当前位置:文档之家› 丙烯液相本体聚合反应体系的物性计算方法

丙烯液相本体聚合反应体系的物性计算方法

丙烯液相本体聚合反应体系的物性计算方法
丙烯液相本体聚合反应体系的物性计算方法

化合物物性查询网站

化合物物性查询网站 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

1.物性数据( 该数据库是浏览型数据库,含有470多种纯组分的物性数据,如分子量、冰点、沸点、临界温度、临界压力、临界体积、临界压缩、无中心参数、液体密度、偶极矩、气相热容、液相热容、液体粘度、反应标准热、蒸气压、蒸发热等。 2.热力学性质( 该站点可查294种组分的热力学性质,还可以根据Peng Robinson状态方程计算纯组分或混合物的性质:包括气液相图、液体与气体密度、焓、热容、临界值、分子量等数据。 3.标准参考数据库化学网上工具书( 该数据库是一种检索型数据库,检索方法非常简单,可通过化学物质名称、分子式、部分分子式、CAS登记号、结构或部分结构、离子能性质、振动与电子能、分子量和作用进行检索,可检索到的数据包括分子式、分子量、化学结构、别名、CAS登记号、气相热化学数据、凝聚相热化学数据、液态常压热容、固态常压热容、相变数据、汽化焓、升华焓、燃烧焓、燃烧熵、各种反应的热化学数据、溶解数据、气相离子能数据、气相红外光谱、质谱、紫外/可见光谱、振动/电子能及其参考文献。 4.美国标准技术研究所物理网上工具书( 该站点包括物性常数、原子光谱数据、分子光谱数据、离子化数据、χ-射线、γ-射线数据、放射性计量数据、核物理数据及其它数据库。 手册(

该数据库是一种可检索数据库,可通过产品名称、全文、分子式、CAS登记号等进行检索,检索的结果包括产品名称、登记号、分子式、分子量、贮存温度、纯度、安全数据等。 6.美国国立医学图书馆毒性化学物质数据(HSDB) 可通过化学物质名称/别名、CAS登记号、化学物质名称的一部分进行检索,检索结果包括化学物质名称、登记号、同义词、分子式、RTECS号、运输方式、所含杂质等数据。 7、化学危险品数据库(Hazardous Cehmicals Database), 8、一个检索FDA历年批准药品的好网站。 9、有机化合物数据库(Organic Compounds Database), 10、查询物质结构性质等的网站: 11、化合物基本性质数据库(CS ChemFinder),

简便运算的练习试题和答案

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 38×25×4 42×125×8 25×17×4 (25×125)×(8×4) 49×4×5 38×125×8×3 (125×25)×4 5 ×289×2 (125×12)×8 125×(12×4) 乘法交换律和结合律的变化练习 125×64 125×88 44×25 125×24 25×28 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 357+288+143 158+395+105 167+289+33 129+235+171+165 378+527+73 169+78+22 58+39+42+61 138+293+62+107 乘法分配律:(a+b)×c=a×c+b×c (80+4)×25 (20+4)×25 (125+17)×8 25×(40+4)15×(20+3)

乘法分配律正用的变化练习: 36×3 25×41 39×101 125×88 201×24 乘法分配律反用的练习: 34×72+34×28 35×37+65×37 85×82+85×18 25×97+25×3 76×25+25×24 乘法分配律反用的变化练习: 38×29+38 75×299+75 64×199+64 35×68+68+68×64 其他的一些简便运算。 800÷25 6000÷125 3600÷8÷5 58×101-58 74×99

姓名: (1)125×15×8×4 (2)25×24 (3)125×16 (4)75×16 (5)125×25×32 (6)25×5×64×125 (7)125×64+125×36 (8)64×45+64×71-64×16 (9)21×73+26×21+21 姓名:(1)(720+96)÷24 (2)(4500-90)÷45 (3)6342÷21 (4)8811÷89 (5)73÷36+105÷36+146÷36 (6)(10000-1000-100-10)÷10 (7)238×36÷119×5 (8)138×27÷69×50 (9)624×48÷312÷8 (10)406×312÷104÷203

小学四年级简便运算的练习题和答案

运算定律练习题 (1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 38×25×4 42×125×8 25×17×4 (25×125)×(8×4) 49×4×5 38×125×8×3 (125×25)×4 — 5 ×289×2 (125×12)×8 125×(12×4) (2) 乘法交换律和结合律的变化练习 | 125×64 125×88 44×25 125×24 25×28 (3)加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 357+288+143 158+395+105 167+289+33 129+235+171+165 ~ 378+527+73 169+78+22 58+39+42+61 138+293+62+107

(4)乘法分配律:(a+b)×c=a×c+b×c 正用练习 (80+4)×25 (20+4)×25 (125+17)×8 25×(40+4)15×(20+3) (5)乘法分配律正用的变化练习: 36×3 25×41 39×101 125×88 201×24 ( (6)乘法分配律反用的练习: 34×72+34×28 35×37+65×37 85×82+85×18 25×97+25×3 76×25+25×24 ~ (7)乘法分配律反用的变化练习: 38×29+38 75×299+75 64×199+64 35×68+68+68×64 ; ☆思考题:(8)其他的一些简便运算。 800÷25 6000÷125 3600÷8÷5 58×101-58 74×99

【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。 325÷25 =(325×4)÷(25×4) =1300÷100 =13 【练一练1】 (1)450÷25 (2)525÷25 (3)3500÷125 / (4)10000÷625 (5)49500÷900 (6)9000÷225 ! 【经典例题二】计算25×125×4×8 【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。运用了乘法交换律和结合律。 25×125×4×8 =(25×4)×(125×8) =100×1000 =100000【练一练2】 (1)125×15×8×4 (2)25×24 (3)125×16 (4)75×16 (5)125×25×32 (6)25×5×64×125 (

六年级数学简便计算专项练习题(附答案+计算方法汇总)

六年级数学简便计算专项练习题(附答案+计算方法汇总) 小学阶段(高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。因此,培养学生思维的灵活性就显得尤为重要。 下面,为大家整理了8种简便运算的方法,希望同学们在理解的基础上灵活运用,不提倡死记硬背哟! 1.提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。 注意相同因数的提取。 例如: 0.92×1.41+0.92×8.59 =0.92×(1.41+8.59) 2.借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。 考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如: 9999+999+99+9 =9999+1+999+1+99+1+9+1-4 3.拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 例如: 3.2×12.5×25 =8×0.4×12.5×25 =8×12.5×0.4×25 4.加法结合律 注意对加法结合律 (a+b)+c=a+(b+c) 的运用,通过改变加数的位置来获得更简便的运算。 例如: 5.76+13.67+4.24+ 6.33 =(5.76+4.24)+(13.67+6.33) 5.拆分法和乘法分配律结合 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。 例如: 34×9.9 = 34×(10-0.1) 案例再现:57×101=? 6.利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。 例如: 2072+2052+2062+2042+2083

第七章 配位聚合

第七章配位聚合 思考题7.1如何判断乙烯、丙烯在热力学上能否聚合?采用哪一类引发剂和条件,才能聚合成功? 答可根据聚合自由能差?G=?H—T?S<0,作出判断。大部分烯类单体的?S近于定值,约-100~120J·mol-1,在一般聚合温度下(50~100℃),-T/?S=30~42kJ·mol-1,因此当-?H≥30kJ·mol-1时,聚合就有可能。乙烯和丙烯的-?H分别为950kJ·mol-1、858kJ·mo1-1,所以在热力学上很有聚合倾向。 在100~350MPa的高压和160-270℃高温下,采用氧气或有机过氧化物作引发剂,乙烯按自由基机理进行聚合,得到低密度的聚乙烯(LDPE);若采用TiCl4—Al(C2H5)3,为催化剂,在汽油溶剂中,进行配位聚合,则得高密度的聚乙烯(HDPE)。采用。A-TiCl3-Al(C2H5)3为催化剂,于60~70℃下和常压或稍高于常压的条件下,丙烯进行配位聚合可制得等规聚丙烯。 思考题7.2 解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。 答配位聚合:是指单体分子首先在活性种的空位处配位,形成某些形式的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)键中增长形成大分子的过程,所以也可称作插入聚合。 络合聚合:与配位聚合的含义相同,可以互用。络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。 插入聚合:烯类单体与络合引发剂配位后,插入Mt-R链增长聚合,故称为插入聚合。 定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。 有规立构聚合:是指形成有规立构聚合物为主的聚合反应。任何聚合过程或聚合方法,只要是形成有规立构聚合物为主,都是有规立构聚合。 思考题7.3区别聚合物构型和构象。简述光学异构和几何异构。聚丙烯和聚丁二烯有几种立体异构体? 答构型:指分子中原子由化学键固定在空间排布的结构,固定不变。要改变构型,必须经化学键的断裂和重组。 构象:由于。单键的内旋转而产生的分子在空间的不同形态,处于不稳定状态,随分子的热运动而随机改变。 光学异构:即分子中含有手性原子(如手性C‘),使物体与其镜像不能叠合,从而具有不同旋光性,这种空间排布不同的对映体称为光学异构体。 几何异构:又称顺、反异构,是指分子中存在双键或环,使某些原子在空间的位置不同而产生的立体结构。 聚丙烯可聚合成等规聚丙烯、间规聚丙烯和无规聚丙烯三种立体异构体。 聚丁二烯有顺式-1,4-结构、反式-1,4-结构和全同-1,2-结构、间同-1,2-结构四种立体异构。 思考题7.4什么是聚丙烯的等规度? 答聚丙烯的等规度是指全同聚丙烯占聚合物总量的百分数。聚丙烯的等规度或全同指数IIP(isotactic index)可用红外光谱的特征吸收谱带来测定。波数为975cm-1是全同螺旋链段的特征吸收峰,而1460cm-1是与CH3基团振动有关、对结构不敏感的参比吸收峰,取两者吸收强度(或峰面积)之比乘以仪器常数K即为等规度。

Aspen功能简介 (物性数据库)

Aspen Plus介绍 (物性数据库) ?Aspen Plus---生产装置设计、稳态模拟和优化的大型通用流程模拟系统 ?Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流 程模拟软件。该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981 年底完成。1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。该软件经过20多年来不断地改进、扩 充和提高,已先后推出了十多个版本,成为举世公认的标准大 型流程模拟软件,应用案例数以百万计。全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus 的用户。它以严格的机理模型和先进的技术赢得广大用户的信 赖,它具有以下特性: 1.ASPEN PLUS有一个公认的跟踪记录,在一个工艺过程的制造的整个生命周期中提供巨大的经济效益,制造生命周期包括从研究与开发经过工程到生产。 2.ASPEN PLUS使用最新的软件工程技术通过它的Microsoft Windows 图形界面和交互式客户-服务器模拟结构使得工程生产力最大。

3.ASPEN PLUS拥有精确模拟范围广泛的实际应用所需的工程能力,这些实际应用包括从炼油到非理想化学系统到含电解质和固体的工艺过程。 4.ASPEN PLUS是AspenTech的集成聪明制造系统技术的一个核心部分,该技术能在你公司的整个过程工程基本设施范围内捕获过程专业知识并充分利用。 5.在实际应用中,ASPEN PLUS可以帮助工程师解决快速闪蒸计算、设计一个新的工艺过程、查找一个原油加工装置的故障或者优化一个乙烯全装置的操作等工程和操作的关键问。 Aspen Plus功能 Aspen Plus AspenTech工程套装软件(AES)的一个成员,它是一套非常完整产品,特别对整个工厂、企业工程流程工程实践和优化和

用简便方法计算下面各题

用简便方法计算下面各题 4.8×0.25 2.4×12.5 1.25×1.6×2.5 4.76×99+4.76 58.5×101-58.5 18.7×99+18.7 2.85×99 4.23×101 5.8×102 5.4×10.1 6.8×9.9 2.5×10.2 12.5×(100+8)9.4×10.1 93.7×0.32+93.7×0.68 2.52×101 1.25×0.7+1.25×1.2+12.5 3.6×2.5 7.2×0.2+2.4×1.4 12.7×9.9+1.2710.7×16.1-151×1.07

1、学校图书室长9.7 m,宽5.3 m,用边长0.9 m的正方形瓷砖铺地,70块够吗?(不考虑损耗。) 2、某公司出租车的收费标准如下:收费标准4 km及以内10元,超出4 km (不足1 km按1 km计算)每千米1.2元,某乘客要乘出租车去30 km处的某地,应付车费多少元? 3小强家的固定电话收费标准如下:前3分钟收费0.4元,超过3分钟每分钟收费0.12元(不足1分钟按1分钟计算)。小强给爷爷和奶奶打电话用时8分钟52秒,他这一次通话的费用是多少? 4、某市自来水公司供水收费标准如下:每月用水在12吨及以内,每吨收费2.65元;超出12吨部分,每吨3.8元。王琼家八月份用水18吨,付给自来水公司收费人员100元,应找回多少钱? 5、刘强从家骑车到学校要用0.4小时,刘强的家离学校有多远?如果他改为步行,每小时走4.8km,0.9小时能到学校吗?(骑车:12千米/时) 6、我市某出租车公司租车计费方法如下:乘车路程不超过4km,收费8.5元(起步价);超过部分按每千米1.5元加收费(不足1km,按1km计算)。爸爸和小亮乘车回家的路程为14.1km,付给出租车司机100元,应找回多少元?

Aspen_Plus推荐使用的物性计算方法

做模拟的时候物性方法的选择是十分关键的,选择的十分正确关系着运行后的结果。是一个难点,高难点,而此内容与化工热力学关系十分紧密。 首先要明白什么是物性方法?比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,0.9atm,问如分别下值是多少?1.入口物料的密度,汽相分率。2.换热器的负荷。3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。以上的值怎么计算出来? 好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。并且汽相分率全为1,即该物料是完全气体。由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:1.pv=nRT,2.dH=CpdT. 这就是一种物性方法(aspen plus中称为ideal property method)。简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。那么应该如何计算呢?想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。好在模拟软件已经帮我做了这一步,这就是物性方法。对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。 在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。大体而言,根据液相混合物逸度的计算方法的不同,物性方法可以分为两大类:状态方程法和活度系数法。状态方程法使用状态方程来计算汽相及液相的逸度,而活度系数法使用状态方程计算汽相逸度,但是通过活度系

四年级下册简便方法计算练习题

四年级下册简便方法计算练习题126×6×8 600÷25÷4 55×36+64×55 755-122-78 600÷25 (8+80)×125 125×18 234×80×5 781-499 125×38+125×30 25×32 4004×25 25×16-25×10 25×16×125 (125+16)×8 79×99+79 781×101-781 79×16+79×78+79×6 25×101

789×99 800÷125 1736+403 2000÷125 65+93×65+6×65 9999+999+99+9 158+262+138 375+219+381+225 5001-247-1021-232 (181+2564)+2719 378+44+114+242+222 276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+286 3065-738-1065 899+344

2370+1995 3999+498 1883-398 12×25 75×24 138×25×4 (13×125)×(3×8) (12+24+80)×50 704×25 25×32×125 32×(25+125) 88×125 102×76 58×98 178×101-178 84×36+64×84 75×99+2×75 83×102-83×2 98×199 123×18-123×3+85×123 50×(34×4)×3 25×(24+16) 178×99+178 79×42+79+79×57 7300÷25÷4 8100÷4÷75 16800÷120 30100÷2100 32000÷400 49700÷700

配位聚合

第七章配位聚合 1. 简要解释以下概念和名词: (1)配位聚合和插入聚合 (2)有规立构聚合和立构选择聚合 (3)定向聚合和Ziegler-Natta聚合 (4)光学异构、几何异构和构象异构 (5)全同聚合指数 答:(1)配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(M t)—碳(C)键中增长形成大分子的过程。这种聚合本质上是单体对增长链M t—R键的插入反应,所以又常称插入聚合。 (2)有规立构聚合。按照IUPAC(国际纯粹与应用化学联合会)的规定,有规立构聚合是指形成有规立构聚合物为主的聚合过程。因此任何聚合过程(包括自由基、阴离子、阳离子或配位聚合等)或任何聚合方法(如本体、悬浮、乳液和溶液聚合等),只要它是以形成有规立构聚合物为主,都是有规立构聚合。而引发剂能优先选择一种对映体进入聚合物链的聚合反应,则称为立构选择聚合。(3)定向聚合和有规立构聚合是同义语,二者都是指形成有规立构聚合物为主的聚合过程。Ziegler-Natta聚合通常是指采用Ziegler-Natta型引发剂的任何单体的聚合或共聚合,所得聚合物可以是有规立构聚合物,也可以是无规聚合物。它经常是配位聚合,但不一定都是定向聚合。 (4)分子式相同,但是原子相互联结的方式和顺序不同,或原子在空间的排布方式不用的化合物叫做异构体。异构体有两类:一是因结构不同而造成的异构现象叫结构异构(或称同分异构);二是由于原子或原子团的立体排布不同而导致的异构现象称为立体异构。根据导致立体异构的因素不同,立体异构又分为:光学异构,即分子中含有手性原子(如手性C*),使物体与其镜像不能叠合,从而使之有不同的旋光性,这种空间排布不同的对映体称为光学异构体;几何异构(或称顺、反异构)是指分子中存在双键或环,使某些原子在空间的位置不同,从而导致立体结构不同(例如聚丁二烯中丁二烯单元的顺式和反式构型);光学异构和几何异构均为构型异构。除非化学键断裂,这两种构型是不能相互转化的。构象异构:围绕单键旋转而产生的分子在空间不同的排列形式叫做构象。由单键内旋转造成的立体异构现象叫构象异构。和构型一样,构象也是表示分子中原子在空间的排布形式,不同的是构象可以通过单键的内旋转而相互转变。各种异构体一般不能分离开来,但当围绕单键的旋转受阻时也可以分离。 (5)根据IUPAC建议的命名法,光学异构体的对映体构型用R(右)或S(左)表示。即将手性中

互联网上的物性参数查询

互联网上的物性参数查询 1 化学工程师资源主页 该站点由西弗吉尼亚大学校友Christopher M.A.Haslego维护。该主页有非常丰富的化学工程方面的内容,其中包括一些查找物性数据比较好的站点:(https://www.doczj.com/doc/238936349.html,/physinternetzz.shtml) 1.1 物性数据((https://www.doczj.com/doc/238936349.html,/data.xls) 该数据库是浏览型数据库,含有470多种纯组分的物性数据,如分子量、冰点、沸点、临界温度、临界压力、临界体积、临界压缩、无中心参数、液体密度、偶极矩、气相热容、液相热容、液体粘度、反应标准热、蒸气压、蒸发热等。 1.2 聚合物和大分子的物理性质数据库(https://www.doczj.com/doc/238936349.html,/~athas/databank/intro.html) 该数据库是浏览型数据库。含有200多种线性大分子的物性数据,如熔融温度、玻璃转换温度、热容等。该站点不仅提供物理性质,还提供一些供估计物质物理性质的软件,如PhysProps from G&P Engineering、Prode's thermoPhysical Properties Generator(PPP)等。 1.3 https://www.doczj.com/doc/238936349.html,/~jrm/thermot.html 该站点可查294种组分的热力学性质,还可以根据Peng Robinson状态方程计算纯组分或混合物的性质:包括气液相图、液体与气体密度、焓、热容、临界值、分子量等数据。 1.4 https://www.doczj.com/doc/238936349.html,/ G&P Engineering是一个软件,提供物质的28种物理性质并估算其它18种物理性质。 2 由美国国家标准技术研究院开发的数据库 2.1 标准参考数据库化学网上工具书(https://www.doczj.com/doc/238936349.html,/chemistry/) 该数据库是一种检索型数据库,检索方法非常简单,可通过化学物质名称、分子式、部分分子式、CAS登记号、结构或部分结构、离子能性质、振动与电子能、分子量和作用进行检索,可检索到的数据包括分子式、分子量、化学结构、别名、CAS登记号、气相热化学数据、凝聚相热化学数据、液态常压热容、固态常压热容、相变数据、汽化焓、升华焓、燃烧焓、燃烧熵、各种反应的热化学数据、溶解数据、气相离子能数据、气相红外光谱、质谱、紫外/可见光谱、振动/电子能及其参考文献。 2.2 美国标准技术研究所物理网上工具书(https://www.doczj.com/doc/238936349.html,/) 该站点包括物性常数、原子光谱数据、分子光谱数据、离子化数据、χ-射线、γ-射线数据、放射性计量数据、核物理数据及其它数据库。 3 化学搜索器

配位聚合反应

从聚合热力学上分析,乙烯、丙烯是很有聚合倾向的单体,但是在很长一段时间内,未能将该单体聚合成聚乙烯和聚丙烯,这主要是动力学上的原因。 1938~1939年,英国I.C.I.公司在高温(180~200℃)、高压(180~200MPa)下,以氧作引发剂,使乙烯经自由基聚合制得聚乙烯。在高温下聚合易发生链转移反应,所得聚乙烯带有在空间作无规排布的许多支链,致使其结晶度低、熔点低、密度也低,俗称低密度聚乙烯。根据过程特征,也叫做高压聚乙烯。 1953年德国K. Ziegler等从一次以AlEt3为引发剂从乙烯合成高级烯烃的失败实验出发,意外地发现以乙酰丙酮的锆盐和AlEt3引发时得到的是高分子量的乙烯聚合物,并在此基础上开发了的乙烯聚合的引发剂四氯化钛-三乙基铝(TiCl4-AlEt3),在较低的温度(50~70℃)和较低的压力下,聚合得无支链、高结晶度、高熔点的高密度聚乙烯。1954年,意大利G. Natta以四氯化钛-三乙基铝(TiCl4- AlEt3)作引发剂,使丙烯聚合得等规聚丙烯(熔点175℃),其中甲基侧基在空间等规定向排布。Ziegler-Natta所用的引发剂是金属有机化合物/过渡金属化合物的络合体系,单体配位而后聚合,聚合产物呈定向立构,从这三角度考虑,因而分别有络合聚合、配位聚合、定向聚合之称,但三者有所区别。根据聚合机理的特征,本节采用配位聚合一词。 随后,Goodrich-Gulf公司采用四氯化钛/三乙基铝体系使异戊二烯聚合成高顺式1,4(95%~97%)聚异戊二烯,成功地合成得天然橡胶。几乎同时,Firestone轮胎和橡胶公司用锂或烷基锂作引发剂,也聚合得高顺式1,4(90%~94%)聚异戊二烯。此外,先后来用钛、钴、镍或钨、钼络合引发体系,合成得高顺式1,4(94%~97%)聚丁二烯橡胶(简称顺丁橡胶)。 虽然早在1947年,C. E. Schildknecht以BF3(OC2H5)2作引发剂,于丙酮中-78℃下,已使丁基乙烯醚聚合成立构规整聚合物,但Ziegler-Natta在络合引发体系、配位聚合机理、有规立构聚合物的合成、微结构、性能等方而研究的成就,在高分子科学领域内起着里程碑的作用。因而获得了诺贝尔奖金。 过渡金属化合物/金属有机化合物的一系列络合体系可以统称为Ziegler-Natta引发剂,目前已用来生产多种塑料和橡胶,例如高密度聚乙烯、等规聚丙烯、全同聚1-丁烯、全同聚4-甲基-1-戊烯、反式l,4-聚异戊二烯等可用作塑料,顺式1,4-聚丁二烯、顺式1,4聚异戊二烯、乙丙共聚物、反式聚环戊烯等可用作橡胶。其总年产量高达几千万吨。因此,研究配位聚合具有重要的理论和实际意义。

利用aspen plus进行物性参数的估算

1 纯组分物性常数的估算 1.1、乙基2-乙氧基乙醇物性的输入 由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。 已知: 最简式:(C6H14O3) 分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH) 沸点:195℃ 1.2、具体模拟计算过程 乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。 为估计纯组分物性参数,则需 1. 在 Data (数据)菜单中选择Properties(性质) 2. 在 Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入) 3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数) 4. 单击 Pure Component(纯组分)页 5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数 6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计

选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性 7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。 具体操作过程如下: 1、打开一个新的运行,点击Date/Setup 2、在Setup/Specifications-Global页上改变Run Type位property Estimation

一些计算化学相关的免费的在线数据库、分子结构库及工具

一些计算化学相关的免费的在线数据库、分子结构库及工具 1 在线信息数据库部分 √ SDBS光谱数据库:http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi 简介:很好的有机化合物光谱数据库,包含六类光谱:EI-MS、FT-IR、H-NMR、C13-NMR、ESR、Raman。含3万余个化合物,其中以商业化学试剂为主,约2/3是6碳至16碳的化合物。数据大部分是其自行测定的,并不断添加。可以通过化合物、分子式、分子量、CAS/SDBS 注册号、元素组成、光谱峰值位置/强度方式搜索。 生物核磁共振数据库:http://bmrb.protein.osaka-u.ac.jp/deposit CRYSTAL程序基组数据库:https://www.doczj.com/doc/238936349.html,/~mdt26/crystal.html √ 计算化学比较和基准数据库(CCCBDB):https://www.doczj.com/doc/238936349.html, 简介:此数据库包括各种量子化学方法、各种基组下对不同分子的各种属性的计算结果,也包含实验数据。可用来对比不同方法计算结果优劣,此数据库内容在不断增加。 √ 量化频率计算校正因子:https://www.doczj.com/doc/238936349.html,/vibscale.asp 简介:实际上就是CCCBDB的一个子页面,比较重要故单独列出。 IUPAC金属络合物稳定常数数据库:https://www.doczj.com/doc/238936349.html, 注:需要付费,可免费下载试用版。 √ NIST化学数据库:https://www.doczj.com/doc/238936349.html,/chemistry 简介:是美国国家标准与技术研究院NIST的基于Web的物性数据库。输入分子查找条件,可获得分子量、CAS登记号、各种热力学数据、谱图等信息,部分分子包含3D结构。 RESP ESP charge DDataBase(REDDB):https://www.doczj.com/doc/238936349.html,/REDDB/index.php 简介:分子的RESP电荷的数据库 Uppsala Electron Density Server:http://eds.bmc.uu.se/eds 简介:用于评价蛋白质数据库中晶体结构电子密度。输入pdb ID(比如1cbs)进入后可以对各种内容做图。点击EDS Summary下面的Go按钮可以自动启动基于java的电子密度图可视化程序观看电子密度图,注意不要开启浏览器的弹出窗口过滤。 √ 上海有机所化学专业数据库:http://202.127.145.134/scdb/default.htm 简介:十分有用的数据库,免费注册。可获得分子的红外、质谱谱图、结构、物化性质、毒性、生物活性以及相关反应等。还包括中英互译、药品名称检索等功能。 √ EMSL基组数据库:https://https://www.doczj.com/doc/238936349.html,/bse/portal

简便计算练习题集锦

小学数学五年级上册简便计算练习1 请用简便方法计算下列各题 0.25×0.28 0.125×3.2×2.5 35×40.2 0.25×4÷0.25×4 3.5×9.9 3.5×99+3.5 3.5×101-3.5 3.5×9.9+3.5×0.1 3.5×2.7+35×0.73 3.5×2.7-3.5×0.7 (32+5.6)÷0.8 3.5÷0.6-0.5÷0.6 4.9÷3.5 7÷0.25÷4 7÷0.125 ÷8 7.35÷(7.35×0.25) 7.35÷(7.35÷0.25) 7.325-( 5.325+1.7) 3.29+0.73+2.27 3.29-0.73-2.27 7.5+2.5-7.5+2.5 7.325-3.29-3.325 7.325-(5.325+1.7) 7.325-(5.325-1.7)

3.29+0.73-2.29+2.27 3.29×0.25×4 0.125×8.8 63.4÷2.5÷0.4 4.9÷1.4 3.9÷(1.3×5)(7.7+1.54)÷0.7 2.5×2.4 2.7÷45 0.35×1.25×2×0.80.1×32.415÷0.25 0.86×15.7-0.86×14.7 2.4×102 14-7.32-2.68 2.64+8.67+7.36+11.33 2.31×1.2×0.5 (2.5-0.25)×0.49.16×1.5-0.5×9.16 3.6-3.6×0.5 0.2×7.60.85×1990.25×8.5×4

0.25×36 0.125×3.2×2.5 35×40.2 (0.5+x)+x=9.8÷2 x+2x+18=78 1.5(x+1.6)=3.6 2(X+X+0.5)=9.8 (200-x)÷5=302(x-3)=5.8 25000+x=6x (x-140)÷70=465x+7=42 3200=450+5X+X 0.1(x+6)=3.3×0.49x+4×2.5=91 X-0.8X=6 4(x-5.6)=1.6 4.2x+2.5x=134

化合物物性查询网站

1.物性数据(https://www.doczj.com/doc/238936349.html,/data.xls) 该数据库是浏览型数据库,含有470多种纯组分的物性数据,如分子量、冰点、沸点、临界温度、临界压力、临界体积、临界压缩、无中心参数、液体密度、偶极矩、气相热容、液相热容、液体粘度、反应标准热、蒸气压、蒸发热等。 2.热力学性质(https://www.doczj.com/doc/238936349.html,/~jrm/thermot.html) 该站点可查294种组分的热力学性质,还可以根据Peng Robinson状态方程计算纯组分或混合物的性质:包括气液相图、液体与气体密度、焓、热容、临界值、分子量等数据。 3.标准参考数据库化学网上工具书(https://www.doczj.com/doc/238936349.html,/chemistry/) 该数据库是一种检索型数据库,检索方法非常简单,可通过化学物质名称、分子式、部分分子式、CAS 登记号、结构或部分结构、离子能性质、振动与电子能、分子量和作用进行检索,可检索到的数据包括分子式、分子量、化学结构、别名、CAS登记号、气相热化学数据、凝聚相热化学数据、液态常压热容、固态常压热容、相变数据、汽化焓、升华焓、燃烧焓、燃烧熵、各种反应的热化学数据、溶解数据、气相离子能数据、气相红外光谱、质谱、紫外/可见光谱、振动/电子能及其参考文献。 4.美国标准技术研究所物理网上工具书(https://www.doczj.com/doc/238936349.html,/) 该站点包括物性常数、原子光谱数据、分子光谱数据、离子化数据、χ-射线、γ-射线数据、放射性计量数据、核物理数据及其它数据库。 5.sigma-aldrich手册(https://www.doczj.com/doc/238936349.html,/saw ... +Bulk?EditDocument) 该数据库是一种可检索数据库,可通过产品名称、全文、分子式、CAS登记号等进行检索,检索的结果包括产品名称、登记号、分子式、分子量、贮存温度、纯度、安全数据等。 6.美国国立医学图书馆毒性化学物质数据(HSDB)https://www.doczj.com/doc/238936349.html,/servlets/simple-search?1.5.0 可通过化学物质名称/别名、CAS登记号、化学物质名称的一部分进行检索,检索结果包括化学物质名称、登记号、同义词、分子式、RTECS号、运输方式、所含杂质等数据。 7、化学危险品数据库(Hazardous Cehmicals Database), https://www.doczj.com/doc/238936349.html,/erd/ 8、一个检索FDA历年批准药品的好网站。 https://www.doczj.com/doc/238936349.html,/patient/drugs/drugls03.html 9、有机化合物数据库(Organic Compounds Database), https://www.doczj.com/doc/238936349.html,/chemistry/cmp/cmp.html 10、查询物质结构性质等的网站: https://www.doczj.com/doc/238936349.html,/ https://www.doczj.com/doc/238936349.html,/chemidplus/chemidlite.jsp https://www.doczj.com/doc/238936349.html,/cn/psear ... -66-9+&sel=dict 11、化合物基本性质数据库(CS ChemFinder), https://www.doczj.com/doc/238936349.html,/ 12、可以免费查询化合物的物化性质。https://www.doczj.com/doc/238936349.html, 13、免费图谱网站:www.aist.go.jp/RIODB/SDBS/menu-e.html 14、化合物英文缩写查询网站:http://www.chemie.fu-berlin.de/cgi-bin/abbscomp 15、CAS和性质等查询:https://www.doczj.com/doc/238936349.html,/Chem/ChemMain.html 16、Sigma公司网站:https://www.doczj.com/doc/238936349.html, h++ps://https://www.doczj.com/doc/238936349.html,/cgi ... edSearch.formAction 17、专门查杂志所属数据库网站:https://www.doczj.com/doc/238936349.html, 查询格式支持:全名查询,缩写查询。非常的方便!!! 18、化工资源网:https://www.doczj.com/doc/238936349.html,/fj/ 19、物理化学参数搜索或查找https://www.doczj.com/doc/238936349.html,/cuu/Constants/index.html

小学四年级简便方法计算题

内容:加法运算定律第一课时 基础大本营 一、在里填数字。 185+ = 45+185 273+ = 49+ +360=360+ 二、运用加法交换律填上合适的数。 500+400=______+______ 48+______=______+52 53+______=______+69 强化空间站 三、用自己喜欢的方式表示加法交换律 1、字母表示法: 2、符号表示法: 3、其它表示法: 三、计算下面各题,并且用加法交换律验算 127+86 1195+2768 4598+1181 7652+5842 269+589 3658+1240 作业:内容:加法运算定律第二课时 班级:姓名: 基础大本营 一、把下列式子填写完整。 (85+45)+29 85+(45+29)(173+128)+72 173+ (128+72)(甲+乙)+丙=甲+(______+______)(A+B)+C=______+(______+______)强化空间站 二、用自己喜欢的方式表示加法的结合律。 1、字母表示法:

2、符号表示法: 3、其它表示法: 三、用加法的结合律简算下列各题。 827+15+85 119+81+259 368+29+32 60+255+40 282+41+159 548+52+468 探究俱乐部 四、下面算式分别运用了哪些运算定律。 47+18=18+74 _______________________ 37+45=35+47 _______________________ 31+15+69=31+69+15 _______________________ 56+72+28=56+(72+28)_______________________ 24+42+76+58=(24+76)+(42+58)_______________________ 作业:内容:加法运算定律第三课时 班级:姓名: 基础大本营 一、填空题。 1、a+b= b + a表示加法的()。 2、用字母表示加法的结合律()。 3、356+28+72=356+(_______+ 72 ) 4、45+293+107=45+(_______+_______) 强化空间站 648+473+527 2049+158+842 39+(61+75)+25 728+(272+986) 135+39+65+11 126+(54+74+46) 13+46+55+54+87 178+350+22 286+54+46+4

利用aspenplus进行物性参数的估算

利用aspen-plus进行物性参数的估算

————————————————————————————————作者:————————————————————————————————日期: ?

1 纯组分物性常数的估算 1.1、乙基2-乙氧基乙醇物性的输入 由于AspenPlus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。 已知: 最简式:(C6H14O3) 分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH) 沸点:195℃ 1.2、具体模拟计算过程 乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspenplus软件的Estimation Input PureComponent(估计输入纯组分) 对纯组分物性的这些参数进行估计。 为估计纯组分物性参数,则需 1. 在Data (数据)菜单中选择Properties(性质) 2. 在DataBrowser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入) 3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数) 4. 单击 Pure Component(纯组分)页 5.在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数

相关主题
文本预览
相关文档 最新文档