当前位置:文档之家› 快速冻融(含动弹性模量)试验3D动画补充材料

快速冻融(含动弹性模量)试验3D动画补充材料

快速冻融(含动弹性模量)试验3D动画补充材料
快速冻融(含动弹性模量)试验3D动画补充材料

快速冻融(含动弹性模量)试验3D动画补充材料本动画配套《普通混凝土长期性能和耐久性性能试验方法标准》GB/T50082-2009中“冻融试验—快冻法”。快冻法参考美国ASTM C666标准,适用于测定混凝土试件在水冻水融的条件下,以经受的冻融循环次数来表示的混凝土抗冻性能。抗冻标号用符F和相对动弹性模量下降至60%或质量损失率达5%时的最大循环次数表示。如F50、F150、F300等。

动画中同时包含对《普通混凝土长期性能和耐久性性能试验方法标准》GB/T50082-2009中“动弹性模量试验”的操作演示,该试验适用于采用共振法来测定混凝土的动弹性模量。一试验主要器材列表

1.混凝土搅拌机(图示:双卧轴混凝土试验用搅拌机)

2.混凝土振动台

3.快速冻融试验机

(注:应符合JG/T243相关规定)4.橡胶试件盒

(注:导温性能良好)

5.电子天平

(注:量程不小于20kg,感量大于5g)6.共振法混凝土动弹仪

(注:输出频率在(100~20000)Hz之间)7.聚苯泡沫板

(注:厚度约为20mm)

8.其他器材

温度传感器:精度±0.5℃,量程(-20~20)℃

钢尺

湿布

黄油或凡士林

测温试件(试件中部预埋温度传感器)

二 试验试件要求

1. 应采用尺寸为100mm×100 mm×400mm 的棱柱体试件,每组试件应为3 块。

2. 成型试件时,不得采用憎水性脱模剂。

3. 除制作冻融试件外,尚应制作同样形状、尺寸,且中心埋有热电偶的测温试件,测温试

件应采用防冻液作为冻融介质。测温试件所用混凝土的抗冻性能应高于被测试件。测温试件的温度传感器(热电偶)应确保埋设在试件中心。不应采用钻孔后直接插入的方式埋设温度传感器。

三 试验步骤

试验步骤请观看试验动画。

四 数据处理

1. 相对动弹性模量应按下式计算: 100202×=i ni

i f f P

式中:i P ——经N 次冻融循环后第i 个混凝土试件的相对动弹性模量(%),精确至0.1;

ni f ——经N 次冻融循环后第i 个混凝土试件的横向基频(Hz )

; i f 0——冻融循环试验前第i 个混凝土试件横向基频初始值(Hz )

; 平均相对动弹性模量应为一组3个混凝土试件相对动弹性模量的平均值。

2. 质量损失率应按下式计算: 100×?=?oi

ni oi ni W W W W 式中:ni W ?——N 次冻融循环后第i 个混凝土试件的质量损失率(%)

,精确至0.01; oi W ——冻融循环试验前第i 个混凝土试件的质量(g )

; ni W ——N 次冻融循环后第i 个混凝土试件的质量(g )。

平质量损失率应为一组3个混凝土试件质量损失率的平均值。

混凝土的抗冻等级用F 和试验停止时的最大循环次数表示。如F50,F100,F300等。

拉伸法测弹性模量 实验报告0204192300

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。 成 绩 教师签字

实验中测定E , 只需测得F 、S 、l 和即可, 前三者可以用常用方法测得, 而的数量级l ?l ?很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖 直状态, 此时标尺读数为n 0。 当金属丝被拉长以l ?后, 带动平面镜旋转一角度α, 到图中所示M’位置; 此时读得标尺读数为n 1, 得到刻度变化为 。 Δn 与呈正比关系, 且根据小量 01n n n -=?l ?忽略及图中的相似几何关系, 可以得到 (b 称为光杠杆常数) n B b l ??= ?2将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 02 8n F bE D lB n i i +?= π可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 P.S. 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 , 又在仪器关系上, 有x=2B , 则 , () 。 N p f x ?= N p f B ??=21100=p f 由上可以得到平面镜到标尺的距离B 。

动弹性模量试验方法

6. 动弹性模量试验 6.0.1 本方法适用于采用共振法测定混凝土动弹性模量。 6.0.2 动弹性模量试验采用尺寸为100mm×100mm×100mm的棱柱体试件。6.0.3 试验设备应符合下列规定: 1 共振法混凝土动弹性模量测定仪输出频率可调节范围应为(100—200)Hz,输出功率应能使试件产生受迫振动。 2 试件支撑体应采用厚度为20mm的泡沫塑料垫,宜采用表观密度为(16—18)Kg/m3的聚苯板 3 称量设备的最大量程应为20kg,感量不应超过5g。 6.0.4 试验步骤 1 首先应测量试件的质量与尺寸。试件的质量应精确至0.01kg,尺寸的测量应精确至1mm。 2 测定完试件的质量和尺寸后,应将试件放置在支撑体中心位置,成型面应向上,并应将激振换能器的测杆轻轻的压在试件长边侧面中线的1/2处,接收换能器的测杆轻轻的压在试件长边侧面中线距端面5mm处。在测杆接触试件前,宜在测杆于试件接触面涂一薄层黄油或凡士林作为耦合介质,测杆压力的大小应以不出现噪音为准。 3 放置好测杆后,应先调整共振仪的的激振功率和接收增益旋钮至适当位置,然后变换激振频率,并应注意观察指示电表的指针偏转。当指针偏转为最大时,表示试件到达共振状态,应以这时所示的共振频率作为试件的基频振动频率。每一次测量应重复测量两次以上。当两次连续测值之差不超过两个测值的算术平均值的0.5%时,应取这两个测值的算术平均值作为试件的基频振动频率。 4 当用示波器作为显示的仪器时,示波器的图形调成一个正圆时,应将接收换能器移至距试件端部0.224倍试件长处,当指示电表示值为零时,应将其作为真实的共振峰值。 6.0.5 试验结果计算及处理应符合下列规定: 1 动弹性模量应按下式计算: =13.244×10-4×WL3f2/a4 E d ——混凝土动弹性模量(Mpa); 式中:E d a——正方形截面试件的边长(mm);

水泥混凝土抗弯拉弹性模量试验方法

水泥混凝土抗弯拉弹性模量试验方法 1、目的、适用范围和引用标准 本方法规定了测定水泥混凝土抗弯拉弹性模量的方法和步骤。抗弯拉弹性模量是以 1/2抗弯拉强度时的加荷为准。 2、每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强 度,3根则用作抗弯拉弹性模量试验。 3、试验步骤 (1)至试验龄期时,自养护室取出试件,用湿布覆盖, 避免其湿度变化。清除试件表面污垢,修平与装置接触的 试件部分(对抗弯拉强度试件即可进行试验)。在试件上 下面即成型时两侧面)戈U出中线和装置位置线,在千分 表架共四个脚点处,用于毛巾先擦干水分,再用 502胶 水粘牢小玻璃片,量出试件中部的宽度和高度,精确至 1mm。 (2)将试件安放在支座上,使成型时的侧面朝天上, 千分表架放在试件上,压头及支座线垂直于试件 中线且无偏心加载情况,而后缓缓加上约1kN压 力,停机检查支座等各接缝处有无空隙(必要时需加金属

薄垫片),应确保试件不扭动,而后安装千分表,其触 电及表架触点稳立在小玻璃片上。 (3)取抗弯拉极限荷载平均值的 1/2 为抗弯拉弹性模 量试验的荷载标准(即F0.5)进行5次加卸荷载循环,由 1kN 起,以 0.15Kn/s-0.25Kn/s 的速度加荷, 至 3kN 刻度处停机(设为 Fo ),保持约 30s (在此段 加荷时间中,千分表指针应能起动,否 则应提高Fo至4kN等),记下千分表读数△ o, 而后 继续加至F0.5,保持约30s,记下千分表读数△ 0.5;再以同样速度卸荷至 1kN,保持约30s,为第一 次循环。 (4)同第一次循环,共进行五次循环,取第五次循环 的挠度值相差大于 0.5g时,须进行第六次循环, 直到两次相邻循环挠度值之差符合上述要求为止,取最后 一次挠度值为准。 ( 5)当最后一次循环完毕,检查各读数无误后,立即 去掉千分表,继续加荷直至试件折断,记下循环 后抗弯拉强度f‘ f观察断裂面形状和位置。如 1 > 断面在三分点外侧,则此根试件结果无效;如有两根试件 结果无效,则该组试验无效。

低碳钢弹性模量e的测定实验报告doc

低碳钢弹性模量e的测定实验报告 篇一:低碳钢弹性模量E的测定 低碳钢弹性模量E的测定 一、实验目的 1.在比例极限内测定低碳钢的弹性模量E 2.验证虎克定律 二、实验设备 1. WE-300型液压式万能试验机。 2.蝶式引伸仪、游标卡尺、米尺。 三、实验原理 低碳钢弹性模量E的测定,是在比例极限以内的拉伸试验中进行的。低碳钢在比例极限内服从胡克定律,即PL0 ?L?EA0 式中,P为轴向拉力,L0是引伸仪标距长度(亦即试件的标距),A0为试件原始截面面积。 为了验证胡克定律和消除测量中可能产生的误差,我们采用“增量法”测量低碳钢的弹性模量。就是对试件逐级增加同样大小的拉力?P,相应地由引伸仪测得在引伸仪标距范围内的轴向伸长量?li。如果每一级拉力?P增量所引起的轴向伸长量?li基本相等,这就验证了胡克定律。根据测得的各级轴向伸长量增量的平均值?l平均,可用下式算出弹性模量

E??PL0 A0?l平均 利用“增量法”进行测量时,还能判断实验有无错误(本文来自:小草范文网:低碳钢弹性模量e的测定实验报告),因为若发现各次的应变增量不按一定规律变化,就说明实验工作有问题,应进行检查。实验时,为了消除试验机夹具与试件的间隙,以及引伸仪机构内的间隙,需要加初载荷P0 四、实验步骤 1.用游标尺测量试件直径。 2.开动万能机,使上夹头抬高3厘米,将试件上部装入试验机上夹头内, 移动下夹头到适当位置,再夹紧试件下部。 3.把蝶式引伸仪加在试件上,如图1-3所示。 4.拟定加载方案:从载荷P=4KN开始读数,以后载荷每增加2KN读一次引伸仪数据。选好测力盘,调整试验机测力指针,使其对准零点,将引伸仪上左右两只千分表上大指针,也调到零点. 5.关闭回油阀、送油阀,启动电源,缓慢打开送油阀开始加载。取P0 =4KN作为初载荷,记下引伸仪初读数.以后每增加相同载荷△P=2KN记录一次引伸仪读数,一直加到低于比例极限的某一值(如14KN)为止。 6.停机。检查引伸仪读数差值是否大致相等,如果数值相差太大,须重新测量。

快速冻融(含动弹性模量)试验3D动画补充材料

快速冻融(含动弹性模量)试验3D动画补充材料本动画配套《普通混凝土长期性能和耐久性性能试验方法标准》GB/T50082-2009中“冻融试验—快冻法”。快冻法参考美国ASTM C666标准,适用于测定混凝土试件在水冻水融的条件下,以经受的冻融循环次数来表示的混凝土抗冻性能。抗冻标号用符F和相对动弹性模量下降至60%或质量损失率达5%时的最大循环次数表示。如F50、F150、F300等。 动画中同时包含对《普通混凝土长期性能和耐久性性能试验方法标准》GB/T50082-2009中“动弹性模量试验”的操作演示,该试验适用于采用共振法来测定混凝土的动弹性模量。一试验主要器材列表 1.混凝土搅拌机(图示:双卧轴混凝土试验用搅拌机) 2.混凝土振动台

3.快速冻融试验机 (注:应符合JG/T243相关规定)4.橡胶试件盒

(注:导温性能良好) 5.电子天平 (注:量程不小于20kg,感量大于5g)6.共振法混凝土动弹仪

(注:输出频率在(100~20000)Hz之间)7.聚苯泡沫板 (注:厚度约为20mm) 8.其他器材 温度传感器:精度±0.5℃,量程(-20~20)℃

钢尺 湿布 黄油或凡士林 测温试件(试件中部预埋温度传感器) 二 试验试件要求 1. 应采用尺寸为100mm×100 mm×400mm 的棱柱体试件,每组试件应为3 块。 2. 成型试件时,不得采用憎水性脱模剂。 3. 除制作冻融试件外,尚应制作同样形状、尺寸,且中心埋有热电偶的测温试件,测温试 件应采用防冻液作为冻融介质。测温试件所用混凝土的抗冻性能应高于被测试件。测温试件的温度传感器(热电偶)应确保埋设在试件中心。不应采用钻孔后直接插入的方式埋设温度传感器。 三 试验步骤 试验步骤请观看试验动画。 四 数据处理 1. 相对动弹性模量应按下式计算: 100202×=i ni i f f P 式中:i P ——经N 次冻融循环后第i 个混凝土试件的相对动弹性模量(%),精确至0.1; ni f ——经N 次冻融循环后第i 个混凝土试件的横向基频(Hz ) ; i f 0——冻融循环试验前第i 个混凝土试件横向基频初始值(Hz ) ; 平均相对动弹性模量应为一组3个混凝土试件相对动弹性模量的平均值。

弹性模量的测量实验报告

弹性模量的测量实验报告 一、拉伸法测量弹性模量 1、实验目的 (1) 学习用拉伸法测量弹性模量的方法; (2) 掌握螺旋测微计和读数显微镜的使用; (3) 学习用逐差法处理数据。 2、实验原理 (1)、杨氏模量及其测量方法 本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。设有一长度为L ,截面积为S 的均匀金属丝,沿长度方向受一外力后金属丝伸长δL 。单位横截面积上的垂直作用力F /S 成为正应力,金属丝的相对伸长δL /L 称为线应变。实验结果指出,在弹性形变范围内,正应力与线应变成正比,即 L L E S F δ= 这个规律称为胡克定律,其中L L S F E //δ= 称为材料的弹性模量。它表征材料本身的性质,E 越大的材料,要使他发生一定的相对形变所需的单位横截面积上的作用力也越大,E 的单位为Pa(1Pa = 1N/m 2; 1GPa = 109Pa)。 本实验测量的是钢丝的弹性模量,如果测得钢丝的直径为D ,则可以进一步把E 写成: L D FL E δπ2 4= 测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量δL ,即可求出E 。钢丝长度L 用钢尺测量,钢丝直径D 用螺旋测微计测量,力F 由砝码的重力F = mg 求出。实验的主要问题是测准δL 。δL 一般很小,约10?1mm 数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。为了使测量的δL 更准确些,采用测量多个δL 的方法以减少测量的随机误差,即在钢丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录伸长位置。通过数据处理求出δL 。

水泥混凝土抗弯拉弹性模量试验方法

水泥混凝土抗弯拉弹性 模量试验方法 Revised at 2 pm on December 25, 2020.

水泥混凝土抗弯拉弹性模量试验方法 1、目的、适用范围和引用标准 本方法规定了测定水泥混凝土抗弯拉弹性模量的方法和步骤。抗弯拉弹性模量是以1/2抗弯拉强度时的加荷为准。 2、每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强 度,3根则用作抗弯拉弹性模量试验。 3、试验步骤 (1)至试验龄期时,自养护室取出试件,用湿布覆盖,避免其湿度变化。清除试件表面污垢,修平与装置接触 的试件部分(对抗弯拉强度试件即可进行试验)。在 试件上下面即成型时两侧面)划出中线和装置位置 线,在千分表架共四个脚点处,用于毛巾先擦干水 分,再用502胶水粘牢小玻璃片,量出试件中部的宽 度和高度,精确至1mm。 (2)将试件安放在支座上,使成型时的侧面朝天上,千分表架放在试件上,压头及支座线垂直于试件中线且无 偏心加载情况,而后缓缓加上约1kN压力,停机检查 支座等各接缝处有无空隙(必要时需加金属薄垫

片),应确保试件不扭动,而后安装千分表,其触电 及表架触点稳立在小玻璃片上。 (3)取抗弯拉极限荷载平均值的1/2为抗弯拉弹性模量试验的荷载标准(即)进行5次加卸荷载循环,由1kN 起,以s的速度加荷,至3kN刻度处停机(设为 Fo),保持约30s(在此段加荷时间中,千分表指针 应能起动,否则应提高Fo至4kN等),记下千分表 读数△o,而后继续加至,保持约30s,记下千分表读 数△;再以同样速度卸荷至1kN,保持约30s,为第 一次循环。 (4)同第一次循环,共进行五次循环,取第五次循环的挠度值相差大于μm时,须进行第六次循环,直到两次 相邻循环挠度值之差符合上述要求为止,取最后一次 挠度值为准。 (5)当最后一次循环完毕,检查各读数无误后,立即去掉千分表,继续加荷直至试件折断,记下循环后抗弯拉 强度f′f,观察断裂面形状和位置。如断面在三分点外 侧,则此根试件结果无效;如有两根试件结果无效, 则该组试验无效。 4、试验结果 (1)混凝土抗弯拉弹性模量E f按支梁在三分点各加荷载2的跨中挠度公式反算求得:

拉伸时材料弹性模量E和泊松比的测定

实验三 电测法测定材料的弹性模量和泊松比 弹性模量E 和泊松比μ是各种材料的基本力学参数,测试工作十分重要,测试方法也很多,如杠杆引伸仪法、电测法、自动检测法,本次实验用的是电测法。 一、 实验目的 在比例极限内,验证胡克定律,用应变电测法测定材料的弹性模量E 和泊松比μ。 二、 实验仪器设备和试样 1. 材料力学多功能实验台 2. 静态电阻应变仪 3. 游标卡尺 4. 矩形长方体扁试件 三、 预习要求 1. 预习本节实验内容和材料力学书上的相关内容。 2. 阅读并熟悉电测法基本原理和电阻应变仪的使用操作。 四、实验原理和方法 材料在比例极限范围内,正应力σ和线应ε变呈线性关系,即:εσE = 比例系数E 称为材料的弹性模量,可由式3-1计算,即:ε σ=E (3-1) 设试件的初始横截面面积为o A ,在轴向拉力F 作用下,横截面上的正应力为: o A F = σ 把上式代入式(3-1)中可得: ε o A F E = (3-2) 只要测得试件所受的荷载F 和与之对应的应变ε,就可由式(3-2)算出弹性模量E 。

受拉试件轴向伸长,必然引起横向收缩。设轴向应变为ε,横向应变为ε'。试验表明,在弹性范围内,两者之比为一常数。该常数称为横向变形系数或泊松比,用μ表示,即: ε εμ'= 轴向应变ε和横向应变ε'的测试方法如下图所示。在板试件中央前后的两面沿着试件轴线方向粘贴应变片1R 和'1R ,沿着试件横向粘贴应变片2R 和'2R 。为了消除试件初曲率和加载可能存在偏心引起的弯曲影响,采用全桥接线法。分别是测量轴向应变ε和横向应变ε'的测量电桥。根据应变电测法原理基础,试件的轴向应变和横向应变是每台应变仪应变值读数的一半,即: r εε21= '='r εε2 1 实验时,为了验证胡克定律,采用等量逐级加载法,分别测量在相同荷载增量F ?作用下的轴向应变增量ε?和横向应变增量ε'?。若各级应变增量相同,就验证胡克定律。 五、 实验步骤 1. 测量试件。在试件的工作段上测量横截面尺寸,并计算试件的初始横截面面积o A 2. 拟定实验方案。 1) 确定试件允许达到的最大应变值(取材料屈服点S σ的70%~80%)及所需的最大载 荷值。 2) 根据初荷载和最大荷载值以及其间至少应有5级加载的原则,确定每级荷载的大小。 3) 准备工作。把试件安装在试验台上的夹头内,调整试验台,按图的接线接到两台应 变仪上。 4) 试运行。扭动手轮,加载至接近最大荷载值,然后卸载至初荷载以下。观察试验台 和应变仪是否处于正常工作状态。 5) 正式实验。加载至初荷载,记下荷载值以及两个应变仪读数r ε、'r ε。以后每增加 一级荷载就记录一次荷载值及相应的应变仪读数r ε、' r ε,直至最终荷载值。以上实验重复3遍。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

2 用拉伸法测金属丝的杨氏弹性模量 一、 实验目的 1. 学会用光杠杆法测量杨氏弹性模量; 2. 掌握光杠杆法测量微小伸长量的原理; 3. 学会用逐差法处理实验数据; 4. 学会不确定的计算方法,结果的正确表达; 5. 学会实验报告的正确书写。 二、 实验仪器 杨氏弹性模量测量仪 ( 型号见仪器上 )(包括望远镜、测量架、光杠杆、标尺、砝 码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、 实验原理 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。 本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体 能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度 方向施力F 后,物体的伸长 L ,则在金属丝的弹性限度内,有: L 我们把E 称为杨氏弹性模量。 如上图: E = S L L x n tg L = 2x D n n = n - n )

4 四、 实验内容 < 一> 仪器调整 1. 杨氏弹性模量测定仪底座调节水平; 2. 平面镜镜面放置与测定仪平面垂直; 3. 将望远镜放置在平面镜正前方 1.5-2.0m 左右位置上; 4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、 准 星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜, 然后继续调节物镜焦距并能看到尺子清晰的像; 6. n 0 一般要求调节到零刻度。 <二>测量 7. 计下无挂物时刻度尺的读数n 0 ; 8. 依次挂上1kg 的砝码,七次,计下n 1,n 2,n 3,n 4,n 5,n 6,n 7 ; 9. 依次取下1kg 的砝码,七次,计下 n 1',n 2',n 3',n 4',n 5 ,n 6',n 7'; 10. 用米尺测量出金属丝的长度 L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处 理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是 不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: (n 4-n 0)+(n 5-n 1)+(n 6-n 2)+(n 7 -n 3) 五、 实验数据记录处理 4 8 FLD x d 2 x n 2D 3. 注:上式中的 n 为增重4kg 的金属丝的伸长量。

试验一弹性模量和泊松比的测定实验

试验一 弹性模量和泊松比的测定实验 弹性模量和泊松比的测定实验大纲 1. 通过材料弹性模量和泊松比的测定实验,使学生掌握测定材料变形的基本方法,学会拟定实验加载方案,验证虎克定律。 2. 电测材料的弹性模量和泊松比,使学生学会用电阻应变计和电阻应变仪测量材料的变形。主要设备:材料试验机或多功能电测实验装置;主要耗材:低碳钢拉伸弹性模量试样,每次实验1根。 拉伸弹性模量(E )及泊松比(μ)的测定指导书 一、实验目的 1、用电测法测量低碳钢的弹性模量E 和泊松比μ 2、在弹性范围内验证虎克定律 二、实验设备 1、电子式万能材料试验机 2、XL 2101C 程控静态电阻应变仪 3、游标卡尺 三、实验原理和方法 测定材料的弹性模量E ,通常采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其关系式为: (1-1) 由此可得 (1-2) 式中:E :弹性模量 P :载荷 S 0:试样的截面积 ε:应变 ΔP 和Δε分别为载荷和应变的增量。 由公式(1-2)即可算出弹性模量E 。 实验方法如图1-1所示,采用矩形截面的拉伸试件,在试件上沿轴向和垂直于轴向的两面各贴两片电阻应变计,可以用半桥或全桥方式进行实验。 1、半桥接法:把试件两面各粘贴的沿轴向(或垂直于轴向)的两片电阻应变计(简称工作片)的两端分别接在应变仪的A 、B 接线端上,温度补偿片接到应变仪的B 、C 接线端上,然后给试件缓慢加载,通过电阻应变仪即可测出对应载荷下的轴向应变轴r ε值(或横向应变值横r ε)。再将实际测得的值代入(1-2)式中,即可求得弹性模量E 之值。

2、全桥接法:把两片轴向(或两片垂直于轴向)的工作片和两片温度补偿片按图1-1中(a)(或(b))的接法接入应变仪的A 、B 、C 、D 接线柱中,然后给试件缓慢加载,通过电阻应变仪即可测出对应载荷下的轴向应变值轴r ε(或垂直于轴向横r ε),将所测得的ε值代入(1-2)式中,即可求得弹性模量E 之值。 在实验中,为了尽可能减少测量误差,一般采用等增量加载法,逐级加载,分别测得各相同载荷增量△P 作用下产生的应变增量△r ε,并求出△r ε的平均值,这样由(1-2)式可以写成 (1-3) 式中, 为实验中轴向应变增量的平均值。这就是等量加载法测E 的计算公式。 图1-9测定 的贴片及接线方案 等量加载法可以验证力与变形间的线性关系。若各级载荷的增量△P 均相等,相应的由应变仪读出的应变增量△ε也应大致相等,这就验证了虎克定律。 测定泊松比μ值。受拉试件的轴向伸长,必然引起横向收缩。在弹性范围内,横向线应变ε横和轴向应变ε轴的比值为一常数,其比值的绝对值即为材料的泊松比,通常用μ表示。 (1-4) 四、实验步骤 1、测量试件的尺寸,将试件两面沿纵向和横向各贴一片电阻应变计的试件安装在电子拉伸试验机实验装置上。 2、根据采用半桥或全桥的测试方式,相应地把要测的电阻应变计和温度补偿片接在智能静态应变仪接线柱上。 3、打开静态应变仪电源,预热20分钟,设定好参数。 4、实验采用试验机自动加载,先对试件预加初载荷100N 左右,用以消除连接间隙等初始因素的影响,然后记下应变仪初始读数,当作相对零位,然后分级递增相等的载荷△P =20N ,分5级进行实验加载,从荷载开始,依次按120N 、140N 、160N 、180N 、200N 进行加载,记录下每级加载后应变仪上相应的读数。 实验至少进行两次,取线性较好的一组作为本次实验的数据。 五、实验结果处理 根据实验数据,分别算出算术平均值,再由式(1-5)和式(1-6)算出相应的弹性模量和泊松比值。 表格 轴向应变 载荷 120 N 140 N 160 N 180 N 200 N 100N

实验四岩石的弹性模量实验

实验四岩石的弹性模量实验 一、实验目的与要求 岩石在载荷作用下,会发生变形。随着载荷的不断增加或在恒定载荷下,随着时间的增长,岩石变形逐渐增大,最终导致岩石破坏。岩石变形有弹性变形、塑性变形和粘性变形。 岩石的弹性模量是指岩石在弹性变形阶段其应力与应变变化值之比。 通过本实验,要了解标准试件的加工机械、加工过程及检测程序,掌握岩石弹性模量的测试过程及数据处理、图形绘制的方法。 二、实验仪器、设备及工具 (一)仪器 1.电阻应变仪 2.电桥、万用表 3.数据采集仪或x——y函数记录仪 4.压力传感器 (二)设备 1.材料实验机 2.钻石机或车床、锯石机、磨石机或磨床 (三)材料 1.电阻应变片,标距为3×16mm~3×20mm,电阻值约为120Ω 2.胶结剂、防潮剂、清洁剂 (四)检验工具 游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表 三、试件规格、加工精度、数量 与岩石抗压强度相同 四、实验原理 电阻应变片是一种把机械位移转化为电量变化的传感器。应变片粘贴在岩石试件上。试件受压时,电阻丝跟着缩短,截面增加,电阻值减小。试件受拉时,电阻丝跟着伸长,截面 =K?。电阻应变缩小,电阻值增大。应变片电阻值R的变化量?R与试件的应变?成正比,即?R R 仪为直接把电阻值的变化转为应变量的仪器。因此通过测量得到电阻应变片的应变值?也即测得试件在受压过程时的纵向应变值?l和横向应变值?d,进而可通过计算得出岩石的弹性模量和泊松比。 五、实验内容 1.了解试件的加工机具、检测机具,规程对尺寸和精度的要求及检测方法; 2.学会材料实验机的操作方法; 3.学会岩石试件的防潮处理及电阻应变片的粘贴、接线、焊接技术; 4.学会电阻应变仪的测读方法,岩石的弹性模量的测量方法。 六、实验步骤 1.测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、节理、裂隙、风化程 度、含水状态以及加工过程中出现的问题等进行描述,并填入记录表1内。 2.检查试件加工精度,测量试件尺寸填入记录表内。 3.选择材料实验机度盘时,一般满足下式:0.2P0

混凝土动态弹性模量测定仪

混凝土动态弹性模量测定仪 洛阳卓声检测仪器有限公司 混凝土弹性模量测定仪通过合适的外力给定试样脉冲激振信号,当激振信号中的某一频率与试样的固有频率相一致时,产生共振,此时振幅大,延时长,这个波通过测试探针或测量话筒的传递转换成电讯号送入仪器,测出试样的固有频率,由公式计算得出杨氏模量E、剪切模量G及泊松比U。 混凝土弹性模量测定仪本仪器适用于混凝土(砼)材料的杨氏模量、剪切模量、泊松比及阻尼比的测试,也可用于高温环境下进行高温弹性模量性能进行测试。符合标准GB/T 50082-2009 普通混凝土长期性能和耐久性能试验方法标准(动态弹性模量测试方法)、ASTM

C 215-14 Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens、水泥、混凝土材料的弯曲固有频率、扭曲频率测试方法;ASTM E 1876-01(2009)Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration 固体材料杨氏模量、剪切模量和泊松比试验方法(脉冲激振法) 等。 混凝土弹性模量测定仪可对混凝土长期性及耐久性进行在线连续观测,也可对混凝土的最佳凝固时间进行连续在线测试,很大程度的缩短混凝土的研发周期,对混凝土的生产、使用及研发起到很到的辅助作用。 混凝土弹性模量测定仪技术参数 测试方法:脉冲激振法 测量范围:1~300GPa (可通过改变试样尺寸适当扩大量程) 测量项目:杨氏模量、剪切模量、泊松比及阻尼比 测量误差:±0.5% 频率范围:20~22000Hz 频率精度:0.1HZ 灵敏度(mV/Pa): 1 mV/Pa 采样率:44.1k/48k/88.2k/96k/176.4k/192k Hz 输入阻抗:1.8KΩ 试样形状:长条状 试样尺寸:长度(30~200)mm;宽度(2~60)mm 长度/高度≥5 混凝土弹性模量测定仪仪器特点 ●无损检测,测后试样可用于其它测试; ●可测试材料的阻尼比,从室温至高温; ●非接触式检测,不需要与试样耦合,测后试样表面洁净; ●不需连续输出频率从小到大的正弦波信号给发射探头(此处采用国际推崇方法); ●测试准确,操作简单、快速; ●可直观观察材料的共振峰,也可同一界面观察谐振峰(如果试样有层裂、大的缺陷时会 出现谐振峰); ●采用进口高精度、稳定性好的传感器与数据处理器; ●采用国外先进软件,数据分析精度高,操作界面友好。

弹性模量泊松比测试

弹性模量、泊松比测试 测样品的弹性模量通常分动态法和静态法,静态法是在试样上施加一个恒定的拉伸(或压缩)应力,测定其弹性变形量;动态法包括共振和超声波测试。 静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会。动态法属于不破坏试样结构和性能的一种无损检测方法,试样可重复测试,因此对于力学性能波动较大的脆性材料,反复多次的无损力学检测显得重要而有意义。 超声波法测弹性模量 1.原理: 在各向同性的固体材料中,根据应力和应变满足的胡克定律,可以求得超声波传播的特征方程: 其中,为势函数,c为超声波传播速度。 当介质中质点振动方向与超声波的传播方向一致时,成为纵波;当质点振动方向与超声波的传播方向垂直时,称为横波,在固体介质内部,超声波可以按纵波和横波两种波形传播,无论是材料中的纵波还是横波,其速度可表示为: 其中,d为声波传播距离,t为声波传播时间。 对于同一种材料,其纵波波速和横波波速的大小一般不一样,但是它们都由弹性介质的密度,杨氏模量,泊松比等弹性参数决定,即影响这些物理常数的因素都对声速有影响,因此,利用超声波方法可以测量材料有关的弹性常数。 固体在外力作用下,其长度的方向产生变形,变形时应力与应变之比定义为杨氏模量,用E表示。 固体在应力作用下,沿纵向有一正应变,沿横向有一负应变,横向纵向应变之比定义为泊松比,用u表示。 在各向同性固体介质中,各种波形的超声波声速为: 纵波声速: 横波声速: 相应的通过测量介质的纵波声速和横波声速,利用以上公式可以计算介质的弹性常数,计算公式如下: 弹性模量: 泊松比: 其中,,为密度 2.测试方法:

使用25DL PLUS型超声波弹性模量测试仪分别测试材料的纵波声速和横波声速,代入上述公式,计算得到弹性模量和泊松比数值。

混凝土静力受压弹性模量试验检测细则

1.适用范围、检验参数及技术标准 1.1适用范围 普通混凝土、轻骨料混凝土 1.2检验参数 混凝土静力受压弹性模量 1.3技术标准 GB/T 50081-2002 《普通混凝土力学性能试验方法》 2.检测环境 1.1 实验室制作混凝土试件及静置时间,温度应保持在20℃±5℃。 1.2 混凝土力学性能试件标准养护条件:温度20℃±2℃,相对湿度95%以上。 1.3 混凝土抗压、混凝土抗折试验环境温度:10℃~35℃。 3.检测设备 压力试验机(DY2008型),量程为0.2000KN,最小分度值为±1%。 微变型测量仪(),最小分度值0.001mm。 4.试样数量、代表批量 见表1。 5.1混凝土静力受压弹性模量试验 5.1.1设备、标准、环境检查 检查核对所需设备正常与否,必要时做记录; 检查核对产品标准和试验方法标准,并记录; 记录环境温度,并记录。 5.1.2试件制备、检查 5.1.2.1试件制备

试件制备依据标准:GB/T 50081-2002。 环境条件:混凝土拌合、试件成型及静置期间试验室的温度应保持在20℃±5℃。 试件制备的细节,注意事项: a.混凝土力学性能试验应以三个试件为一组,每组试件所用的拌合物应从同一盘混凝土中取样。 b.成型前,应检查试模尺寸并符合GB/T 50081-2002中的技术要求的规定;试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。 c.在实验室拌制混凝土时,其材料用量应以质量计,称量的精度:水泥、掺和料、水和外加剂为±0.5%;骨料为±0.1%。 d.取样或实验室拌制的混凝土应在拌制后尽短的时间内成型,一般不宜超过15min。 e.根据混凝土拌合物的稠度确定混凝土成型方法,坍落度不大于70mm的混凝土宜用振动振实;大于70mm的宜用捣棒人工捣实;检验现浇混凝土或预制构件的混凝土,试件成型方法宜与实际采用的方法相同。 f.取样或拌制好的混凝土拌合物应至少用铁锹再来回拌合三次。 g.按5.1.2.1e的规定,选择成型方法成型。 1)用振动台振实制作试件应按下述方法进行: ⅰ.将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口; ⅱ.试模应附着或固定在符合GB/T 50081-2002第4.2节要求的振动台上,振动时试模不得有任何跳动,振动应持续到表面出浆为止,不得过振。 2)用人工插捣制作试件应按下述方法进行: ⅰ.混凝土拌合物应分两层装入模内,每层的装料厚度大致相等; ⅱ.插捣应按螺旋方向从边缘向中心均匀进行。在插捣底层混凝土时,捣棒应达到试模底部;插捣上层时,捣棒应贯穿上层后插入下层20~30mm;插捣时捣棒应保持垂直,不得倾斜。然后应用抹刀沿试模内壁插拔数次; ⅲ.每层插捣次数按在100002 mm截面积内不得少于12次; ⅳ.插捣后应用橡皮锤轻轻敲击试模四周,直至插捣棒留下的空洞消失为止。

弹性模量和泊松比的测定

弹性模量和泊松比的测定

弹性模量和泊松比的测定

目录 一、弹性模量和泊松比 (2) 二、弹性模量测定方法 (2) 三、泊松比测定方法 (4) 四、结论 (4) 五、参考文献 (4)

一、弹性模量和泊松比 金属材料的弹性模量E为低于比例极限的应力与相应应变的比值;金属材料的泊松比μ指低于比例极限的轴向应力所产生的横向应变与相应轴向应变的负比值(详见GB/T 10623-2008 金属材料力学性能试验术语)。 二、弹性模量测定方法 铝合金材料的弹性模量E是在弹性范围内正应力与相应正应变的比值,其表达式为: E=σ/ε 式中E为弹性模量;σ为正应力;ε为相应的正应变。 铝合金材料弹性模量E的测定主要有静态法、动态法和纳米压痕法。 1.静态法 1.1测量原理 静态法测量铝合金材料的弹性模量主要采用拉伸法,即采用拉伸应力-应变曲线的测试方法。 拉伸法是用拉力拉伸试样来研究其在弹性限度内受到拉力的伸长变形。由上式有: E=σ/ε=FL/A△L 式中各量的单位均为国际单位。 可以看出,弹性模量E是在弹性范围所承受的应力与应变之比,应变是必要的参数。因此,弹性模量E的测试实质是测试弹性变形的直线段斜率,故其准确度由应力与应变准确度所决定。 应力测量的准确度取决于试验机施加的力值与试样横截面积,此时试验机夹具与试样夹持方法也非常关键,夹具与试样要尽量同轴;应变测量的准确度要求引伸计要真实反映试样受力中心轴线与施力轴线同轴受力时所产生的应变。 由于试样受力同轴是相对的,且在弹性阶段试样的变形很小,所以为获得真实应变,应采用高精度的双向平均应变机械式引伸计。 拉伸法测量弹性模量适用于常温测量,由于拉伸时载荷大,加载速度慢,

测量弹性模量E实验

实验编号1 测量弹性模量E 实验 测量弹性模量E 试验 一、 概述 弹性模量E 是表征材料力学性能的重要指标之一,它反映了材料抵抗弹性变形的能力,即材料的刚度。在工程设计中,若对构件进行刚度、稳定和振动等计算,都要用到弹性模量。它是通过实验方法来测定的。可分为引伸计法、电测法和图表法等。 二、 实验目的 1、在比例极限内,验证虎克定律,并测定材料的弹性模量E 。 2、熟悉电子引伸仪的构造原理及使用 3、学会拟定实验加载方案 三、 实验设备和仪器 1、 微机控制电子万能实验机(10T) 2、 电子引伸计 3、 游标卡尺 4、 低碳钢拉伸试样 四、 实验原理 弹性模量E 是材料在比例极限内,应力与应变之比例。低碳钢材料在比例极限内载荷P 与绝对伸长变形△L 符合胡克定律。L A PL E ?==0εσ为了验证胡克定律和消除测量中的偶然误差,一般采用等增量法加载。所谓增量法,就是把欲加的最终载荷分成若干等份,逐级加载以测量试样的变形。若每级载荷相等,则称为等增量法。实验时,当每增加一级载荷增量ΔP,从电脑上读出相应变形增量)(L ?δ也应相等,这就验证了胡克定律。于是增量法测E 的公式为) (00L A PL E ??=δ。 为了夹紧试样,必须施加一定的初载荷F 0,其大小为材料比例极限10%对应 的拉力。最终荷载F P 不应超过材料比例极限对应的拉力F Max 。若以屈服点бS 来表示,一般取为F Max =0.7~0.8бS A 0,采用等登增量法加载应分为5~7级,而每级加载后引伸计的变形都有明显的变化。 五、 实验步骤 1、拟定等增量加载方案。即确定P 0、ΔP 、和P 终,测量试样的直径。测量试样 的尺寸方法为:用游标卡尺在试样标距两端和中间三个截面上测量直径,每个截面在互相垂直方向各测量一次,取其平均值。用三个平均值中平均值计算横截面积。确定引伸计的标距L 0。

拉伸法测弹性模量实验报告.doc

大连理工大学 大学物理实验报告 院(系) 材料学院 专业 材料物理 班级 0705 成 绩 姓 名 童凌炜 学号 5 实验台号 实验时间 2008 年 11 月 11 日,第 12 周,星期 二 第 5-6 节 教师签字 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置) , 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为 l , 截面积为 S , 一端固定后竖直悬挂, 下端挂以质量为 m 的 砝码; 则金属丝在外力 的作用下伸长 l 。 单位截面积上所受的作用力 F/S 称为应力, 单 F=mg 位长度的伸长量l/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力 F/S 和 l/l 应变成正比, 即 F E l Sl 其中的比例系数 F / S E l / l 称为该材料的弹性模量。 性质: 弹性模量 E 与外力 F 、物体的长度 l 以及截面积 S 无关, 只决定于金属丝的材料。

实验中测定E,只需测得F、S、l 和l 即可,前三者可以用常用方法测得,而l 的数量级很小,故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下:初始状态下,平面镜为竖直状态,此时标尺读数为 n0。当金属丝被拉长 l 以后,带动平面镜旋转一角度α,到图中所示 M’位置;此时读得标尺读数为n1,得到刻度变化为n n1 n0。n与l 呈正比关系,且根据小量忽略及图中的相似几何关系,可以得到 b n ( b 称为光杠杆常数) l 2B 将以上关系,和金属丝截面积计算公式代入弹性模量的计算公式,可以得到 E 8FlB D 2b n (式中 B 既可以用米尺测量,也可以用望远镜的视距丝和标尺间接测量;后者的原理见附录。)根据上式转换,当金属丝受力 F i时,对应标尺读数为n i,则有 8lB n i D 2bE F i n0 可见 F 和 n 成线性关系,测量多组数据后,线性回归得到其斜率,即可计算出弹性模量E。 . 用望远镜和标尺测量间距B: 已知量:分划板视距丝间距p,望远镜焦距 f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2,读数差为N。在几何关系上忽略数量级差别大的量后, 可以得到 x f N ,又在仪器关系上,有 x=2B,则 B 1 f N ,( f 100 )。p 2p p 由上可以得到平面镜到标尺的距离B。

实验动态法测定弹性模量

实验一动态法测定弹性模量 弹性模量是反映材料抵抗形变的能力、也是进行热应力计算、防热和隔热层计算、选用构件材料的主要依据。精确测试弹性模量对强度理论和工程技术都具有重要意义。弹性模量测定方法主要有三类: 1.静态法<拉伸、扭转、弯曲):该法通常适用于金属试样,在大形变及常温下测定。该法载荷大,加载速度慢伴有弛豫过程,对脆性材料<石墨、玻璃、陶瓷)不适用、也不能完成高温状态下测定; 2.波传播法<含连续波及脉冲波法):该法所用设备虽较复杂,但在室温下很好用,由于换能器转变温度低及切变换能器价格昂贵,不易获得而受限制; 3.动态法<又称共振法、声频法):包括弯曲<横向)共振、纵向共振以及扭转共振法,其中弯曲共振法由于其设备精确易得,理论同实践吻合度好,适用各种金属及非金属<脆性材料)以及测定温度能在-180℃~3000℃左右进行而为众多国家采用。 本实验就是采用动态弯曲共振法测定弹性模量。 【实验目的】 1.了解动态法测定弹性模量的原理,掌握实验方法; 2.掌握外推法,会根据不同径长比进行修正,正确处理实验数据; 3.掌握判别真假共振的基本方法及实验误差的计算; 4.了解压电体、热电偶的功能,熟悉信号源及示波器和温控器的使用; 5.培养综合使用知识和实验仪器的能力。 【实验仪器】 动态弹性模量测定仪、功率函数信号发生器(5位数显、频率宽5~500KHz>、数显调节仪、悬挂测定支架及支撑测定支架、悬线、试样五根、激发-接收换能器、加热炉、高温悬线、声频放大器、听诊器、示波器。 【实验原理】 对长度直径条件的细长棒,当其作微小横振动<又称弯曲振动)时,其振动方程为: <13-1) 式中为竖直方向位移,长棒的轴线方向为,为试棒的杨氏模量,为材料密度,为棒横截 面,为其截面的惯性矩,。用分离变量法求解方程<13-1)的解,令 <13-2) <13-2)式代入<13-1)式得,该等式两边分别是变量和的函数,只有等于 一常数时才成立,设此常数为,则 <13-3) <13-4)设棒中各点均作谐振动,这两个线性常微分方程的通解为:

相关主题
文本预览
相关文档 最新文档