当前位置:文档之家› 高中数知识讲解_函数的极值与最值提高

高中数知识讲解_函数的极值与最值提高

高中数知识讲解_函数的极值与最值提高
高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值

【学习目标】 1. 理解极值的概念和极值点的意义。

2. 会用导数求函数的极大值、极小值。

3. 会求闭区间上函数的最大值、最小值。

4. 掌握函数极值与最值的简单应用。

【要点梳理】 要点一、函数的极值

(一)函数的极值的定义:

一般地,设函数)(x f 在点0x x =及其附近有定义,

(1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作

)(0x f y =极大值;

(2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作

)(0x f y =极小值.

极大值与极小值统称极值.

在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释:

由函数的极值定义可知:

(1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小.

(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.

(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.

(二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

③求方程0)(='x f 的根;

④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)

要点诠释:

①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.即0()0f x '=是可导函数)(x f 在点0x 取得极值的必要非充分条件.例如函数y=x 3

,在x=0处,'(0)0f =,但x=0不是函数的极值点.

②可导函数)(x f 在点0x 取得极值的充要条件是0()0f x '=,

且在0x 两侧)(x f '的符号相异。

要点二、函数的最值

(一) 函数的最大值与最小值定理

若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连续的函数)(x f 不一定有最大值与最小值.如1

()(0)f x x x

=

>. 要点诠释:

①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 (二)求函数最值的的基本步骤:

若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:

(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;

(3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数

()y f x =在闭区间],[b a 上的最小值.

要点诠释:

①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可。

②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值. (三)最值与极值的区别与联系

①函数的最大值和最小值是比较整个定义域上的函数值得出的(具有绝对性),是整个定义域上的整体性概念。最大值是函数在整个定义域上所有函数值中的最大值;最小值是函数在整个定义域上所有函数值中的最小值.函数的极大值与极小值是比较极值点附近两侧的函数值而得出的(具有相对性),是局部的概念;

②极值可以有多个,最大(小)值若存在只有一个;极值只能在区间内取得,不能在区间端点取得;最大(小)值可能是某个极大(小)值,也可能是区间端点处的函数值;

③有极值的函数不一定有最值,有最值的函数未必有极值,极值可能成为最值. 要点三、函数极值与最值的简单应用

1. 不等式恒成立,求参数范围问题。

一些含参不等式,一般形如(,)0f x m >,

若能隔离参数,即可化为:()()m g x m g x ><(或)

的形式。若其恒成立,则可转化成max max ()()m g x m g x ≥≤(或),从而转化为求函数()g x 的最值问题。

若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥。所以仍为求函数()g x 的最值问题,只是再求最值时可能需要对参数进行分类讨论。 2. 证不等式问题。

当所要证的不等式中只含一个未知数时,一般形式为()()f x g x >,则可化为()()0f x g x ->,一般设()()()F x f x g x =-,然后求()F x 的最小值min ()F x ,证min ()0F x >即可。所以证不等式问题也可转化为求函数最小值问题。

3. 两曲线的交点个数问题(方程解的个数问题)

一般可转化为方程()()f x g x =的问题,即()()0f x g x -=的解的个数问题,

我们可以设()()()F x f x g x =-,然后求出()F x 的极大值、极小值,根据解的个数讨论极大值、极小值与0的大小关系即可。所以此类问题可转化为求函数的极值问题。 【典型例题】

类型一: 求函数的极值 例1. 下列函数的极值。 (1)

.)(23a x x x x f +--= (2)22()21

x

f x x =-+。

【解析】(I)'()f x =32x -2x -1

若'()f x =0,则x ==-1

3

,x =1 当x 变化时,'()f x ,()f x 变化情况如下表:

∴()f x 的极大值是()327

f a -=+,极小值是(1)1f a =-

(2)函数的定义域为R 。

222222

2(1)42(1)(1)

'()(1)(1)

x x x x f x x x +--+==-++。 令'()0f x =,得x=―1或x=1。

当x 变化时,'()f x ,()f x 变化状态如下表:

由上表可以看出,当x=―1时,函数有极小值,且(1)232

f -=-=-, 当x=时,函数有极大值,且2

(1)212

f =

-=-。 【总结升华】 解答本题时应注意0'()0f x =只是函数()f x 在x 0处有极值的必要条件,如果再加

上x 0左右导数的符号相反,方能断定函数在x 0处取得极值,反映在解题上,错误判断极值点或漏掉极值点是经常出现的失误。

举一反三:

【变式1】 求下列函数的极值:

(1)3

()126f x x x =-++;

(2)32

2

()2(1)

x f x x -=-。 【答案】(1)2

'()3123(2)(2)f x x x x =-+=-+-。

令'()0f x =,解得x 1=―2,x 2=2。

当x 变化时,'()f x ,()f x 的变化情况如下表:

当x=―2时,()f x 有极小值,并且,()(2)10f x f =-=-极小值, 而当x=2时,()f x 有极大值,并且,()(2)22f x f ==极大值。 (2)函数定义域为(-∞,1)∪(1,+∞)。

∵23

(2)(1)'()2(1)x x f x x -+=-,

令'()0f x =得x 1=―1,x 2=2。

当x 变化时,'()f x ,()f x 的变化情况如下表:

故当x=―1时,8

y =-

最大值。 【变式2】 讨论函数43

210()213

f x x x x =-++(x ∈R )的单调性并求极值.

【答案】3

2

'()41042(21)(2)f x x x x x x x =-+=--

令'()0f x =,解得x 1=0, x 2=

1

2

, x 3=2 。 当x 变化时,'()f x ,()f x 变化状态如下表:

由上表可以看出,()f x 在(-∞,0)和(2,2)上为减函数,在(0,2

)和(2,+∞)上 为增函数。

当x=0时,函数有极小值(0)1f =; 当x=2时,函数有极小值5

(2)3

f =-

当x=

1

2

时,函数有极大值

155

()

248

f=。

【变式3】函数()

f x的定义域为区间(a,b),导函数'()

f x在(a,b)内的图如图所示,则函数()

f x

在(a,b)内的极小值有()

A.1个 B.2个C.3个 D.4个

【答案】由极小值的定义,只有点B是函数()

f x的极小值点,故选A。

类型二:函数极值的逆向应用

例 2.已知函数32

()

f x ax bx cx

=++在点x0处取得极大值5,其导函数

'()

y f x

=的图象经过点(1,0),(2,0),如图所示。求:

(1)x0的值;

(2)a,b,c的值。

【思路点拨】观察图像的正负和零点。

【解析】(1)由图象可知,在(―∞,1)上'()0

f x>,在(1,2)上'()0

f x<,在(2,+∞)上'()0

f x>,

故()

f x在(-∞,1)和(2,+∞)上递增,在(1,2)上递减。

因此()

f x在x=1处取得极大值,所以x0=1。

(2)方法一:2

'()32

f x ax bx c

=++,

由'(1)0

f=,'(2)0

f=,(1)5

f=,

320

1240

5

a b c

a b c

a b c

++=

?

?

++=

?

?++=

?

,解得

2

9

12

a

b

c

=

?

?

=-

?

?=

?

方法二:设2

'()(1)(2)32

f x m x x mx mx m

=--=-+。

又2

'()32

f x ax bx c

=++,

所以

3

m

a=,

3

2

b m

=-,c=2m,

32

3()232

m f x x mx mx =

-+, 由(1)5f =,即2

2533m m m -+=,

得m=6,所以a=2,b=―9,c=12。 【总结升华】

(1)由导函数的图象求极值点,先看图象与x 轴的交点,其次看这点左右两侧的导数值的正负。

(2)注意条件“在点x 0处的极大值是5”的双重条件,即0'()0f x =,0()5f x =。 举一反三:

【变式】已知函数f(x)=x 3

+ax 2

+bx+a 2

在x=1处有极值10,求a,b 的值. 【答案】2

'()32,f x x ax b =++

依题意得方程组2

320

110

a b a b a ++=??+++=? 解得34

311

a a

b b =-=???

?

==-??或. 当a=-3,b=3时,2

'()363,f x x x =++

令'()0f x =得x=1.

显然a=-3, b=3不合题意,舍去.

当a=4, b=-11时,f ′(x)=3x 2

+8x-11=(x-1)(3x+11) 令'()0f x =得11

x -

=或 x=1.

f(x)在x=1处有极小值10,合题意,

∴a=4, b=-11.

类型三:求函数的最值

【高清课堂:函数的极值与最值 370875 例题2】

例3、求函数()3

2

21f x x x =-+在区间[-1,2]上的最大值与最小值。

【解析】

解法一: ()()()2

43434,00,03f x x x x x f f ??

'''=-=-==

???

由上表可知,当x=-1时,f(x)取最小值-2;当x=2时,f(x)取最大值1. ∴ 函数()3

2

21f x x x =-+在区间[-1,2]上的最大值为1,最小值为-2。

解法二:()()()2

43434,00,03f x x x x x f f ??

'''=-=-==

???

, ∵f(-1)=-2,f(0)=1,f(

43)=5

27

,f(2)=1, ∴ 函数()3

2

21f x x x =-+在区间[-1,2]上的最大值为1,最小值为-2。 【总结升华】1.解题格式要求:

ⅰ. 对于()f x '分解因式,写出相应方程的根;

ⅱ. 列表格,表格反映出()(),f x f x '随x 的变化情况,必须列出极值点,若求最值时,还要列出端点的函数值。

ⅲ. 一般要注明x 取何值时f(x)取得最大最小值。

2.当方法熟悉后,可以不再列表. 也就是说在求函数的最值时,实际不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可。

举一反三:

【变式】求函数y=x 4―2x 2+5在区间[―2,2]上的最大值与最小值。 【答案】

先求导数,得y '=4x 3―4x 。 令y '=0即4x 3―4x=0, 解得x 1=―1,x 2=0,x 3=1。

类型四:极值与最值的应用----证不等式问题。

例4. 求证:当x >0时,2

ln(1)2

x x x +>-。

【思路点拨】移项,化为等式左边为函数式的形式。

【解析】 设2

()ln(1)(1)2

x f x x x x =+-+>-, 2

1'()1011

x f x x x x =-+=>++,

所以()f x 在(―1,+∞)上为增函数, ∴当x >0时,()(0)0f x f >=,

即x >0时,2

ln(1)2

x x x +>-。

【总结升华】 利用导数可以证明含有高次式、指数式、对数式等类型的不等式,在证明的过程中,首先

要注意变量的取值范围,再正确地构造出函数,最后再求出函数的最值。 举一反三:

【变式】 当0x >时,证明不等式:()2

1ln 12

x x x -

<+。 【答案】 设()()()22

21111ln 112111

x x f x x x x f x x x x x --'=--+?=--==-+++,

0x >,()100x f x '+>?<,则函数()f x 在()0,+∞上单调减函数,

()()00f x f <=

∴()2

1ln 12

x x x -

<+成立。 类型五:极值与最值的应用----不等式恒成立,求参数范围问题。

例5.设函数f(x)=(x +1)ln(x +1),若对所有的x ≥0,都有f(x)≥ax 成立,求实数a 的取值范围. 【思路点拨】或者化为左侧为函数式的形式,或者分离参数。 【解析】

解法一:令g(x)=(x +1)ln(x +1)-ax ,

对函数g(x)求导数:g′(x)=ln(x +1)+1-a 令g′(x)=0,解得x =e

a -1

-1,

(i)当a ≤1时,对所有x >0,g′(x)>0,所以g(x)在[0,+∞)上是增函数, 又g(0)=0,所以对x ≥0,都有g(x)≥g(0), 即当a ≤1时,对于所有x ≥0,都有f(x)≥ax .

(ii)当a >1时,对于0<x <e a -1

-1,g′(x)<0,所以g(x)在(0,e

a -1

-1)是减函数,

又g(0)=0,所以对0<x <e

a -1

-1,都有g(x)<g(0),

即当a >1时,对所有的x ≥0,都有f(x)≥ax 成立. 综上,a 的取值范围是(-∞,1].

解法二:令g(x)=(x +1)ln(x +1)-ax ,于是不等式f(x)≥ax 成立

即为g(x)≥g(0)成立

对函数g(x)求导数:g′(x)=ln(x +1)+1-a 令g′(x)=0,解得x =e a -1

-1,

当x > e

a -1

-1时,g′(x)>0,g(x)为增函数,

当-1<x <e a -1

-1,g′(x)<0,g(x)为减函数,

所以要对所有x ≥0都有g(x)≥g(0)充要条件为e a -1

-1≤0.

由此得a ≤1,即a 的取值范围是(-∞,1].

【总结升华】一般首选隔离参数法,转化为求不含参数的函数的最值问题;若不能隔离,则化为求含参函数的最值问题,往往需要对参数进行分类讨论才能得出最值。 举一反三:

【变式】 已知函数32

1()2

f x x x bx c =-

++。 (1)若()f x 图象有与x 轴平行的切线,求b 的取值范围;

(2)若()f x 在x=1处取得极值,且x ∈[―1,2]时,2

()f x c <恒成立,求c 的取值范围。 【答案】(1)2

'()3f x x x b =-+,()f x 的图象上有与x 轴平行的切线,则'()0f x =有实数解,

即方程3x 2―x+b=0有实数解,∴Δ=1―2b ≥0,解得112

b ≤。 (2)由题意知x=1是方程3x 2―x+b=0的一个根,

设另一根为x 0,则00113

13x b x ?

+=?????=??

,∴0232x b ?=-???=-?,

∴32

1()22

f x x x x c =--+,2'()32f x x x =--。 当21,3x ??

∈--

???

,'()0f x >; 当2,13x ??

∈-

???

时,'()0f x <; 当x ∈(1,2)时,'()0f x >。

∴当23x =-

时,()f x 有极大值2227c +。 又1

(1)2

f c -=+,(2)2f c =+。

∴当x ∈[-1,2]时,()f x 的最大值为(2)2f c =+。 又∵当x ∈[-1,2]时,2

()f x c <恒成立, ∴c 2>2+c ,解得c <-1或c >2。

故c 的取值范围是(-∞,-1)∪(2,+∞)。

类型六:极值与最值的应用----两曲线的交点个数问题(方程解的个数问题) 例6. 已知函数3

()31,0f x x ax a =--≠ (1)求()f x 的单调区间;

(2)若()f x 在1x =-处取得极值,直线y=my 与()y f x =的图象有三个不同的交点,求m 的取值范围 【思路点拨】(2)中,先利用第一个条件求出函数式,再结合图像。 【解析】(1)'

2

2

()333(),f x x a x a =-=-

当0a <时,对x R ∈,有'

()0,f x > 当0a <时,()f x 的单调增区间为(,)-∞+∞

当0a >时,由'

()0f x >解得x

由'

()0f x <解得x <<

当0a >时,()f x 的单调增区间为(,)-∞+∞;()f x 的单调减区间为(。 (2)因为()f x 在1x =-处取得极大值, 所以'

2

(1)3(1)30, 1.f a a -=?--=∴= 所以3

'

2

()31,()33,f x x x f x x =--=- 由'

()0f x =解得121,1x x =-=。

由(1)中()f x 的单调性可知,()f x 在1x =-处取得极大值(1)1f -=, 在1x =处取得极小值(1)3f =-。

因为直线y m =与函数()y f x =的图象有三个不同的交点,又(3)193f -=-<-,(3)171f =>,

结合()f x 的单调性可知,m 的取值范围是(3,1)-。

【总结升华】两曲线的交点个数问题,实际上是方程解的个数问题,而本质上是函数的极值问题。 举一反三:

【变式】 已知2

()210()f x x x x R =-∈,是否存在实数,m 使得方程37

()0f x x

+

=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由。

【答案】 方程37

()0f x x

+

=等价于方程32210370.x x -+= 设3

2

()21037,h x x x =-+则2

'()6202(310).h x x x x x =-=-

当10

(0,

)3x ∈时,'()0,()h x h x <是减函数; 当10

(,)3

x ∈+∞时,'()0,()h x h x >是增函数。

101

(3)10,()0,(4)50,327

h h h =>=-<=>

∴方程()0h x =在区间1010

(3,),(,4)33

内分别有唯一实数根,

而在区间(0,3),(4,)+∞内没有实数根, 所以存在唯一的自然数3,m =使得方程37

()0f x x

+=在区间(,1)m m +内有且只有两个不同的实数根。

高中物理必修一常考题型+例题及答案讲课稿

高中物理必修一常考题型 一、直线运动 1、xt图像与vt图像 2、纸带问题 3、追及与相遇问题 4、水滴下落问题(自由落体) 二、力 1、滑动摩擦力的判断 2、利用正交分解法求解 3、动态和极值问题 三、牛顿定律 1、力、速度、加速度的关系; 2、整体法与隔离法 3、瞬时加速度问题 4、绳活结问题 5、超重失重 6、临界、极值问题 7、与牛顿定律结合的追及问题 8、传送带问题 9、牛二的推广 10、板块问题 11、竖直弹簧模型

一、直线运动 1、xt图像与vt图像 2014生全国(2) 14.甲乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图像如图所示。 在这段时间内 A.汽车甲的平均速度比乙大 B.汽车乙的平均速度等于 22 1v v C.甲乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 2016全国(1) 21.甲、乙两车在平直公路上同向行驶,其v-t图像如图所示。已知两车在t=3s时并排行驶,则 A.在t=1s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C.两车另一次并排行驶的时刻是t=2s D.甲、乙两车两次并排行驶的位置之间沿公路方向的距离 为40m 2、纸带问题 【2012年广州调研】34.(18分)(1) 用如图a所示的装置“验证机械能守恒定律”①下列物理量需要测量的是__________、通过计算得到的是_____________(填写代号)A.重锤质量B.重力加速度 C.重锤下落的高度 D.与下落高度对应的重锤的瞬时速度②设重锤质量为m、打点计时器的打点周期为T、重力加速度为g.图b是实验得到的一条纸带,A、B、C、D、E为相邻的连续点.根据测得的s1、s2、s3、s4写出重物由B点到D点势能减少量的表达式__________,动能增量的表达式__________.由于重锤下落时要克服阻力做功,所以该实验的动能增量总是__________(填“大于”、“等于”或“小于”)重力势能的减小量

高等数学第九章多元函数极值典型问题

1 设函数2 2(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常 数a ,并确定极值的类型. 2 求函数2 2 z x xy y =-+在区域1x y +≤上的最大值和最小 值. 3(04研) 设(,)z z x y =是由2 226102180x xy y yz z -+--+=确定的函 数,求(,)z z x y =的极值点和极值. 4 求函数23 u xy z =在条件x y z a ++=(其中,,,a x y z R + ∈)下的条 件极值.

1 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型. 分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题. 解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1) (1,1) (1,1)(1,1) 40220f x a y x f xy y ----??=++=??????=+=???, 因此有410a ++=,即5a =-. 因为 22 (1,1) 4f A x -?==?,2(1,1) (1,1) 22f B y x y --?= ==-??, 22 (1,1)(1,1) 22f C x y --?===?, 2242(2)40AC B ?=-=?--=>,40A =>, 所以,函数(,)f x y 在(1,1)-处取得极小值. 2 求函数22z x xy y =-+在区域1x y +≤上的最大值和最小值. 分析 这是多元函数求最值的问题.只需要求出函数在区域内可能的极值点及在区域边界上的最大值和最小值点,比较其函数值即可. 解 由 20z x y x ?=-=?,20z y x y ?=-=?解得0x =,0y =,且(0,0)0z =. 在边界1,0,0x y x y +=≥≥上, 22()313(1)133z x y xy x x x x =+-=--=-+, 它在[0,1]上最大值和最小值分别为1和 1 4 ; 同理,在边界1,0,0x y x y +=-≤≤上有相同的结果. 在边界1,0,0x y x y -=-≤≥上, 22()1(1)1z x y xy x x x x =-+=++=++,

高中物理中的临界与极值问题

高中物理中的临界与极值问题 宝鸡文理学院附中何治博 一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。 高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等

词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。从以往试题的内容来看,对于物理临界问题的考查主要集中在力和运动的关系部分,对于极值问题的考查则主要集中在力学或电学等权重较大的部分。 二、常见临界状态及极值条件解答临界与极值问题的关键是寻找相关条件,为了提高解题速度,可以理解并记住一些常见的重要临界状态及极值条件: 1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角 为0 45 2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时 刻 3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰 好不再滑下)—μ=tgθ。 4.物体刚好滑动——静摩擦力达到最大值。

高中物理中的极值问题

物理中的极值问题 武穴育才高中 刘敬 随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。 极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。 1.配方法:a b ac a b x a c bx ax 44)2(2 22 -++=++ 当a >0时,当2b x a =-时,y min =a b a c 442- 当a <0时当2b x a =-时,y max =a b a c 442- 2.判别式法:二次函数令0≥?,方程有解求极值. 3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab 4.三角函数法:θθcos sin b a y +==)sin(22θ?++b a 当090=+θ?,22max b a y += 此时,b a arctan =θ 也可用求导法:b a b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值. 6.用图象法求极值 通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。 7.几何作图法 研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。 研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。 例1.木块以速度v 0=12m /s 沿光滑曲面滑行,上升到顶部水平的跳板后飞出,求跳板高度h 多大时, 木块飞行的水平距离s 最大?最大水平距离s 是多少?(g=10 m /s 2)。 解:2202121mv mgh mv =+, vt s =得:22022020)4()4(22)2(g v h g v g h gh v s --=-=

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

“图解法解二元函数的最值问题”

“图解法解二元函数的最值问题” 教学课例 昌平区第一中学 回春荣

“图解法解二元函数的最值问题”教学课例 一、设计意图: 在新课程背景下的教学中,课堂上我们应是以“问”的方式来启发学生深思,以“变”的方式诱导学生灵活善变,使整堂课有张有弛,真正突出了学生是教学活动的主体的原则。本节内容是在学习了不等式、直线的方程的基础上,利用不等式和直线的方程有关知识展开的,它是对二元函数的深化和再认识、再理解,是直线、圆和不等式的综合运用,同时它又对理解下一章“圆锥曲线”的相关内容有着很好的帮助作用,所以这一部分内容起到了一个巩固旧知识,熟练方法,理解新知识的承上启下的作用。图解法在解决函数求最值的问题上有着广泛的应用,这节课为学生提供了广阔的思维空间,对培养学生自主探索、合作研究、主动发现问题、分析问题,创造性地解决问题的能力有着丰富的素材。教学上通过设置问题情境、多媒体展示,学生动手操作,使学生在“做中学”,学生在实际操作中,既发展了学生的个性潜能,又培养了他们的合作精神。 二、本课教学目标 1、知识与技能:通过识图、画图,学会解决有约束条件的二元函数最值问题的处理方法——图解法。 2、过程与方法:经历约束条件为二元一次不等式组,目标函数为具有截距、斜率、距离等几何意义的二元函数的最值问题的探究过程,提炼出解决这类问题的方法——以图定位,以算定量。 3、情感态度与价值观:通过对有约束条件的二元函数的最值问题的探究,培养学生科学严谨的治学态度,勇于探索、敢于创新的学习精神,同时感受合作交流的快乐。 三、教学过程与教学资源设计 (一)、教学内容:图解法解二元函数的最值问题 (二)、教学设计流程图:

高中物理中的极值专题

物理中的极值问题 1.物理中的极值问题: 物理试题常出现如:至少、最大、最短、最长等物理量的计算,这类问题就属于极值问题。其处理是高考试题中是常见的,本专题以此作为重点,试图找出处理该问题的一般方法。 2.物理中极值的数学工具: (1)y=ax 2 +bx+c 当a >0时,函数有极小值 y m in =a b a c 442 - 当a <0时,函数有极大值 y m ax =a b a c 442 - (2)y= x a +b x 当ab =x 2 时,有最小值 y m in =2ab (3)y=a sin θ+b cos θ=22b a + sin ()θ?+ 当θ?+=90°时,函数有最大值。 y m ax =22b a + 此时,θ=90°-arctan a b (4)y =a sin θcon θ= 21a sin2θ 当θ=45°时,有最大值:y m ax =2 1a 3.处理方法: (1)物理型方法: 就是根据对物理现象的分析与判断,找出物理过程中出现极值的条件,这个分析过程,既可以用物理规律的动态分析方法,也何以用物理图像发热方法(s-t 图或v-t 图)进而求出极值的大小。该方法过程简单,思路清晰,分析物理过程是处理问题的关键。 (2)数学型方法: 就是根据物理现象,建立物理模型,利用物理公式,写出需求量与自变量间的数学函数关系,再利用函数式讨论出现极值的条件和极值的大小。 4.自主练习 1.如图所示,在倾角为300的足够长的斜面上有一质量为m 的物体,它受到沿斜面方向的力F 的作用。力F 可按图(a )、(b )(c )、(d )所示的四种方式随时间变化(图中纵坐标是F 与mg 的比值,力沿斜面向上为正)。已知此物体在t =0时速度为零,若用v 1、v 2 、v 3 、v 4分别表示上述四种受力情况下物体在3秒末的速率,则这四个速率中最大的是( ) A 、v 1 B 、v 2 C 、v 3 D 、v 4 2.一枚火箭由地面竖直向上发射,其v ~t 图像如图所示,则 A .火箭在t 2—t 3时间内向下运动 B .火箭能上升的最大高度为4v 1t 1 v v 12

高二数学函数的极值

高二数学函数的极值 1.32课题:函数的极值(1) 教学目的: 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 教学过程: 一、复习引入: 1. 常见函数的导数公式:

;;;;;;; 2.法则1 法则2 ,法则33.复合函数的导数: (理科) 4. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内0,那么函数 y=f(x) 在为这个区间内的减函数 5.用导数求函数单调区间的步骤:①求函数f(x)的导数 f′(x). ②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间 二、讲解新课: 1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点都有f(x)<f(x0),就说f(x0)是函数 f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点 2.极小值:一般地,设函数f(x)在x0附近有定义,如果对 x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数 f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点 3.极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: ()极值是一个局部概念由定义,极值只是某个点的函数值 与它附近点的函数值比较是最大或最小并不意味着它在函数

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

二元函数极值问题

二元函数极值问题

2

3

4

5 0x >时, 1,z x ?=? 0x <时,1z x ?=-?. 因此在0x =时偏导数不存在. 由此可见,函数的极值点必为 f x ??及f y ??同时为零或至少有一个偏导数不存在的点. 3.2极值的充分条件 设函数),(y x f z =在点的某个邻域内连续且有二阶连续偏导数,又 0),(00'=y x f x 且0),(00'=y x fy ,记二阶连续偏导数为 A y x f xx =),(00', B y x f xy =),(00', C y x f yy =),(00', AC B -=?2,则函数),(y x f z =在),(00y x 点处是否取得极值的条件如下: (1) 当0A 时,函数),(y x f z =在点),(00y x 处取得极小值; (3) 当0>?时,函数),(y x f z =在点),(00y x 处不取得极值; (4) 当0=?时,函数),(y x f z =在点),(00y x 处可能取得极值,也可能不取得极值. 4. 求二元函数的极值的步骤 要求函数的极值,首先要求出所有使函数的偏导数等于零或偏导数不存在的点,然后讨论该点周围函数的变化情形,以进一步判断是否有极值,为此我们讨论f ?,若(,)f x y 的一切二阶导数连续,则由泰勒公式并注意到在极值点必须0x y f f ==,就有 222 000000200001(,)(,)((,)22(,)(,)) x xy y f f x x y y f x y f x x y y x f x x y y x y f x x y y y θθθθθθ?=+?+?-=+?+??++?+???++?+??. 由于(,)f x y 的一切二阶偏导数在00(,)x y 连续,记200(,)x A f x y =,00(,)xy B f x y =,200(,)y C f x y =,那就有

高中数学函数的极值典型例题

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

(完整版)物理中求极值的常用方法

物理解题中求极值的常用方法 运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出现。因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视。另外很多学生数、理结合能力差,这里正是加强数理结合的“切人点”。学生求极值,方法较少,教师应该在高考专题复习中提供多种求极值的方法。求解物理极值问题可以从物理过程的分析着手,也可以从数学方法角度思考,下面重点对数学方法求解物理极值问题作些说明。 1、利用顶点坐标法求极值 对于典型的一元二次函数y=ax 2+bx+c, 若a>0,则当x=-a b 2时,y 有极小值,为y min =a b ac 442-; 若a<0,则当x=-a b 2时,y 有极大值,为y max =a b ac 442-; 2、利用一元二次函数判别式求极值 对于二次函数y=ax 2+bx+c ,用判别式法 利用Δ=b 2-4ac ≥0。(式中含y) 若y ≥A ,则y min =A 。 若y ≤A ,则y max =A 。 3、利用配方法求极值 对于二次函数y=ax 2+bx+c ,函数解析式经配方可变为y=(x-A)2+常数:(1)当x =A 时,常数为极小值;或者函数解析式经配方可变为y = -( x -A )2+常数。(2)当x =A 时,常数为极大值。 4、利用均值定理法求极值 均值定理可表述为 ≥+2 b a a b ,式中a 、b 可以是单个变量,也可以是多项式。 当a =b 时, (a+b)min =2ab 。 当a =b 时, (a+b) max =2 )(2 b a +。 5、利用三角函数求极值 如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。若所求物理量表达式可化为“y=Asin ααcos ”的形式,则y= 21Asin2α,在α=45o时,y 有极值2 A 。 对于复杂的三角函数,例如y=asin θ+bcos θ,要求极值时先需要把不同名的三角函数sin θ和cos θ,变成同名的三角函数,比如sin(θ+ф) 。这个工作叫做“化一”。首先应作辅助角如所示。

第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。 难点:求最值实际问题建立模型,充分性判别法的证明。 作业:习题8-8(71P )3,5,8,9,10 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题. 一.多元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均 有 ),(),(00y x f y x f <,),(),(00y x y x ≠ 成立. 特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.

物理中求极值的常用方法

物理解题中求极值的常用方法 运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出现。因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视。另外很多学生数、理结合能力差,这里正是加强数理结合的“切人点”。学生求极值,方法较少,教师应该在高考专题复习中提供多种求极值的方法。求解物理极值问题可以从物理过程的分析着手,也可以从数学方法角度思考,下面重点对数学方法求解物理极值问题作些说明。 1、利用顶点坐标法求极值 对于典型的一元二次函数y=ax 2+bx+c, 若a>0,则当x=-a b 2时,y 有极小值,为y min =a b ac 442-; 若a<0,则当x=-a b 2时,y 有极大值,为y max =a b ac 442-; 2、利用一元二次函数判别式求极值 对于二次函数y=ax 2+bx+c ,用判别式法 · 利用Δ=b 2-4ac ≥0。(式中含y) 若y ≥A ,则y min =A 。 若y ≤A ,则y max =A 。 3、利用配方法求极值 对于二次函数y=ax 2+bx+c ,函数解析式经配方可变为y=(x-A)2+常数:(1)当x =A 时,常数为极小值;或者函数解析式经配方可变为y = -( x -A )2+常数。(2)当x =A 时,常数为极大值。 4、利用均值定理法求极值 均值定理可表述为 ≥+2 b a a b ,式中a 、b 可以是单个变量,也可以是多项式。 当a =b 时, (a+b)min =2ab 。 — 当a =b 时, (a+b) max =2 )(2 b a +。 5、利用三角函数求极值 如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。若所求物理量表达式可化为

高中数学讲义微专题17 函数的极值

微专题17 函数的极值 一、基础知识: 1、函数极值的概念: (1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有 ()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点 (2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有 ()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点 极大值与极小值统称为极值 2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小 (2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 (3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值 (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 3、极值点的作用: (1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点

4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点?()0'0f x = 说明:①前提条件:()f x 在0x x =处可导 ②单向箭头:在可导的前提下,极值点?导数0=,但是导数0=不能推出0x x =为 ()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点 ③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点) 5、求极值点的步骤: (1)筛选: 令()' 0f x =求出()'f x 的零点(此时求出的点有可能是极值点) (2)精选:判断函数通过()' f x 的零点时,其单调性是否发生变化,若发生变化,则该点为 极值点,否则不是极值点 (3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点 6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。 7、对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题。但要注意检验零点能否成为极值点。 8、极值点与函数奇偶性的联系: (1)若()f x 为奇函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极小(极大)值点 (2)若()f x 为偶函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极大(极小)值点 二、典型例题: 例1:求函数()x f x xe -=的极值. 解:()()' 1x x x f x e xe x e ---=-=- 令()'0f x >解得:1x < ()f x ∴的单调区间为:

高一数学必修一函数的最值问题试题(1)

函数的最值问题(高一) 一.填空题: 1. ()35,[3,6]f x x x =+∈的最大值是 。1 ()f x x =,[]1,3x ∈的最小值是 。 2. 函数y =的最小值是 ,最大值是 3.函数21 2810y x x =-+的最大值是 ,此时x = 4.函数[]23 ,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3 ,2,1y x x x =-∈--的最小值是 ,最大值是 6.函数y=2-x -21 +x 的最小值是 。y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 . 8.函数()2 1f x x =-在[2,6]上的最大值是 最小值是 。 9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值 11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。 12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值 13.函数f (x )=)1(11x x --的最大值是 22225 1x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是 15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是 16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是 17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为: 18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是 19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。 二、解答题 20.已知二次函数 在 上有最大值4,求实数 a 的值。 21.已知二次函数 在 上有最大值2,求a 的值。 []2,3-∈x 12)(2++=ax x a x f []1,0∈x a ax x x f -++-=12)(2

相关主题
文本预览
相关文档 最新文档