>2.0

结论:合格

3.2 轴管的扭转应力的校核

传动轴除了应满足临界转速的要求外,还应保证有足够的扭转强度对于传动轴管传动轴的最大扭转应力τ(Mpa)按下式计算:

-(44D DT 16d πτ=

…………………………(3-2

)

式中:

T -传动轴计算转矩,2/k i i T T d g0g1x ema = Nmm ; T emax -发动机最大转矩 Nmm ; i g1-变速器一档传动比; i g0-主减速器传动比 k d -动载系数

D ,d -轴管的外径及内径,mm ;

各参数取值如下:

T emax =149000 Nmm i g1=3.5 i g0=3.941 k d =1

D =24.6 mm ,d =0 mm 代入T =1027616 Nmm

代入得: τ=351.7MPa

由于所计算的传动轴在使用中是起着半轴的作用,因而其要求与半轴相同。半轴的扭转许用应力τ=490~588 MPa ②>351.7MPa 。

结论:合格

① 汽车工程手册设计篇

3.3 传动轴花键齿侧挤压应力的校核

?

σZL D D D D T

)2

)(4(2121?+=

(3)

3)

式中: T -计算转矩,Nmm ;

D 1,D 2-花键的外径和内径,mm ; Z ,L -花键齿数和键齿有效长度

?-载荷分布的不均匀系数 取0.75

各参数取值如下:

T= 1027616N·mm

传动轴输入端花键轴 D1=27.508mm,D2=24.613mm 传动轴输出端花键轴 D1=27.42mm ,D2=25.07mm(暂定) 传动轴输入端花键轴 Z =25,L =16.5mm

传动轴输出端花键轴 Z =25,L =27.75mm (暂定) 代入传动轴输入端花键轴 σ=216 N/mm 2

传动轴输出端车轮端花键轴 σ=107 N/mm 2 (暂定) 随着工艺水平的提高传动轴的许用挤压应力可达到250 MPa 以上

[]σσ≤

结论:合格。 3.4 滑移线的校核

汽车在行驶过程中,传动轴的长度和角度是经常变化的,变化

情况如下:

规定:传动轴以车身坐标Y 方向移动为正,反向为负,以满载时为零点。 状

态 滑移距离(mm )

角度(°)

上跳不转向 -0.5769 8.0373 上跳右转向 -1.1598 8.0513 上跳左转向 -1.3952 8.8902 下跳不转向 -1.4866 17.7519 下跳右转向 -2.8556 17.8236 左传动轴

下跳左转向 -2.5547 17.0367 上跳不转向 -0.6022 4.7266 上跳右转向 -0.1802 5.2122 上跳左转向 -0.036 4.7345 下跳不转向 -5.9253 10.1954 下跳右转向 -4.3442 9.8104 右传动轴

下跳左转向

-4.551 10.2307

本车选用的传动轴允许的滑移线图和上面各点落在图中的位置为:

从图中可以看出,以上几点均落在剖面线范围内,所以满足要求。 4 结论

的传动轴符合本车的要求。

表4-1传动轴主要参数

参 考 文 献

1. 张洪欣. 汽车设计(第二版). 北京:机械工业出版社,1989

2. 刘惟信. 汽车设计. 北京:清华大学出版社,2002

3. 汽车工程手册编写组编. 汽车工程手册(设计篇). 北京:机械工业出版社,2001

左传动轴

350.5 传动轴长度(mm )

右传动轴

608.5 直径(mm )

24.6

敞口矩形水池设计计算书

敞口矩形水池设计(4m×5m×2.5m) 执行规: 《混凝土结构设计规》(GB 50010-2002), 本文简称《混凝土规》 《建筑地基基础设计规》(GB 50007-2002), 本文简称《地基规》 《给水排水工程构筑物结构设计规》(GB50069-2002), 本文简称《给排水结构规》《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002), 本文简称《水池结构规程》 ----------------------------------------------------------------------- 1 基本资料 1.1 几何信息 水池类型: 无顶盖半地上 长度L=5.400m, 宽度B=4.400m, 高度H=2.800m, 底板底标高=-2.800m 池底厚h3=300mm, 池壁厚t1=200mm,底板外挑长度t2=200mm 注:地面标高为±0.000。 (平面图) (剖面图) 1.2 土水信息 土天然重度18.00 kN/m3 , 土饱和重度20.00kN/m3, 土摩擦角30度 地基承载力特征值fak=100.0kPa, 宽度修正系数ηb=0.00, 埋深修正系数ηd=1.00 地下水位标高-5.000m,池水深1.500m, 池水重度10.00kN/m3, 浮托力折减系数1.00, 抗浮安全系数Kf=1.05 1.3 荷载信息 活荷载: 地面30.00kN/m2, 组合值系数0.90 恒荷载分项系数: 水池自重1.20, 其它1.30 活荷载分项系数: 地下水压1.27, 其它1.40 活荷载准永久值系数: 顶板0.40, 地面0.40, 地下水1.00, 温湿度1.00 考虑温湿度作用: 池外温差10.0度, 弯矩折减系数0.65, 砼线膨胀系数1.00(10-5/°C) 1.4 钢筋砼信息 混凝土: 等级C30, 重度25.00kN/m3, 泊松比0.20 保护层厚度(mm): 池壁(35,外35), 底板(上35,下35) 钢筋级别: HRB400, 裂缝宽度限值: 0.20mm, 配筋调整系数: 1.00 2 计算容 (1) 地基承载力验算

混凝土搅拌站水泥罐基础设计

100t水泥罐基础设计计算书一、工程概况 某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径,顶面高度20m。水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为×+×。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001) 2、《混凝土结构设计规范》(GB50010-2010) 3、《建筑地基基础设计规范》(GB50007-2011) 4、《钢结构设计规范》(GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:ω0=㎡, 风荷载标准值: ωk=βzμsμz ω0 其中:βz=,μz=,μs=,则: ωk=βzμsμz ω0=×××= kN/㎡ 四、水泥罐基础计算 1、地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN

混凝土基础自重荷载:G ck=(××+××)×24=407kN 风荷载:风荷载作用点高度离地面,罐身高度15m,直径。 F wk=×15×= 风荷载对基底产生弯矩:M wk=×(+2)=·m 基础底面最大应力: p k,max= G ck+G k bh+ M wk W= 错误!+ 错误!=。 2、基础配筋验算 (1) 基础配筋验算 混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁验算。 混凝土基础承受弯矩:M max=×(1 8×207××=362kN 按照单筋梁验算: αs= M max f c bh02= 362×106 ×3200×8502= ξ=1-1-2αs=1-错误!=<ξb= A s=f c bξh0 f y= 错误!=1403mm 2 在基础顶部及底部均配筋13Φ16,A s 实=13×201=2613mm 2 > A s=1403mm2,基础配筋满足要求。 (2) 基础顶部承压验算 考虑水泥罐满仓时自重荷载和风荷载作用。 迎风面立柱柱脚受力:

圆形水池计算书

圆形水池设计 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:有盖 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示:

1.2 荷载信息 顶板活荷载:1.50kN/m2 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数: 自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 活载调整系数: 其它活载:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=40.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C25 纵筋级别:HRB400 混凝土重度:25.00kN/m3 配筋调整系数:1.20 纵筋保护层厚度: 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 顶板:恒荷载: 顶板自重 :5.00kN/m2 活荷载:

RO简明设计手册

第三章反渗透装置 3.1 提升泵 (1)作用:输送原水至两级双介质过滤器,提供运行必要的压力。 (2)设备选型:卧式不锈钢离心泵 国内品牌:上海一泵熊猫 进口品牌:台塑水泵 流量:Q=设计进水量。 扬程:H=22~30m。(注意水头损失) 数量:1用1备或2用1备(根据需要) 3.2 一级双介质过滤器 ①过滤速度的确定 v=8~10m。(依据:砂、活性炭、砂池)。 ②过滤器规格的计算直径D=(进水流量Q÷滤速v÷圆周率∏)的开方×2。 ③滤层厚度的确定石英砂0.5m、无烟煤0.4m、承托层0.8~1.0m、膨胀系数50~60%。 ④过滤器高度的计算总高H=沙层+煤层+承托层+膨胀+支腿+排气管高度。 ⑤过滤介质的选择石英砂?0.5~1.0mm、无烟煤?1.0~2.0mm。无烟煤的粒径应小于石英砂粒径的2倍,反冲洗时才能分层回落。 ⑥过滤介质数量的计算所需过滤介质体积×堆密度。(石英砂1.75、活性炭0.45、无烟煤0.947、砾石1.8~1.85) ⑦配水“丰”型管的计算干管始端流速为 1.0~1.5m/s、支管始端流速为 1.5~ 2.0m/s、孔眼流速为5~6m/s;支管中心距0.25~0.3m,支管长度与其直径之比不应大于60倍;孔眼直径9~12mm。 ⑧配气“丰”型管的计算管中空气流速10m/s、空气从孔眼中的流出速度30~35m/s;孔眼直径为1.4~2.0mm,孔距:80~90mm。

3.3 二级双介质过滤器 过滤介质的选择 石英砂?0.35~0.5mm、无烟煤?0.6~0.9mm。 无烟煤的粒径应小于石英砂粒径的2倍,反冲洗时才能分层回落。 为什么用两级双介质过滤器? 1.提高过滤效果(不是简单重复); 2.错开反冲洗,保持至少有一级双介质过滤器是在压实的滤床上进行过滤; 3.可以提高过滤速度,减小过滤器直径; 4.成功经验。 3.4 双介质过滤器的反冲洗 反冲洗水源:RO浓水、RO产水、自来水或者双介质过滤器的滤出水。决不能用原水。 反冲洗水泵:设备选型:卧式不锈钢离心泵。 国内品牌:上海一泵熊猫 进口品牌:台塑水泵 流量:Q=4~6L/㎡s。(砂滤池反洗泵Q=12~17L/㎡s ) 扬程:H=22~30m。(注意水头损失) 反冲洗周期:自动控制按时间设定,连续过滤12h反冲洗。 手动控制看压力表,压力增加0.1MPa反冲洗。 反冲洗程序:①气洗2min;②气水混和反冲6min;③水冲5min。 空气压力:0.2~0.4MPa。(ASM的反复)。 气洗强度:18L/ ㎡s(4.1m3/min)。 膨胀高度:0.5m左右。 3.5 中间水箱 (1)作用:用于贮存预处理后的出水。 中间水箱内安装有液位控制器,利用液位高、低的变化来控制RO系统的自动运行。 (2)规格:以供RO连续运行15~30min所需进水量为宜。 大型RO系统应设计中间水箱和中间水泵,有利于RO系统的稳定运行。

传动轴设计计算

编号: 传动轴设计计算书 编制:日期: 校对:日期: 审核:日期: 批准:日期: 一.计算目的 我们初步选定了传动轴,轴径选取Φ27(详见《传动轴设计方案书》),动力端选用球 面滚轮万向节,车轮端选用球笼万向节。左、右前轮分别由1根等速万向节传动轴驱动。通 过计算,校核选型是否合适。 二.计算方法 本车传动轴设计不是传统载货车上从变速器到后驱动桥之间长轴传动设计,而是半轴传动设计。而且传动轴材料采用高级优质合金钢,且热处理工艺性好,使传动轴的静强度和疲劳强 度大为提高,因此计算中许用应力按照半轴设计采用含铬合金钢,如40Cr、42CrMo、40MnB, 其扭转屈服极限可达到784N/mm2左右,轴端花键挤压应力可达到196N/mm2。 传动轴校核计算流程: 1.1轴管直径的校核 校核: 两端自由支撑、壁厚均匀的等截面传动轴的临界转速

2 2 28 1.2x10 n e l d D +=(r/min) 式中L 传动轴长,取两万向节之中心距:mm D 为传动轴轴管外直径:mm d 为传动轴轴管内直径:mm 各参数取值如下:D =φ27mm ,d =0mm 取安全系数K=n e /n max ,其中n max 为最高车速时的传动轴转速, 取安全系数K =n e /n max =1.2~2.0。 实际上传动轴的最大转速n max =n c /(i g ×i 0),r/min 其中:n c -发动机的额定最大转速,r/min ; i g -变速器传动比; i 0-主减速器传动比。 1.2轴管的扭转应力的校核 校核扭转应力: τ= ][164 4τπ≤) -(d D DT J (N/mm 2) ][τ……许用应力,取][τ=539N/mm 2[高合金钢(40Cr 、40MnB 等)、中频淬火抗 拉应力≥980N/mm 2,工程应用中扭转应力为抗拉应力的0.5~0.6,取该系数为0.55,由此可取扭转应力为539N/mm 2,参考GB3077-88] 式中: T j ……传动系计算转矩,N ·mm ,2/k i i T T d g0g1x ema j η=N ·m T emax -发动机最大转矩N ·mm ; i g1-变速器一档传动比或倒档传动比; i g0-主减速器传动比 k d -动载系数 η-传动效率

水泥罐基础验算

水泥罐基础验算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

集料拌和站基础及立柱设计计算书 汉十铁路客运专线HSSG-6标段一工区砼拌和站设置两台HZS-180型拌合机,每台拌合机配备6个罐,共4个水泥罐,每个拌和站的两个水泥罐基础联体设置。 一、设计资料 (1)每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径。水泥罐基础采用C25钢筋砼条形承台基础满足两个水泥罐同时安装。6个罐放置在圆环形基础上,圆环内径7米,外径米,基础高,外露。基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 (2)水泥罐总高米,罐高米,罐径米,柱高5m,柱子为4根正方形布置,柱子间距为米,柱子材料为厚度8mm的钢管柱。 施工前先对地基进行处理,处理后现场检测,测得地基承载力超过350kpa。 二、水泥罐基础计算书 1、计算基本参数 水泥罐自重8t,装满水泥共重108t。 水泥罐总高米,罐高米,柱高5m。 2、地基承载力计算 水泥罐基础要求的承载力

1)砼基础面积:S=; 砼体积:V=×=; 底座自重:Gd=×2500×=(砼自重按2500kg/m3); 2)装满水泥的水泥罐自重:Gsz=6×108×=; 3)总自重为:Gz=Gd+Gsz=+=; 4)基底承载力:P=Gz/S==102kpa; 5) 基底经处理后检测的承载力P’≥140kpa; 6) P≤P’ 经验算,地基承载力满足要求。 水泥罐基础满足地基承载力要求,则主机也同时满足承载力要求。 3、抗倾覆计算 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 由于水泥搅拌机属于受风敏感且筒体高度较大,为确保筒体和施工人员的安全,根据《高耸结构设计规范》(GBJ135-2006以下简称高规),应考虑风荷载对结构的影响。 1)风荷载强度计算:跟全国风压表,枣阳地区最大风荷载取值为㎡。 2)风力计算: 平均作用高度为:H=2+5=; 单根水泥罐的风力大小为F=A×W=××=; 1个水泥罐的叠加倾覆力矩

水池计算书(手写版本)

保管期限 密级 设计计算书 建设单位上海美梭羊绒纺织品有限公司 工程名称山东建得佳纺织有限公司 工程号-子项号M1117-06 子项名称消防泵房设计专业结构页数部门一所计算人年月日校核人年月日审核人年月日 上海纺织建筑设计研究院

目录 一、设计采用规范 二、荷载选用及计算 三、基础工程 四、上部结构设计 五、图形文件及程序计算书

一、设计采用规范 1.《建筑结构可靠度设计统一标准》【GB50068-2001】 2.《建筑结构荷载规范》【GB50009-2001】(2006年版) 3.《混凝土结构设计规范》【GB50010-2010】 4.《建筑抗震设计规范》【GB50011-2010】 5.《建筑地基基础设计规范》【GBJ50007-2002】 6.《砌体结构设计规范》【GB50003-2001】 二、工程概况: 本工程位于位于山东聊城东阿县东阿工业园区,胶光路以北鑫大地建材厂东邻。本工程泵房结构形式为砖混砌体结构。室内外高差为0.300米。 本工程抗震设防烈度为7度,建筑场地类别为Ⅲ类,框架抗震等级为三级。 三、荷载选用及计算 1.泵房屋面(结构找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2

100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷0.015x20=0.3 KN/m2 合计 4.23 KN/m2 取 4.50 KN/m2 2)屋面活载: 0.50 KN/m2 2.水池盖板(建筑找坡)荷载的标准值: 1) 恒载 40厚C20细石混凝土找平层 0.04x25=1.0 KN/m2 40厚挤塑聚苯板保温层(仅用于保温屋面)0.50x0.04=0.02 KN/m2 1.2厚三元乙丙橡胶防水片材防水层 0.01 KN/m2 20厚1:3水泥砂浆找平层 0.02x20=0.4 KN/m2 100厚楼板自重 0.10x25=2.5 KN/m2 15厚1:2:4混合砂浆打底粉刷 0.015x20=0.3 KN/m2 建筑2%砂浆找坡 0.09x10=0.9 KN/m2 合计 5.13 KN/m2 取 5.50 KN/m2 2)屋面活载: 2.00 KN/m2 3.风荷载: 0.45 KN/m2 4.雪荷载: 0.35 KN/m2 5.地震作用: 抗震设防烈度为7度,设计地震分组为第二组,设计基本地震加速 度为0.10g,建筑场地类别为Ⅲ类。

送水泵站设计

目录 目录 ..................................................................................................................................................................I 第1章绪论 .. (1) 1.1设计要求 (1) 1.1.1设计题目:送水泵站(二级泵站)设计 (1) 1.2二级泵站设计资料 (2) 第2章计算说明书 (3) 2.1水泵和电机的初步选择 (3) 2.1.1二级泵站的组成及特点 (3) 2.1.2泵站设计参数的确定 (4) 2.1.3选择水泵 (4) 2.2水泵机组的基础设计 (7) 2.3水泵吸水管路和压水管路设计 (9) 2.3.1吸水管路 (9) 2.3.2压水管路 (10) 2.3.3管路附件选配 (10) 2.4布置机组和管道 (11) 2.5泵房形式的选择 (12) 2.5.1泵的布置形势 (12) 2.6吸水井的设计 (13) 2.7各工艺标高的设计 (13) 2.8复核水泵和电机 (14) 2.9消防校核 (15) 2.10设备的选择 (15) 2.10.1引水设备 (15) 2.10.2计量设备 (16) 2.10.3起重设备 (16) 2.10.4泵房的高度 (17) 2.10.5排水设备 (17) 2.10.6防水锤设备 (18) 2.11泵房建筑高度和平面尺寸的确定 (18) 2.12设计二级泵站平面图及剖面图 (19) 结束语 (20) 参考文献 (21)

传动轴设计计算

传动轴设计计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

编号: 传动轴设计计算书 编制:日期: 校对:日期: 审核:日期: 批准:日期: 一.计算目的 我们初步选定了传动轴,轴径选取Φ27(详见《传动轴设计方案书》),动力端选用球面滚轮万向节,车轮端选用球笼万向节。左、右前轮分别由1根等速万向节传动轴驱动。通过计算,校核选型是否合适。 二.计算方法 本车传动轴设计不是传统载货车上从变速器到后驱动桥之间长轴传动设计,而是半轴传动设计。而且传动轴材料采用高级优质合金钢,且热处理工艺性好,使传动轴的静强度和疲劳强度大为提高,因此计算中许用应力按照半轴设计采用含铬合金钢,如40Cr、 42CrMo、40MnB,其扭转屈服极限可达到784 N/mm2左右,轴端花键挤压应力可达到196 N/mm2。 传动轴校核计算流程:

轴管直径的校核 校核: 两端自由支撑、壁厚均匀的等截面传动轴的临界转速 22 2 8 1.2x10 n e l d D+ = (r/min) 式中L传动轴长,取两万向节之中心距:mm D为传动轴轴管外直径:mm d为传动轴轴管内直径:mm 各参数取值如下:D=φ27mm,d=0mm 取安全系数K=n e /n max ,其中n max 为最高车速时的传动轴转速, 取安全系数K=n e /n max =~。 实际上传动轴的最大转速n max =n c /(i g ×i ),r/min 其中:n c -发动机的额定最大转速,r/min; i g -变速器传动比;

i 0-主减速器传动比。 轴管的扭转应力的校核 校核扭转应力: τ= ] [1644τπ≤) -(d D DT J (N/mm 2) ][τ……许用应力,取][τ=539N/mm 2[高合金钢(40Cr 、40MnB 等)、中频淬火抗 拉应力≥980 N/mm 2,工程应用中扭转应力为抗拉应力的~,取该系数为,由此可取扭转应力为539 N/mm 2,参考GB 3077-88] 式中: Tj ……传动系计算转矩,N ·mm ,2/k i i T T d g0g1x ema j η= N ·m T emax -发动机最大转矩N ·mm ; i g1-变速器一档传动比或倒档传动比; i g0-主减速器传动比 k d -动载系数 η-传动效率 传动轴花键齿侧挤压应力的校核 传动轴花键齿侧挤压应力的校核 ][)2 )(4(2121j j ZL D D D D T σσ≤-+= (N/mm 2 )

100t水泥罐基础设计计算

3.8m*3.8m*120k n/m 2 =1732.8kn J01 地面标高3.5m ① 素填土 0.88m J02 地面标高3.5m ① 素填土 0.44m J03 地面标高3.5m ① 素填土 0.41m ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 -5.79m 粉土 loot 水泥罐基础设计计算 1、 水泥罐自重 G1: 200kn (20t)估 2、 水泥自重 G2: 1000kn (100t) 3、 基础承台自重 G3: 3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2 (分项系数)=1981.2kn 、受力分析 1、承台地基承载力:按12t/m 2估算,承台地基承载力为 2、桩承载力需达到 1981.2k n-1732.8k n=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 -1.72m -4.76m ④ 粉土 粉土 根据上述柱状图,打入桩范围内平均层厚:素填土 2.92m 、淤泥质粉质粘土 4.67m 、 荷载

粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范围内(9m) 土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30) /9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*( U* a *H* T)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U ----- 桩周长, a——震动沉桩影响系数,锤击沉桩取1.0 H——桩入土深度,9.0m T -----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径 273钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T) =1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61 根,取3 根, 布置如图: 3.8m ②如采用直径 630钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T)

圆形水池结构计算书

无梁板式现浇钢筋混凝土圆形水池结构计算书1、设计资料: 主要结构尺寸: 内径(d):32m 底板厚:0.3m 壁板高:4.15m 壁板厚:0.35m 顶板厚:150mm 底板外挑宽度:400mm 荷载和地质条件: 顶板活荷载:q k=1.5kN/m2 池内水深:4m 地下水深:1.2m(底板以上)底板覆土:0.3m 土内摩擦角:30* 修正后地基承载力特征值:f a=100kPa 水重力密度:10kN/m3 回填土重度取:18kN/m3 钢筋混凝土重度:25kN/m3 钢筋选用HRB235和HRB400 混凝土选用C25,f t=1.27N/mm2,f c=11.9N/mm2

2、抗浮稳定性验算: i )局部抗浮稳定性验算:取中间区格(4×4m 2)作为计算单元,抗力荷载标准值如下: 顶板自重:25×0.15×4×4=60kN 底板自重:25×0.3×4×4=120kN 支柱自重:25×0.3×0.3×3.45=7.76kN 柱帽重:25×[1.42×0.1+31(0.32+0.3×1+12)×0.35]=8.95kN 柱基重:25×[1.52×0.1+3 1 (0.42+0.4×1.1+1.12)×0.35]=10.9kN 池顶覆土重:18×4×4×0.3=86.4kN ΣG k =60+120+7.76+8.95+10.9+86.4=294.01kN 局部浮力:F 浮=11)(A h d w ?+γ=10×(1.2+0.3)×4×4=240kN K= 浮 F G k ∑=24001 .294=1.23>1.05满足局部抗浮要求 ii)整体抗浮验算: 顶板自重:π(16+0.35)2×0.15×25=3149.32kN 顶板覆土重:π(16+0.35)2×0.3×18=4535.02kN 壁板自重:2π(16+0.35/2)×0.35×4.17×25=3708.24kN 悬挑土重:π[(16+0.4+0.35)2-(16+0.35)2]×[(18-10)×1.2+18×3.5]=3019.77kN 池内支撑柱总重:45×(7.76+8.95+10.9)=1242.5kN 底板浮重:π(16+0.35+0.4)2 ×0.3×(25-10)=3966.35kN ΣG k =3149.32+4535.02+3708.24+3019.77+1242.5+3966.35=19621.2kN 总浮力:F 浮=A h d w ?+)(1 γ=10×(1.2+0.3)×π(16+0.4+0.35)2 =13221.2kN K= 浮F G k ∑=2 .132212 .19621=1.48>1.05满足整体抗浮要求

真空引水罐设备操作流程

设备操作流程 1一般规定 1.1 水泵的操作人员必须了解所使用水泵的构造、性能、用途,熟悉安全操作和技术保养规程。 1.2水泵必须有专人操作,并且对水泵的安全使用和正确保养负有全面责任。 1.3 操作人员必须按保养规程要求,定期做好水泵的清洁、润滑和调整工作(拧紧连接螺栓),使水泵经常保持良好的工作条件。 1.4应经常对电气设备进行检查和定期保养,保证绝缘良好安全可靠。 2起动前准备 2.1用手拔转风扇,叶轮应无卡摩现象,转动灵活。 2.2引水罐水量检查,完全开启引水罐注水孔及排气孔阀门,完全打开水泵 机组进水口阀门,完全关闭水泵机组出水口阀门,启动补水泵对引水罐进行注水,水位上升至充满引水罐,此时关闭补水泵,检查完毕。 2.3打开进口阀门,打开排气阀使水充满整个泵腔,然后关闭排气嘴。 2.4起动前应对水泵和抽水装置管路阀门作全面仔细的检查,不得有漏水、漏气现象。 2.5应先用手盘动泵几圈以使润滑水进入机械密封端面。 2.6点动电机,确定转向是否正确,这样方可起动。 3起动与运行 3.1全开进口阀门,关闭吐出管路上的阀门。 3.2接通电源,当泵达到正常转速后,再逐渐打开吐出管路上的阀门,并调节到所需要的工况。 3.3必须注意观察仪表读数、电机、轴承升温、滴漏和升温以及泵的振动和杂音等是否正常,正常时机械密封滴漏为3滴每分,温度小于75℃,如果发现异常情况应及时处理。 3.4打开回水管阀门,保证有充足的水持续回流至负压引水罐内,在停机保压过程中二次启动时有水可以充满泵体,有效避免水泵无水空转。 4 停机

4.1逐渐关闭吐出管路上的阀门,切断电源。 4.2关闭进口阀门。 4.3如环境温度低于0℃,应将泵内水放出,以免冻裂水泵。 4.4如长期停止使用,应将泵拆卸清洗上油(3#锂基脂黄油),包装保管。 5泵的维护与保养 5.1运行中的维护与保养 5.1.1进水管路必须高度密封,不能漏水、漏气。 5.1.2禁止泵在汽蚀状态下长期运行,泵在运行过程中最高温度不超过90摄氏度。 5.1.3禁止泵在大流量工况运行时,电机超电流长期运行。 5.1.4定时检查运行中的电机电流值,尽量使泵在设计工况范围运行内运行,以保证泵在最高效率点运转,获得最大的节能效果。 5.1.5泵在运行中应有专人看管,以免发生意外。 5.1.6泵每运行500小时,应对轴承进行加油,加注3#锂基脂黄油。 5.1.7泵长期运行后,由于机械磨损,使机组噪声及振动增大时,应停车检查,必要时可更换易损零件及轴承,机组大修期一般为一年。 5.1.8泵在冬季运行使用时,应做好保温措施,防止冻裂。 5.2机械密封的维护与保养 5.2.1机械密封润滑液应清洁无固体颗粒。 5.2.2严禁机械密封在干磨情况下工作。 5.2.3起动前应盘动泵(电机)几圈,以免突然起动造成机械密封断裂损坏。

150吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 水泥罐平面位置示意图

二、水泥罐基础计算书 1、计算基本参数 水泥罐自重约20t,水泥满装150t,共重170t。 水泥罐支腿高3m,罐身高18m,共高21m。 单支基础4m×4m×0.8m钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm×200mm,通过受力计算,其地基承载力为: δ2= 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 风荷载(500N/m2) 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: ?M 水泥罐空罐自重20t,则基础及水泥罐总重为:

抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

泵站设计说明书

泵站设计说明书-CAL-FENGHAI.-(YICAI)-Company One1

《泵与泵站》课程设计 说明书 题目:万人城镇给水泵站(二级泵站)规划设计 学院:环境科学与工程学院 专业:给水排水工程 班级:给排水1202 学号:26、27、28 学生姓名:沈喻龙、李思聪、邵志春 指导教师:李强标 二○一四年十二月

一、送水泵站(二级泵站)设计 、设计目的 根据给定的资料,综合运用所学的专业知识,进行H 城镇二级给水泵站设计。、设计原始资料 1、H 城镇位于浙江省内,海拔为900 米;土质为砂纸粘土,无地下水,不考虑冰冻。 2、H 城镇远期规划人口约万人,最高日用水量为万立方米/日。 3、泵站地坪标高为906 米。二级泵站的工作制度,分两级: ①第一级,从22 时到5 时,每小时占全天用水量的(%)。 ②第二级,从5 时到22 时,每小时占全天用水量的(%)。 4、H 城镇设计最不利点的地面标高为921 米,该处有一座12 层建筑,要求二级泵站供水至第7 层。 5、二级泵站至最不利点的输水管和配水管网的总水头损失为26 米。 6、清水池所在地的地面标高与泵站地坪标高相同,清水池边墙距二级泵站外墙约米;二级泵站直接由清水池吸水。 7、清水池最低水位在地面以下米。清水池的最高水温为℃、最低水 温为0℃。 8、未预见用水量及管网漏水量取值范围10~15%。 9、泵站变配电设施按一级负荷设置。 10、H 城镇给水系统采用低压消防制。设计着火点定为最不利点处,消防水头为10 米;消防时输水管和配水管网的总水头损失为27 米。 、设计要求 、说明书要求: ⑴泵站的设计流量、扬程,水泵的选择。 ⑵给水泵站高程布置及水力计算,校核水泵安装高度。 ⑶清水池的容积计算。 ⑷给水泵站平面布置。 ⑸高效工况点、消防校核。 ⑹材料一览表(含编号、名称、规格、单位、数量),工程投资估算。 3 、图纸要求: ⑴ ACAD 制图,A3。 ⑵泵站平面图和剖面图,应绘出主要设备、管路、配件及辅助设备的位置、

设计-传动轴-机械制造技术基础

毕业设计 题目:传动轴的工艺设计 院系:机电工程系 专业:机电一体化 姓名:吕书星 班级:机电六班 学号:2010010306036 指导教师:孔祥林

目录 前言------------------------------------------------------2 课程设计简要分析------------------------------------------3 1 零件最小直径的确定--------------------------------------4 2 零件的工艺分析------------------------------------------4 3 工艺计算与设计------------------------------------------5 3.1 毛坯选择---------------------------------------------5 3.2 工艺路线的确定---------------------------------------5 3.2.1 确定零件的定位基准与装夹方式----------------------5 3.2.2 主要表面加工方法的确定----------------------------6 3.2.3 装夹方式------------------------------------------6 3.2. 4 划分阶段------------------------------------------7 3.2. 5 热处理工序安排------------------------------------7 3.2.6 加工方法的选择和加工方案的确定--------------------8 4 工序与工步的划分---------------------------------------10 4.1 工序的划分------------------------------------------10 4.2工步的划分-------------------------------------------11 4.3加工顺序及加工路线的确定-----------------------------11 4.3.1 零件加工必须遵守的安排原则------------------------11 4.3.2进给路线-------------------------------------------11 4.4 加工尺寸和切削用量----------------------------------12 4.5拟定工艺过程-----------------------------------------12

水池设计

矩形水池计算 设计资料: 池顶活荷P1=2.0(KN/m^2) 覆土厚度ht=500(mm) 池内水位Hw=4000(mm) 容许承载力R=150(KN/m^2) 水池长度H=5000(mm) 水池宽度B=4000(mm) 池壁高度h0=4000(mm) 底板外伸C1=200(mm) 底板厚度h1=300(mm) 顶板厚度h2=150(mm) 垫层厚度h3= 100 (mm) 池壁厚度h4=200(mm) 地基承载力设计值R=150(KPa) 地下水位高于底板Hd=2000(mm) 抗浮安全系数Kf = 1.10 一.地基承载力验算 ( 1 )底板面积AR1 = (H + 2 * h4 + 2 * C1) * (B + 2 * h4 + 2 * C1) = (5 + 2 * 0.2+2 * 0.2 ) * ( 4 + 2 * 0.2 + 2 * 0.2 ) =27.84(m^2) ( 2 )顶板面积AR2 = (H + 2 * h4) * (B + 2 * h4) = ( 5 + 2 * 0.2 ) * ( 4 + 2 * 0.2 ) =23.76(m^2) ( 3 )池顶荷载Pg = P1 + ht * 18 = 2.0 + 0.5 * 18

=11 (KN/m^2) ( 4 )池壁重量CB = 25 * (H + 2 * h4 + B) * 2 * H0 * h4 = 25 * ( 5 + 2 * 0.2 + 4 )* 2 * 4 * 0.2 =376 (KN) ( 5 )底板重量DB1 = 25 * AR1 * h1 = 25 * 27.84 * 0.3 =208.8(KN) ( 6 )顶板重量DB2 = 25 * AR2 * h2 = 25 *23.76 * 0.15 =89.1 (KN) ( 7 )水池全重G = CB + DB1 + DB2 + Fk1 =376 +208.8+89.1 +0 =673.9 (KN) ( 8 )单位面积水重Pwg = (H * B * Hw * 10) / AR1 = ( 5 * 4 * 4 * 10) / 27.84 =28.73(KN/m^2) ( 9 )单位面积垫层重Pd = 23 * h3 = 23 * 0.1 =8.26(KN/m^2) ( 10 )地基反力R0 = Pg + G / AR1 + Pwg + Pd =11 + 673.9 / 27.84 + 28.73 + 8.26 = 72 (KN/m^2)

传动轴设计及校核作业指导书

传动轴设计及校核作业指导书 编制:日期: 审核:日期: 批准:日期: 发布日期:年 月 日 实施日期:年 月 日

前言 为使本中心传动轴设计及校核规范化,参考国内外汽车设计的技术规范,结合公司标准和已开发车型的经验,编制本作业指导书。意在对本公司设计人员在设计过程中起到指导操作的作用,提高设计的效率和成效。本作业指导书将在本中心所有车型开发设计中贯彻,并在实践中进一步提高完善。 本标准于2011年XX月XX日起实施。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院提出。 本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院负责归口管理。 本标准主要起草人:张士华

一、传动系概述 (3) 1.1传动系功能 (3) 1.2传动系布置形式 (3) 1.3传动系的构成 (7) 1.4传动轴的主要结构形式 (8) 1.5驱动半轴的紧固方式 (12) 二、传动轴的设计流程 (15) 2.1传动轴的主要设计流程 (15) 2.2传动轴的设计过程及要求 (17) 三.传动轴的校核过程 (22) 3.1设计校核输入 (22) 3.2传动轴校核 (24) 3.3结论及分析 (25) 3.4传动轴跳动校核 (26) 3.5技术文件的编制 (26) 3.6传动轴图纸确认 (26) 四.试制装车及生产中经常出现的问题 (28) 五.参考文献 (28)

一、传动系概述 1.1 传动系功能 A、保证汽车在各种行驶条件下所必需的牵引力与车速,使它们之间能协调变化 并有足够的变化范围。 B、使汽车具有良好的动力性和燃油经济性。 C、保证汽车能倒车及左右车轮能适应差速要求。 D、使动力传递能根据需要而顺利接合与分离 1.2 传动系的布置形式 ? 前置后驱动 ? 前置前驱动 ? 后置后驱动 ? 四轮驱动 ? 中置发动机后轮驱动 部分高级轿车也采用前置后驱布置 前置后驱整体桥

二级泵站设计计算说明书

二级泵站设计计算说明说书 学院:土木建筑工程学院 专业:给水排水专业 班级:081 指导教师:张鑫 姓名:徐琦 学号:080504009

水泵站课程设计任务书 一、设计题目:送水泵站(二级泵站)设计 二、原始资料: 1、泵站的设计水量为(4)万m3/d。 2、给水管网设计的部分成果: ①根据用水曲线确定二泵站工作制度,分两级工作。 第一级,每小时占全天用水量的(2.9%)。 第二级,每小时占全天用水量的(5.07%)。 ②城市设计最不利点的地面标高为20m,建筑层数7层,自由水压为 20m。 ③给水管网平差得出的二泵站至最不利点的输水管和配水管网的总 水头损失为32m。 ④清水池所在地地面标高为15m,清水池最低水位在地面以下3.0m。 3 、城市冰冻线为(1.5)米,城市的最高温度为(30.0℃)最低温度为(-25℃) 4 、站所在地土壤良好,地下水位为(25m)米。 5 、电源满足用电要求,电价0.45元/Kwh。 三、设计任务 城市送水泵站的技术设计的工艺部分 四、计算说明书内容 1. 绪论 2.初选水泵和电机 根据水量、水压变化情况选泵,工作泵和备用泵型号和台数。 3泵房形式的选择 4.机组基础设计、平面尺寸及高度 5.计算水泵吸水管和压力管直径 选用各种配件的型号、规格种类及安装尺寸(说明特点)。吸水井设计(尺寸和水位)

6.布置管道和机组 7.泵房中个标高的确定 室内地面、基础顶面、水泵安装高度、泵房建筑高度。 8. 复合水泵电机 计算吸水管机泵站内压水管损失、求出总扬程、校核所选水泵。如不合适,则重选水泵和电机。重新确定泵站的各级供水量。 9.进行消防和传输校核 10.计算和选择附属设备 ①设备的选择和布置 ②计量设备 ③起重设备 ④排水泵及水锤消除器等 11.确定泵站平面尺寸、初步规划泵房总面积 泵房的长度和宽度,总平面布置包括:配电室、机器间、值班室、修理间等。 五、图纸要求 泵站平面及剖面图(机器间),应绘出主要设备、管路、配件及辅助设备的位置、尺寸、标高,列出主要设备表和材料表(比例尺1:100) 发放设计任务书日期: 2011 年 6 月 27 日 交设计日期: 2011 年 7 月 8 日 设计指导教师(签字): 目录

传动轴设计计算书

上海同济同捷科技有限公司企业标准 TJI/YJY·03·72-2005 传动轴设计计算书编制规则 2005-08-10 发布2005-08-16 实施上海同济同捷科技有限公司发布

TJI/YJY·03·72-2005 前言 为使底盘传动轴设计计算书在设计编制时,做到设计计算内容全面、正确,格式规范、统一,便于管理和检查评审,特制定本标准。 本标准中的各项要求,既是工程技术人员在计算书设计编制时,应该达到技术要求;又是检查评审传动轴设计计算书的依据。 本标准于2005年8月16日实施。 本标准的附录A为规范性附录。 本标准由上海同济同捷科技有限公司提出。 本标准由上海同济同捷科技有限公司质量与项目管理中心负责归口管理。 本标准主要起草人:李国华

TJI/YJY·03·72-2005 传动轴设计计算书编制规则 1范围 本标准规定了传动轴设计计算书的格式及内容 本标准适用于底盘传动轴新产品开发设计及改型设计 2规范性引用文件 QC/T 3-92 汽车产品图样及设计完整性 3术语和定义 无 4要求 4.1设计计算书的格式见规范性附录A。 4.2设计计算书应包括封面、目录、正文、参考文献等四个部分。 4.3传动轴设计计算书应包含的计算内容 4.3.1轴管扭转应力校核 4.3.2花键挤压应力校核 4.3.3滑移量校核

附录 A (规范性附录) 传动轴设计计算书范本 密级: 编号:传动轴设计计算书 项目名称:R11汽车设计项目 项目编号:ETF-TJKJ090-BDRC 项目代码:AM-11 编制: 日期: 校对: 日期: 审核: 日期: 批准: 日期: 上海同济同捷科技有限公司 2004年11月18日

相关主题
文本预览
相关文档 最新文档