当前位置:文档之家› 针对数字滤波器主要参数对滤波性能影响的仿真分析07

针对数字滤波器主要参数对滤波性能影响的仿真分析07

针对数字滤波器主要参数对滤波性能影响的仿真分析07
针对数字滤波器主要参数对滤波性能影响的仿真分析07

科研训练

设计题目:针对数字滤波器主要参数对滤波性能影响

的仿真分析

专业班级:科技0701

姓名:朱岩

班内序号: 07

指导教师:梁猛

地点:三号实验楼236

时间:2010.9.14~2010.11.09

电子科学与技术教研室

目录摘要

第一章、绪论

1、1数字滤波器的研究背景与意义

1、2数字滤波器的应用与发展趋势

第二章、数字滤波器的概述

2、1数字滤波器的基本结构

IIR滤波器的基本结构

FIR滤波器的基本结构

2、2数字滤波器的基本原理

滤波器的主要性能指标

IIR数字滤波器的设计方法

FIR数字滤波器的设计方法

IIR滤波器与FIR滤波器的分析比较

第三章、典型数字滤波器及仿真思路

3、1由模拟滤波器设计IIR数字滤波器

3、2巴特奥兹滤波器

3、3切比雪夫滤波器

3、4椭圆滤波器

3、5用matlab设计数字滤波器方法简介

第四章、总结

参考文献

摘要

本文分析了国内外数字滤波技术的应用现状与发展趋势,介绍了数字滤波器的基本结构,在分别讨论了IIR与FIR数字滤波器的设计方法的基础上,文中深入分析了该滤波器系统设计的功能特点、实现原理以及主要参数对滤波性能影响,阐述了使用MATLAB进行带通滤波器设计及仿真的具体方法。最后用Matlab 仿真来直观的说明各主要滤波器的滤波情况

关键词带通滤波器;IIR;Matlab仿真;

第一章、绪论

1、1数字滤波器的研究背景与意义

当今,数字信号处理[1](DSP:Digtal Signal Processing)技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科。

数字化、智能化和网络化是当代信息技术发展的大趋势,而数字化是智能化和网络化的基础,实际生活中遇到的信号多种多样,例如广播信号、遥感遥测信号等。数字信号处理,就是用数值计算的方法对数字序列进行各种处理,把信号变换成符合需要的某种形式。

数字滤波技术是数字信号分析、处理技术的重要分支[2-3]。无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传输是至关重要的。在所有的电子系统中,使用最多技术最复杂的要算数字滤波器了。数字滤波器的优劣直接决定产品的优劣。

1、2数字滤波器的应用与发展趋势

在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。

(1) 语音处理

语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。该领域主要包括5个方面的内容:第一,语音信号分析。第二,语音合成。第三,语音识别。第四,语音增强。第五,语音编码。近年来,这5个方面都取得了不少研究成果,并且,在市场上已出现了一些相关的软件和硬件产品。

(2) 图像处理

数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析X射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。

(3) 通信

在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。信源编码、信道编码、调制、多路复用、数据压缩等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中。

(4) 其他领域[5]

数字滤波器的应用领域如此广泛,还有很多其他的应用领域。例如,电视、雷达、声纳、生物医学信号处理、音乐、军事上被大量应用于导航、制导、电子对抗、战场侦察;在电力系统中被应用于能源分布规划和自动检测;在环境保护中被应用于对空气污染和噪声干扰的自动监测,在经济领域中被应用于股票市场预测和经济效益分析,等等。

第二章、数字滤波器的概述

数字滤波器可以用差分方程、单位取样响应以及系统函数等表示。对于研究系统的实现方法,即它的运算结构来说,用框图表示最为直接。

一个给定的输入输出关系,可以用多种不同的数字网络来实现。在不考虑量化影响时,这些不同的实现方法是等效的;但在考虑量化影响时,这些不同的实现方法性能上就有差异。因此,运算结构是很重要的,同一系统函数H (z ),运算结构的不同,将会影响系统的精度、误差、稳定性、经济性以及运算速度等许多重要性能。IIR(无限冲激响应)滤波器与FIR(有限冲激响应)滤波器在结构上有自己不同的特点,在设计时需综合考虑。 2、1数字滤波器的基本结构

作为线形时不变系统的数字滤波器可以用系统函数来表示,而实现一个系统函数表达式所表示的系统可以用两种方法:一种是采用计算机软件实现;另一种是用加法器、乘法器、和延迟器等元件设计出专用的数字硬件系统,即硬件实现。不论软件实现还是硬件实现,在滤波器设计过程中,由同一系统函数可以构成很多不同的运算结构。但是在系数和变量精度是有限的情况下,不同运算结构的性能就有很大的差异。因此,有必要对离散时间系统的结构有一基本认识。 2、1、1 IIR 滤波器的基本结构

一个数字滤波器可以用系统函数表示为:

01

()

()()

1M

k

k k N k

k k b z

Y z H z X z a z -=-==

=

-∑∑ (2-1)

由这样的系统函数可以得到表示系统输入与输出关系的常系数线形差分程为:

()()()N

M

k k k k y n a y n k b x n k ===-+-∑∑

(2-2)

可见数字滤波器的功能就是把输入序列x (n )通过一定的运算变换成输出序列y (n )。无限冲激响应滤波器的单位抽样响应h (n )是无限长的,其差分方程如(2-2)式所示,是递归式的,即结构上存在着输出信号到输入信号的反馈,其系统函数具有(2-1)式的形式,因此在z 平面的有限区间(0<︱z ︱<∞)有极点存在。

采用最少常熟乘法器和最少延迟支路的网络结构是通常的选择,以便提高运算速度和减少存储器。然而,当需要考虑有限寄存器长度的影响时,往往也采用并非最少乘法器和延迟单元的结构。 IIR 滤波器实现的基本结构有:

(1)IIR滤波器的直接型结构;

优点:延迟线减少一半,变为N 个,可节省寄存器或存储单元;

缺点:其它缺点同直接I型。

(2)IIR滤波器的级联型结构;

优点:

?系统实现简单,只需一个二阶节系统通过改变输入系数即可完成;

?极点位置可单独调整;

?运算速度快(可并行进行);

?各二阶网络的误差互不影响,总的误差小,对字长要求低。

缺点:

不能直接调整零点,因多个二阶节的零点并不是整个系统函数的零点,当需要准确的传输零点时,级联型最合适。

(3)IIR滤波器的并联型结构。

优点:

?简化实现,用一个二阶节,通过变换系数就可实现整个系统;

?极、零点可单独控制、调整,调整α1i、α2i只单独调整了第i对零点,调整β1i、β2i则单独调整了第i对极点;

?各二阶节零、极点的搭配可互换位置,优化组合以减小运算误差;

缺点:

?二阶阶电平难控制,电平大易导致溢出,电平小则使信噪比减小。

a、直接型

b、并联型

c、串联型

图2-1、IIR滤波器的基本结构

2、1、2 FIR滤波器的基本结构

FIR滤波器[7]的单位抽样响应为有限长度,一般采用非递归形式实现。通常

的FIR 数字滤波器有横截性和级联型两种。

FIR 滤波器实现的基本结构有: (1)FIR 滤波器的横截型结构

表示系统输入输出关系的差分方程可写作:

1

()()()N m y n h m x n m -==-∑ (2-3)

直接由差分方程得出的实现结构如图2-2所示:

图2-2、 横截型(直接型﹑卷积型)

若h (n )呈现对称特性,即此FIR 滤波器具有线性相位,则可以简化加横截型结构,下面分情况讨论:

图2-3、N 为奇数时线形相位FIR 滤波器实现结构 图2-4、N 为偶数时线性相

位FIR 滤波器实现结构 (2)FIR 滤波器的级联型结构

将H (z )分解成实系数二阶因子的乘积形式:

[

]1

2

120120

1

()()N N N k k k N k H z h n z b b z b z ----====++∑∏

(2-4)

这时FIR 滤波器可用二阶节的级联结构来实现,每个二阶节用横截型结构实现。如图所示:

图2-5、 FIR 滤波器的级联结构

此结构的每一节控制一对零点,因而在需要控制传输零点时采用这种结构。 2、2数字滤波器的基本原理

滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。FIR 滤波器的冲激响应只能延续一定时间。数字滤波器的设计方法有多种,如双线性变换法、窗函数设计法、插值逼近法和Chebyshev 逼近法等等。随着MATLAB 软件尤其是MATLAB 的信号处理工作箱的不断完善,不仅数字滤波器的计算机辅助设计有了可能,而且还可以使设计达到最优化。 数字滤波器设计的基本步骤如下: (1)确定指标

在设计一个滤波器之前,必须首先根据工程实际的需要确定滤波器的技术指标。在很多实际应用中,数字滤波器常常被用来实现选频操作。因此,指标的形式一般在频域中给出幅度和相位响应。幅度指标主要以两种方式给出。第一种是绝对指标。它提供对幅度响应函数的要求,一般应用于FIR 滤波器的设计。第二种指标是相对指标。它以分贝值的形式给出要求。在工程实际中,这种指标最受欢迎。对于相位响应指标形式,通常希望系统在通频带中具有线性相位。运用线性相位响应指标进行滤波器设计具有如下优点:①只包含实数算法,不涉及复数运算;②不存在延迟失真,只有固定数量的延迟;③长度为N 的滤波器(阶数为N -1),计算量为N/2数量级。 (2)逼近

确定了技术指标后,就可以建立一个目标的数字滤波器模型。通常采用理想的数字滤波器模型。之后,利用数字滤波器的设计方法,设计出一个实际滤波器模型来逼近给定的目标。 (3)性能分析和计算机仿真

上两步的结果是得到以差分或系统函数或冲激响应描述的滤波器。根据这个描述就可以分析其频率特性和相位特性,以验证设计结果是否满足指标要求;或者利用计算机仿真实现设计的滤波器,再分析滤波结果来判断。 2、2、1滤波器的性能指标

我们在进行滤波器设计时,需要确定其性能指标。一般来说,滤波器的性能要求往往以频率响应的幅度特性的允许误差来表征。以低通滤波器特性为例,频率响应有通带、过渡带及阻带三个范围。

在通带内: 1- A

P ≤| H(e j ω)| ≤1 |ω|≤ωc 在阻带中: |H(e j ω)| ≤ A st ωst ≤|ω|≤ωc 其中ωc 为通带截止频率, ωst 为阻带截止频率,A p 为通带误差, A st 为阻带误差。

与模拟滤波器类似,数字滤波器按频率特性划分为低通、高通、带通、带阻、全通等类型,由于数字滤波器的频率响应是周期性的,周期为2π。各种理想数字滤波器的幅度频率响

应如图所示:

图2-6、低通滤波器频率响应幅度特性的容限图

图2-7、 各种理想数字滤波器的幅度频率响应

2、2、2 IIR 数字滤波器的设计方法

目前,IIR 数字滤波器设计最通用的方法是借助于模拟滤波器的设计方法。模拟滤波器设计已经有了一套相当成熟的方法,它不但有完整的设计公式,而且还有较为完整的图表供查询,因此,充分利用这些已有的资源将会给数字滤波器的设计带来很大方便,IIR 数字滤波器的设计步骤是:

(1)按一定规则将给出的数字滤波器的技术指标转换为模拟滤波器的技术指标; (2)根据转换后的技术指标设计模拟低通滤波器H (s ); (3)在按一定规则将H (s )转换为H (z )。

若所设计的数字滤波器是低通的,那么上述设计工作可以结束,若所设计的是高通、带通或者带阻滤波器,那么还有步骤:

(4)将高通、带通或者带阻数字滤波器的技术指标先转化为低通滤波器的技术指标,然后按上述步骤(2)设计出模拟低通滤波器H (s ),再由冲击响应不变法或双线性变换将H (s )转换为所需的H (z )。

s - z 映射的方法有:冲激响应不变法、阶跃响应不变法、双线性变换法等。下面讨论双线性变换法。

双线性变换法[8]是指首先把s 平面压缩变换到某一中介平面s1 的一条横带(宽度为2πT,即从- πT 到πT) ,然后再利用T

s e

z 1 的关系把s1平面上的这

条横带变换到整个z 平面。这样s 平面与z 平面是一一对应关系, 消除了多值变换性, 也就消除了频谱混叠现象。

s 平面到z 平面的变换可采用)2

tan(1T

Ω=Ω (2-5)

2

2

221111T j

T j T j

T j

e

e

e e j Ω-ΩΩ-Ω+-=

Ω (2-6)

令 s j =Ω,11s j =Ω有:

T

s T s T s T s T s T s e e e

e

e e s 111111112

2

22---

-

+-=+-=

(2-7) 从s1 平面到z 平面的变换,即 T

s e

z 1= (2-8)

代入上式,得到: 1

1

11--+-=z z s (2-9)

一般来说,为使模拟滤波器的某一频率与数字滤波器的任一频率有一定的对应关系,可引入代定常数c ,

)2

tan(1T

c Ω=Ω (2-10)

则 1

1

11z s c z

---=+ (2-11) 这种s 平面与z 平面间的单值映射关系就是双线性变换。有了双线性变换,模拟滤波器的数字化只须用进行置换。 2、2、3 FIR 数字滤波器的设计方法

IIR 滤波器[7]的优点是可利用模拟滤波器设计的结果,缺点是相位是非线性的,若需要线性相位,则要用全通网络进行校正。FIR 滤波器的优点是可方便地实现线性相位。

FIR 滤波器单位冲激响应h (n )的特点: 其单位冲激响应h (n )是有限长(),系统函数为:

1

0()()N n n H z h n z --==∑

(2-12)

在有限Z 平面有(N -1)个零点,而它的(N -1)个极点均位于原点z =0处。 FIR 滤波器线性相位的特点:

如果FIR 滤波器的单位抽样响应h (n )为实数,而且满足以下任一条件:

偶对称h (n )=h (N -1-n ) 奇对称h (n )=-h (N -1-n )

其对称中心在n =(N -1)/2处,则滤波器具有准确的线性相位。 窗函数设计法:

一般是先给定所要求的理想滤波器频率响应()j d H e ω,由()j d H e ω导出()d h n ,我们知道理想滤波器的冲击响应()d h n 是无限长的非因果序列,而我们要设计的是()d h n 是有限长的FIR 滤波器,所以要用有限长序列()d h n 来逼近无限长序列

()d h n ,设:

1

()()2j j d d

h n H

e e d π

ωωπωπ

-

=

?

(2-13)

常用的方法是用有限长度的窗函数w (n )来截取

即:

()()()d h n n h n ω=

(2-14)

这里窗函数就是矩形序列R N (n ),加窗以后对理想低通滤波器的频率响应将产生什么样的影响呢?根据在时域是相乘关系,在频域则是卷积关系:

()

1()()[]2j j j d R H e H e W e d πωωωθπθπ--+=? (2-15) 其中,

为矩形窗谱, ()j H e ω是FIR 滤波器频率响应.

通过频域卷积过程看

的幅度函数H (ω)的起伏现象,可知,加窗处理

后,对理想矩形的频率响应产生以下几点影响:

(1)使理想频率特性不连续点处边沿加宽,形成一个过渡带,其宽度等于窗的频率响应的主瓣宽度。

(2)在截止频率的两边的地方即过渡带的两边,出现最大的肩峰值,肩峰的两侧形成起伏振荡,其振荡幅度取决于旁瓣的相对幅度,而振荡的多少,则取决于旁瓣的多少。(3)改变N ,只能改变窗谱的主瓣宽度,改变ω的坐标比例以及改变的绝对值大小,但不能改变主瓣与旁瓣的相对比例(此比例由窗函数的形状决定)。

(4)对窗函数的要求

a 、窗谱主瓣尽可能窄,以获取较陡的过渡带;

b 、尽量减小窗谱的最大旁瓣的相对幅度;即能量集中于主瓣,使肩峰和波纹减小,增大阻带的衰减。

频率采样法:

窗函数设计法是从时域出发,把理想的h d (n )用一定形状的窗函数截取成有限长的h (n ),来近似理想的h d (n ),这样得到的频率响应逼近于所要求

的理想的频率响应

频率抽样法则是从频域出发,把给定的理想频率响应

加以等间隔抽

样得到

,然后以此

作为实际FIR 滤波器的频率特性的抽样值H (k ),

2()()|jw d d H k H e k N

π

ω==

(2-16)

知道H (k )后,由DFT 定义可唯一确定有限长序列 h(n ),利用这N 个频域抽

样值H (k )同样利用频率内插公式可得FIR 滤波器的系统函数H (z ),及频率响应

,即:

频率抽样法内插公式:

1

1

01()

()1N

N k k N z H k H z N

W z

----=-=

-∑ (2-17)

频率抽样法小结

优点:可以在频域直接设计,并且适合于最优化设计。

缺点:抽样频率只能等于 2π/N 的整数倍,或等于2π/N 的整数倍加上π/N 。因而不能确保截止频率

的自由取值,要想实现自由地选择截止频率,

必须增加抽样点数N ,但这又使计算量增大。

为了提高逼近质量,减少通带边缘由于抽样点的陡然变化而引起的起伏振荡。有目的地在理想频率响应的不连续点的边缘,加上一些过渡的抽样点,增加过渡带,减少起伏振荡。

2、3 IIR 滤波器与FIR 滤波器的分析比较

表2-1、 两种滤波器特点比较分析

第三章、典型数字滤波器及仿真

3、1由模拟滤波器设计IIR 数字滤波器

在之前的部分中已经说明,理想的滤波器是非因果的,即物理上不可实现的系统。工程上常用的模拟滤波器都不是理想的滤波器。但按一定规则构成的实际滤波器的幅频特性可逼近理想滤波器的幅频特性,例如巴特奥兹(Butterworth)、切比雪夫(Chebyshev)滤波器和椭圆滤波器等。 3、2巴特奥兹滤波器

巴特沃兹滤波器[9](Butterworth 滤波器)

特点:具有通带内最大平坦的振幅特性,且随f ↗,幅频特性单调↘。 其幅度平方函数:

2

221()()1a N

c A H j j j Ω=Ω=

??Ω+ ?

Ω??

(3-1)

N 为滤波器阶数,如图3-1

图3-1、 巴特沃斯滤波器振幅平方特性

通带: 使信号通过的频带 阻带:抑制噪声通过的频带

过渡带:通带到阻带间过渡的频率范围 Ωc :截止频率。

过渡带为零

理想滤波器 阻带|H(j Ω )|=0

通带内幅度|H(j Ω)|=cons.

H(j Ω)的相位是线性的

图3-1中,N 增加,通带和阻带的近似性越好,过渡带越陡。 通带内,分母Ω/Ωc <1, ( Ω/Ωc )2N <1,A (Ω2)→1。

过渡带和阻带,Ω/Ωc >1, ( Ω/Ωc )2N >1, Ω增加, A(Ω2)

快速减小。

Ω=Ωc , 2

1()2A Ω=,2

()1

(0)2

c A A Ω=,幅度衰减,相当于3db 衰减点。

振幅平方函数的极点

21()()1(

)a a N

c

H S H S S j -?=

+Ω (3-2)

可见,Butter worth 滤波器 的振幅平方函数有2N 个极点,它们均匀对称地分布在|S |=Ωc 的圆周上。

考虑到系统的稳定性,知DF 的系统函数是由S 平面左半部分的极点(SP3,SP4,SP5)组成的,它们分别为:

223

3

345,,j j p c p c p c S e

S S e

ππ-=Ω=-Ω=Ω (3-3)

系统函数为:

3345()()()()

c

a p p p H s S S S S S S Ω=

--- (3-4)

,得归一化的三阶BF :

3

2

1

()221

a H s S S S =

+++ (3-5)

如果要还原的话,则有

32

1

()(/)2(/)2(/)1

a c c c H s s s s =

Ω+Ω+Ω+ (3-6)

3、3切比雪夫滤波器

巴特奥兹低通滤波器的幅频特性随Ω的增加而单调下降,当N 较小时,阻带幅频特性下降较慢,要想使其幅频特性接近理想低通滤波器,就必须增加滤波器的阶数,这就将导致模拟滤波器使用的原件增多,线路趋于复杂。切比雪夫滤波器[10]的阻带衰减特性则有所改善。

特点:误差值在规定的频段上等幅变化。

巴特沃兹滤波器在通带内幅度特性是单调下降的,如果阶次一定,则在靠近截止频率 Ωc 处,幅度下降很多,或者说,为了使通常内的衰减足够小,需要的阶次(N )很高,为了克服这一缺点,采用切比雪夫多项式逼近所希望

的 。 切比雪夫滤波器的 在通带范围内是等幅起伏的,

所以同样的通带衰减,其阶数较巴特沃兹滤波器要小。可根据需要对通带内允许的衰减量(波动范围)提出要求,如要求波动范围小于1db 。

振幅平方函数为

1c Ω=2

()H j Ω2

()

H j Ω

2

2221()()1()

a N c

A H j V εΩ=Ω=

Ω

+Ω (3-7)

式中 Ω—有效通带截止频率

ε—与通带波纹有关的参量,ε大,波纹大,0 <ε<1。 Vn(x)—N 阶切比雪夫多项式,定义为

1

1

cos(cos )

1()cosh(cosh )

1

N N x x V x N x x --?≤?=?>?? (3-8)

1,()11,,()N N x V x x x V x ≤≤>↑↑

时 (3-9)

如图3-1,通带内

1c Ω≤Ω,2

a ()H j Ω,变化范围1-2

11ε+

Ω>Ωc ,随Ω/Ωc ↗,2

a ()H j Ω→0(迅速趋于零) 当 Ω =0时,

2

2

02211

()1cos[arccos(0)]1cos ()2

a H j N N πεεΩ=Ω=

=++? (3-10) N 为偶数,2201()1a H j εΩ=Ω=+,

2

cos ()12

N π?=(min) , (3-11) N 为奇数,2

0()1a H j Ω=Ω=,2cos ()02

N π?=(max),

(3-12)

图3-2、切比雪夫滤波器的振幅平方特性

有关参数的确定:

a. 通带截止频率 ,预先给定

b. 由通带波纹表为c Ω

max min

()120lg

20lg

1()a a H j H j δΩ==Ω (3-13)

210lg(1)δε=+

(3-14)

给定通带波纹值分贝数 后,可求ε。

2

21,()r a H j A

Ω=ΩΩ≤

时 (3-15)

c. 阶数N —由阻带的边界条件确定。(r Ω,A 事先给定) 2

2

1

,()r a H j A Ω=ΩΩ≤

时 (3-16)

2221

1

1r N c A

V ε≤

??Ω+ ?Ω??

(3-17)

2

221

1

1r N c A V ε≤

??Ω+ ?Ω??

(3-18)

1,x >时 ()cosh(cosh )N V x Nar x = (3-19) 得

c o s 1/

c o s h (/)r c ar N ar ε≥ΩΩ (3-20)

3、4椭圆滤波器

特点:幅值响应在通带和阻带内都是等波纹的,对于给定的阶数和给定的波纹要求,椭圆滤波器能获得较其它滤波器为窄的过渡带宽,就这点而言,椭圆滤波器[11]是最优的,其振幅平方函数为

(3-21)

式中,R N (Ω,L)为雅可比椭圆函数,L 是一个表示波纹性质的参量。

()dB δ

图3-3、 N=5时

的特性曲线

由图可见,在归一化通带内(-1≤Ω≤1),

在(0,1)间振荡,而超过

ΩL 后,在L 2, ∞间振荡。L 越大,ΩL 也变大。这一特点使滤波器同时在通带和阻带具有任意衰减量。

下图为典型的椭园滤波器振幅平方函数:

图3-4、 椭圆滤波器的振幅平方函数

图中ε和A 的定义与切比雪夫滤波器相同。

当Ωc 、Ωs 、ε和A 确定后,阶次N 的确定方法为 :

确定参数s c k ΩΩ=/ 确定参量1A 2

1-=

εk

N=

2

121k

-1)K K(k 1)(K k K k -

式中K(k)=

为第一类完全椭圆积分。

3、5用matlab 设计数字滤波器简介

数字滤波器的实现[6],大体上有如下几种方法: (1) 在通用的微型机上用软件来实现。

软件可以由使用者自己编写或使用现成的。自IEEE DSP Comm.于1979年推出第一个信号处理软件包以来,国外的研究机构、公司也陆续推出不同语言不同用途的信号处理软件包。这种实现方法速度较慢,多用于教学与科研。 (2) 用单片机来实现。

目前单片机的发展速度很快,功能也很强依靠单片机的硬件环境和信号处理软件可用于工程实际,如数字控制、医疗仪器等。

(3) 利用专门用于信号处理的DSP片来实现。

DSP芯片较之单片机有着更为突出的优点,如内部带有乘法器、累加器,采用流水线工作方式及并行结构,多总线,速度快,配有适于信号处理的指令等,DSP 芯片的问世及飞速发展,为信号处理技术应用于工程实际提供了可能。

matlab设计数字滤波器传统的数字滤波器的设计过程复杂,计算工作量大,滤波特性调整困难。利用MATLAB信号处理工具箱(Signal Processing Toolbox)[12-14]可以快速有效的设计由软件组成的常规数字滤波器的设计方法。利用MATLAB设计滤波器,可以随时对比设计要求和滤波器特性调整参数,直观简便,极大的减轻了工作量,有利于滤波器设计的最优化。采用Matlab仿真软件对高Q值带通滤波器进行设计,确定滤波器的类型及系数,把直接型转换成级联型,并确定二阶节的系数。在仿真过程中结合各主要参数,来观察对滤波性能的总结。

第四章、总结

(1)系统思维必须有系统的整体思维,把每一个细节都放到整个系统中考虑,考虑整个系统设计的可行性、完整性、稳定性和功能的实现,这样才不会局限在细节上,才能保持研究工作的整体方向性,并完成研究工作。

(2)类型寻优确定好所需要设计的滤波器用途后,首先对其进行性能需求分析,明确该系统应该达到的各种性能指标,其次,拟定多种滤波器类型,对这些方案采用Matlab进行仿真,进行综合分析和比较,选择出最佳的滤波器类型作为本设计方案,然后,依据其性能指标编写matlab程序,确定二阶节系数。

参考文献

1 邓重一.滤波器的过去、现在与未来[J].世界电子元器件.2003,13(4):48

~49

2 邓重一.滤波技术的发展现状[J].中国仪器仪表.2004,(02):1~4

3 李洪伟,张长明.LMS自适应算法设计FIR、IIR数字滤波器的应用及比较[J].

现代电子技术.2005,(15):79~80

4 Oppenheim A V,Schafer R W.Digital signal processing[M].Englewood

Cliffs,NJ:Prentice-Hall,1975。

5 王世一.数字信号处理[M].北京:北京理工大学出版社,2005。

6 叶榆,贺国权.基于Pspice的八阶巴特沃斯低通滤波器设计与优化[J],山西电

子技术,2006.(3):61~63

7 谢子常,徐水明.数字切比雪夫滤波器的设计及MATLAB仿真[J],福建电脑

,2004.(5):31~32

8 王田.Celestino A Corral.杨士中.椭圆函数滤波器边带特性优化方法[J],

电路与系统学报,2005.10(5):2~4

9丁磊,潘贞存,丛伟.基于MATLAB信号处理工具箱的数字滤波器设计与仿真[J].

继电器. 2003, 31 (9):49~51

10 张亚妮,基于MATLAB的数字滤波器设计[J],辽宁工程技术大学学报

2005.24(5):716~718

巴特沃斯数字低通滤波器

目录 1.题目.......................................................................................... .2 2.要求 (2) 3.设计原理 (2) 3.1 数字滤波器基本概念 (2) 3.2 数字滤波器工作原理 (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法 (4) 3.5实验所用MA TLAB函数说明 (5) 4.设计思路 (6) 5、实验内容 (6) 5.1实验程序 (6) 5.2实验结果分析 (10) 6.心得体会 (10) 7.参考文献 (10)

一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 2、数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系 y(n)=x(n) h(n) 在Z 域内,输入输出存在下列关系 Y(Z)=H(Z)X(Z) 式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。 同样在频率域内,输入和输出存在下列关系 Y(jw)=X(jw)H(jw) 式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。w 为数字角频率,单位rad 。通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。 一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。 3、巴特沃斯滤波器设计原理 (1)基本性质 巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 巴特沃思滤波器的低通模平方函数表示1 () ΩΩ+ =Ωc N /22 a 11 ) (j H

数字滤波器的基本概念及一些特殊滤波器

第五章数字滤波器的基本概念及一些特殊滤波器 5.1 数字滤波器的基本概念 1.数字滤波器与数字滤波 滤波的涵义: 将输入信号的某些频率成分或某个频带进行压缩、放大; 对信号进行检测; 对参数估计; 数字滤波器: 通过对输入信号的进行数值运算的方法来实现滤波 模拟滤波器: 用电阻、电容、电感及有源器件等构成滤波器对信号进行滤波 2.数字滤波器的实现方法 用软件在计算机上实现 用专用的数字信号处理芯片 用硬件 3.数字滤波器的可实现性 ?要求系统因果稳定设计的系统极点全部集中 在单位圆内。 ?要求系统的差分方程的系数或者系统函数的系数为实数系统的零极点必须共轭成对出现,或者是实数。 4.数字滤波器的种类 现代滤波器 经典滤波器 ?滤波特性?a?a数字高通、数字低通、数字带 通、数字带阻; ?实现方法 ?a?a无限脉冲响应滤波器,简称IIR (Infinite Impulse Response),它的单位脉冲响应为无限长,网络中有反馈回路。其系统函数为: ?a?a有限脉冲响应滤波器,简称FIR (Finite Impulse Response)它的单位脉冲响应为有限长,网络中没有反馈回路。其系统函数为:5.2 理想数字滤波器

理想滤波器是一类很重要的滤波器,对信号进行滤波能够达到理想的效果,但是他只能近似实现。设计的时候可以把理想滤波器作为逼近标准用。 本节主要讲述: 理想滤波器的特点: 在滤波器的通带内幅度为常数(非零),在阻带中幅度为零; 具有线性相位; 单位脉冲响应是非因果无限长序列。 理想滤波器的传输函数: ?幅度特性为: 相位特性为: 群时延为: ?则信号通过滤波器输出的频率响应为: 其时域表达式: ?输入信号输出信号, 表示输出信号相对输入信号没有发生失真。 假设低通滤波器的频率响应为 式中,是一个正整数,称为通带截止频率。 其幅度特性和相位特性图形如下: 滤波器的单位脉冲响应为: 举例:假设

IIR数字滤波器设计原理

IIR 数字滤波器设计原理 利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。 如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率 s p w w 和的转换,对s p αα和指标不作变化。边界频率的转换关系为)21tan(2w T =Ω。接着,按照模拟低通滤波器的技术指标根据相应 设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一 化低通滤波器参数表,得到归一化传输函数 )(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。之后,通过双线性变换法转换公式 11 112--+-=z z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。 步骤及内容 1) 用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为: 在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。 2) 以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特 性曲线。 3) 程序及图形 程序及实验结果如下: %%%%%%%%%%%%%%%%%%

%iir_1.m %lskyp %%%%%%%%%%%%%%%%%% rp=1;rs=15; wp=.2*pi;ws=.3*pi; wap=tan(wp/2);was=tan(ws/2); [n,wn]=buttord(wap,was,rp,rs,'s'); [z,p,k]=buttap(n); [bp,ap]=zp2tf(z,p,k); [bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,.5); [h,f]=freqz(bz,az,256,1); plot(f,abs(h)); title('双线性z 变换法获得数字低通滤波器,归一化频率轴'); xlabel('\omega/2\pi'); ylabel('低通滤波器的幅频相应');grid; figure; [h,f]=freqz(bz,az,256,100); ff=2*pi*f/100; absh=abs(h); plot(ff(1:128),absh(1:128)); title('双线性z 变换法获得数字低通滤波器,频率轴取[0,\pi/2]'); xlabel('\omega'); ylabel('低通滤波器的幅频相应');grid on; 运行结果: 00.050.10.150.20.25 0.30.350.40.450.500.1 0.2 0.3 0.40.50.60.70.8 0.9 1 双线性z 变换法获得数字低通滤波器,归一化频率轴 ω/2π低通滤波器的幅频相应

切比雪夫1型数字低通滤波器

目录 1. 数字滤波器的设计任务及要求 (2) 2. 数字滤波器的设计及仿真 (2) 2.1数字滤波器的设计 (3) 2.2数字滤波器的性能分析 (3) 3. 数字滤波器的实现结构对其性能影响的分析 (8) 3.1数字滤波器的实现结构一及其幅频响应 (10) 3.2数字滤波器的实现结构二及其幅频响应 (12) 3.3 数字滤波器的实现结构对其性能影响的小结 (12) 4. 数字滤波器的参数字长对其性能影响的分析 (13) 4.1数字滤波器的实现结构一参数字长及幅频响应特性变化 4.2数字滤波器的实现结构二参数字长及幅频响应特性变化 4.3 数字滤波器的参数字长对其性能影响的小结 (16) 5. 结论及体会 (16) 5.1 滤波器设计、分析结论 (16) 5.2 我的体会 (16) 5.3 展望 (16)

1.数字滤波器的设计任务及要求 1. 设计说明 每位同学抽签得到一个四位数,由该四位数索引下表确定待设计数字滤波器的类型及其设计方法,然后用指定的设计方法完成滤波器设计。 要求:滤波器的设计指标: 低通: (1)通带截止频率πrad (id) pc 32 ln = ω (2)过渡带宽度πrad ) (i d 160 10log tz ≤?ω (3)滚降dB αroll 60= 其中,i d — 抽签得到那个四位数(学号的最末四位数),本设计中i d =0201。 2. 滤波器的初始设计通过手工计算完成; 3. 在计算机辅助计算基础上分析滤波器结构对其性能指标的影响(至少选择两种以上合适的滤波器 结构进行分析); 4. 在计算机辅助计算基础上分析滤波器参数的字长对其性能指标的影响; 5. 以上各项要有理论分析和推导、原程序以及表示计算结果的图表; 6. 课程设计结束时提交设计说明书。 2.数字滤波器的设计及仿真 2.1数字滤波器(编号0201)的设计 数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,而数字滤波器处理精度高、体积小、稳定、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。 本次课程设计使用MATLAB 信号处理箱和运用切比雪夫法设计数字滤波器,将手工计算一个切比雪夫I 型的IIR 的低通模拟滤波器的系统函数,并在MATLAB 的FDATool 设计工具分析其性能指标。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

脉冲响应不变法设计数字低通滤波器

燕山大学 课程设计说明书 题目:脉冲响应不变法设计数字低通滤波器 学院(系):电气工程学院 年级专业:09级精密仪器及机械2班 学号: 0901******** 学生姓名:范程灏 指导教师:刘永红 教师职称:讲师

电气工程学院《课程设计》任务书 课程名称:数字信号处理课程设计 基层教学单位:仪器科学与工程系指导教师: 学号学生姓名(专业)班级设计题目7、脉冲响应不变法设计数字低通滤波器 设 计技术参数给定技术指标为:Hz f p 100 =,Hz f s 300 =,dB p 3 = α,dB s 20 = α,采样频率Hz F s 1000 =。 设 计 要 求 设计Butterworth低通滤波器,用脉冲响应不变法转换成数字滤波器。 参考资料数字信号处理方面资料MATLAB方面资料 周次前半周后半周 应完成内容收集消化资料、学习MA TLAB软件, 进行相关参数计算 编写仿真程序、调试 指导教师签字基层教学单位主任签字

目录 第1章前言 (3) 第2章数字信号处理部分基础知识 (3) 第3章 MATLAB部分基础知识 (8) 3.1 MATLAB介绍 (8) 3.2 MATLAB命令介绍 (8) 第4章仿真过程及仿真图 (9) 4.1 仿真程序 (9) 4.2 仿真波形 (10) 第5章设计结论 (10) 第6章参考文献 (11)

第一章 前言 《数字信号处理》课程设计是在学生完成数字信号处理和MATLAB 的结合后的基本实验以后开设的。本课程设计的目的是为了让学生综合数字信号处理和MATLAB 并实现一个较为完整的小型滤波系统。这一点与验证性的基本实验有本质性的区别。开设课程设计环节的主要目的是通过系统设计、软件仿真、程序安排与调试、写实习报告等步骤,使学生初步掌握工程设计的具体步骤和方法,提高分析问题和解决问题的能力,提高实际应用水平。 IIR 数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以IIR 滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。其设计方法主要有经典设计法、直接设计法和最大平滑滤波器设计法。FIR 数字滤波器的单位脉冲响应是有限长序列。它的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数问题,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。 第2章 数字信号处理基础知识部分 2.1巴特沃斯滤波器的幅度平方函数及其特点 巴特沃斯模拟滤波器幅度平方函数的形式是 )N c N c a j j j H 222 )/(11 )/(11ΩΩ+= ΩΩ+= Ω (5-6)

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

数字信号处理-低通滤波器设计实验

实验报告 课程名称:数字信号处理 实验名称:低通滤波器设计实验 院(系): 专业班级: 姓名: 学号: 指导教师: 一、实验目的: 掌握IIR数字低通滤波器的设计方法。 二、实验原理: 2.1设计巴特沃斯IIR滤波器 在MATLAB下,设计巴特沃斯IIR滤波器可使用butter 函数。 Butter函数可设计低通、高通、带通和带阻的数字和模拟IIR滤波器,其特性为使通带内的幅度响应最大限度地平坦,但同时损失截止频率处的下降斜度。在期望通带平滑的情况下,可使用butter函数。butter函数的用法为:

[b,a]=butter(n,Wn)其中n代表滤波器阶数,W n代表滤波器的截止频率,这两个参数可使用buttord函数来确定。buttord函数可在给定滤波器性能的情况下,求出巴特沃斯滤波器的最小阶数n,同时给出对应的截止频率Wn。buttord函数的用法为:[n,Wn]= buttord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 2.2契比雪夫I型IIR滤波器。 在MATLAB下可使用cheby1函数设计出契比雪夫I 型IIR滤波器。 cheby1函数可设计低通、高通、带通和带阻契比雪夫I 型滤IIR波器,其通带内为等波纹,阻带内为单调。契比雪夫I型的下降斜度比II型大,但其代价是通带内波纹较大。cheby1函数的用法为:[b,a]=cheby1(n,Rp,Wn,/ftype/)在使用cheby1函数设计IIR滤波器之前,可使用cheblord 函数求出滤波器阶数n和截止频率Wn。cheblord函数可在给定滤波器性能的情况下,选择契比雪夫I型滤波器的最小阶和截止频率Wn。cheblord函数的用法为: [n,Wn]=cheblord(Wp,Ws,Rp,Rs)其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。 三、实验要求: 利用Matlab设计一个数字低通滤波器,指标要求如下:

数字带通滤波器

课程设计报告 专业班级 课程 题目 学号 学生姓名 指导教师 年月

一、设计题目:IIR 数字带通滤波器设计 二、设计目的 1、巩固所学理论知识。 2、提高综合运用所学理论知识独立分析和解决问题的能力。 3、更好地将理论与实践相结合。 4、掌握信号分析与处理的基本方法与实现。 5、熟练使用MATLAB 语言进行编程实现。 三、设计要求 采用适当方法基于MATLAB 设计一个IIR 带通滤波器,其中带通的中心频率为ωp0=0.5π,;通带截止频率ωp1=0.4π,ωp2=0.6π;通带最大衰减αp =3dB;阻带最小衰减αs =15dB;阻带截止频率ωs2=0.7π. 四、设计原理 1.用脉冲相应不变法设计IIR 数字滤波器 利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应 h a (t ),即将h a (t )进行等间隔采样,使h (n )正好等于h a (t )的采样值,满足 h (n )=h a (nT ) 式中,T 是采样周期。 如果令H a (s )是h a(t )的拉普拉斯变换,H (z )为h (n )的Z 变换,利用采样序列的 Z 变换与模拟信号的拉普拉斯变换的关系得 (1-1) 则可看出,脉冲响应不变法将模拟滤波器的S 平面变换成数字滤波器的Z 平面,这个从s 到z 的变换z =e sT 是从S 平面变换到Z 平面的标准变换关系式。 ??? ?? -= Ω-= ∑∑ ∞ -∞=∞ -∞ ==k T j s X T jk s X T z X k a s k a e z sT π21 )(1) (

巴特沃斯数字(精选)低通滤波器

目录1.题目...................................................................... (2) 2.要求...................................................................... . (2) 3.设计原理...................................................................... .. (2) 3.1数字滤波器基本概念 (2) 3.2数字滤波器工作原理 (2) 3.3巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法...................................................................... . (4) 3.5实验所用MATLAB函数说明 (5)

4.设计思路...................................................................... (6) 5、实验内容...................................................................... .. (6) 5.1实验程序...................................................................... (6) 5.2实验结果分析...................................................................... (10) 6.心得体会...................................................................... .. (10) 7.参考文献...................................................................... .. (10) 一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤

数字滤波器课程设计

课程设计 课程设计名称:数字信号处理课程设计 专业班级:电信1203 学生姓名:刘海峰 学号: 201216020307 指导教师:乔丽红 课程设计时间:2015/07/01-2015/07/06 电子信息工程专业课程设计任务书

说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页

一. 技术要求 ?双线性变换法设计切比雪夫II型数字IIR低通滤波器, ?要求通带边界频率为400Hz, ?阻带边界频率分别为500Hz, ?通带最大衰减1dB, ?阻带最小衰减40dB, ?抽样频率为2000Hz, 二. 设计原理 IIR滤波器的设计包括三个步骤:①给出所需要的滤波器的技术指标; ②设计一个H(z)使其逼近所需要的技术指标:③实现所设计的H(z),IIR数字滤波器设计的最通用的方法是借助于模拟滤波器的设计方法。所以IIR数字低通滤波器的设计步骤是:①按一定规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标;②根据转换后的技术指标设计模拟低通滤波器G(s):③再按一定规则将G(s)转换成H(z)。 在此过程中,我们用到了很多MATLAB中的函数,如设计切比雪夫低通滤波器的函数afd_chebl、由直接型转换为级联型的函数dir2cas、双线性变换的函数bilinear等。其中afd _chebl用于实现用模拟指标设计一个低通模拟滤波器,bilinear用于利用双线性变换法将模拟低通滤波器转换为数字低通滤波器。

三.程序流程图

四:源代码(完美版) %归一化低通滤波器技术指标 clc; clear all; Ap=1; %最大通带衰减 As=40; %最小阻带衰减 W=2000; %抽样周期 Wp=400; %通带边界频率 Ws=500; %阻带边界频率 wp=2*pi*Wp/W; %归一化通带边界频率 ws=2*pi*Ws/W; %归一化阻带边界频率 Wp1=tan(wp/2); %模拟低通滤波器通带边界频率 Ws1=tan(ws/2); %模拟低通滤波器阻带边界频率 %归一化切比雪夫II型低通模拟滤波器 [N,Wn]=cheb2ord(Wp1,Ws1,Ap,As,'s'); %确定滤波器阶数和频率尺度缩放因子 [BT,AT]=cheby2(N,As,Wn,'s');%传输函数的系数 [Z,P,K]=cheb2ap(N,As);%最小阻带衰减为As(DB)的N阶归一化模拟切比雪夫2型低通滤波器的零点、极点和增益因子 [H,W]=zp2tf(Z,P,K);%传输函数有理化形式 figure; [P,Q]=freqs(H,W);

滤波器的基本技术指标与设计方法

对于滤波器的幅频响应,通常把能通过的信号频率范围定义为通带,而把受阻或衰减的信号频率范围称为阻带,通带和阻带之间的界限频率称为截止频率。对于理想的滤波器在通带内具有零衰减的幅频响应,而在阻带内具有无限大的衰减,这种突变的衰减在物理上是不可实现的,实际的滤波器通常在通带和阻带之间有一个过渡带,而且在通带内无法实现没有衰减,在阻带内无法实现无限大衰减,通常有一个容限。图3.25给出了四种滤波器参数的含义https://www.doczj.com/doc/255762272.html,/article/show-2280.htm 图中δ1和δ2分别为通带和阻带的容限,在设计时通常给出通带允许的最大衰减αp和阻带应达到的最小衰减αs。滤波器的衰减定义为 FIR数字滤波器可以根据要求直接设计,但是对于模拟滤波器和IIR数字滤波器的设计都是基于模拟低通滤波器的基础上进行设计。模拟滤波器的设计流程如图3.26所示。 其中有两个关键的设计步骤,一个就是原型变换,将其他类型的滤波器技术指标转换成模拟低通滤波器的技术指标;另外一个就是模拟低通滤波器设计。 IIR滤波器通常借助模拟滤波器的设计方法来设计。因为在数字滤波器之前,模拟滤波器在设计、应用方面已经有了很长时间,形成了完善的设计理论,并有丰富的设计数据积累和设计表格可以查询,所以在设计数字滤波器时借助模拟滤波器的设计方法是比较经济的。图3.27是IIR数字滤波器的设计流程图。

图中也有两个关键步骤,一个就是从数字域到模拟域的变换,这个变换实现了数字滤波器技术到模拟滤波器技术指标的转换,同样也实现了模拟滤波器系统函数到数字滤波器系统函数的转换;另外一个就是从模拟滤波器技术指标到相应的模拟滤波器的设计。 本资料属于购线网所有,如需转载,请注明出处,更多资料查看,请前往购线网!

数字滤波器的一般概念

数字滤波器的一般概念 滤波器可广义地理解为一个信号选择系统。它让某些信号成分通过又阻止或衰减另一些成分。在更多地情况下,被窄义地理解为选频系统,如低通、高通、带通、带阻。频域与时域均衡器也是一种滤波器,通信系统的传输媒介如明线、电缆等从特性看也是滤波器。滤波器如系统一样可分为三类:模拟滤波器、采样滤波器和数字滤波器.模拟滤波器(AF)可以是由RLC构成的无源滤波器,也可以是加上运放的有源滤波器,它们是连续时间系统。采样滤波器(SF)由电阻、电容、电荷转移器件、运放等组成,属于离散时间系统,其幅度是连续的。开关电容滤波器、电荷耦合滤波器军属这类滤波器。数字滤波器(DF)由加法器、乘法器、存储延迟单元、时钟脉冲滤波器及逻辑单元等数字电路构成。它精度高,稳定性好,不存在阻抗匹配问题,可以时分复用,能够完成一些模拟滤波器完成不了的滤波任务。其缺点是需要抽样、量化、编码,以及手时钟频率所限,所能处理的信号最高频率还不够高。另外,由于有限字长效应会造成域设计值的频率偏差、量化和运算噪声及极限环振荡。 本章讨论的是数字滤波器。 5.1.1 数字滤波器的分类 下面从各种不同角度对数字滤波器分类: 1.按冲激响应h(n)的长度分类 分为有限冲激响应(FIR)DF和无限冲激响应(IIR)DF两种。冲 激响应本来是用于模拟系统,指系统对冲激函数δ(t)的响应。 发展到数字滤波器后,工程上仍沿用这个名称,与单位抽样响应和 单位脉冲响应的说法通用。 FFR DF的冲激响应h(n)为有限长序列,其差分方程为 y(n)= (5.1) 系统函数为 H(z)= (5.2) IIR DF 的冲激响应h(n)为无限长序列,其差分方程为

FIR低通数字滤波器的设计要点

《DSP技术与应用》课程设计报告 课题名称:基于DSP Builder的FIR数字滤波器的设计与实现 学院:电子信息工程学院 班级:11级电信本01班 学号: 姓名:

题目基于DSP Builder的FIR数字滤波器的设计与实现 摘要 FIR数字滤波器是数字信号处理的一个重要组成部分,由于FIR数字滤波器具有严格的线性相位,因此在信息的采集和处理过程中得到了广泛的应用。本文介绍了FIR数字滤波器的概念和线性相位的条件,分析了窗函数法、频率采样法和等波纹逼近法设计FIR滤波器的思路和流程。在分析三种设计方法原理的基础上,借助Matlab仿真软件工具箱中的fir1、fir2和remez子函数分别实现窗函数法、频率采样法和等波纹逼近法设计FIR滤波器。然后检验滤波器的滤波效果,采用一段音频进行加噪声然后用滤波器滤,对比三段音频效果进而对滤波器的滤波效果进行检验。仿真结果表明,在相频特性上,三种方法设计的FIR滤波器在通带内都具有线性相位;在幅频特性上,相比窗函数法和频率采样法,等波纹逼近法设计FIR滤波器的边界频率精确,通带和阻带衰减控制。

Abstract FIR digital filter is an important part of digital signal processing, the FIR digital filter with linear phase, so it has been widely applied in the collection and processing of information in the course of. This paper introduces the concept of FIR digital filter with linear phase conditions, analysis of the window function method and frequency sampling method and the ripple approximation method of FIR filter design ideas and processes. Based on analyzing the principle of three kinds of design methods, by means of fir1, fir2 and Remez function of Matlab simulation software in the Toolbox window function method and frequency sampling method and respectively realize equiripple approximation method to design FIR filter. Then test the filtering effect of the filter, using an audio add noise and then filter, test three audio effects and comparison of filter filtering effect. Simulation results show that the phase frequency characteristic, three design methods of FIR filter with linear phase are in the pass band; the amplitude frequency characteristics, compared with the window function method and frequency sampling method, equiripple approximation method Design of FIR filter with accurate boundary frequency, the passband and stopband attenuation control.

IIR数字低通滤波器

IIR数字低通滤波器 一、设计目的 课程设计是理论教学的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高教育质量,培养合格人才等具有特殊作用本次课程设计一方面通过MA TLAB仿真设计内容,使学生加深对理论知识理解的同时增强其逻辑斯维的能力,另一方面对课堂教学中的理论知识做一个总结和补充。 二、设计要求 2.1 简述设计目的 2.2 阐述设计原理 2.3 按步骤设计滤波器,给出系统函数 2.4 用MATLAB语言编程、绘制幅频特性曲线 2.5 定性分析两种设计方法的滤波器的性能。比较优缺点,并判定设计是否能满足要求 三、设计原理 3.1 巴特沃斯滤波器原理 由于已知指标,故可求出滤波器的阶数N,由式知,求出归一化极点,将代入,得到归一化传输函数。也可以根据N查表得到归一化传输函数。然后再将去归一化。将代入,得到实际的滤波器传输函数Ha(S)。这里3dB截止频率可以按照或。这样即可设计出低通巴特沃斯滤波器。巴特沃斯滤波器的幅度响应在通带内具有最平坦的特性,且在通带和阻带内幅度的特性,是单调变化的。模拟巴特沃斯滤波器的幅度平方函数为=2N,式中N称为滤波器的阶数,为角频率,在处幅度响应的平方为。 3.2 双线性变换法工作原理

使数字滤波器的频率响应与模拟滤波器的频率响应相似。冲激响应不变不得法、阶跃响应不变法:时域模仿逼近缺点是产生频率响应的混叠失真双线性变换法也是一种由S平面到z平面的映射过程,双线性变换法与脉冲响应不变法不同,它是一种从S 平面到z平面简单映射。双线性变换中数字域与频率和模拟频率之间的非线性关系限制了它的应用范围,只有当非线性失真是允许的或能被裣时,才能采用双线性变换法,通常低通、高通、带通和带阻等滤波器等具有分段恒定的频率特性,可以采用预畸变的方法来补偿频率畸变,因此可以采用双线性变换设计方法。 3.3 脉冲响应不变法工作原理 冲激响应不变法遵循的准则是使数字滤波器的单位取样响应与参照的模拟滤波器的脉冲响应的取样值完全一样,即h(n)=ha(nT),其中T为取样周期。实际是由模拟滤波器转换成为数字滤波器,就是要建立模拟系统函数Ha(S)与数字系统函数H(z)之间的关系。脉冲响应不变法是从S平面映射到z平面,这种映射不是简单的代数映射,而是S平面的每一条宽为的横带重复地映射到整个z平面。 四、按步骤设计滤波器 4.1用脉冲响应不变法设计低通滤波器 4.1.1数字低通的技术指标为 4.1.2模拟低通的技术指标为 4.1.3设计巴特沃斯低通滤波器。先计算阶数N及3dB截止频率。 取N=9.。将和代入公式,得到3dB截止频率,此值满足通带技术要求,同时给阻带衰减留一定余量,这对防止频率混叠有一定好处。根据阶数N=9,查表得到归一化传输函数为 为去归一化,将代入中,得到实际的传输函数为 4.1.4 用脉冲响应不变法将转换成如下:

==数字滤波器基本概念

1第五讲 数字滤波器基本概念 数字信号处理 面向专业:自动化系授课教师:刘剑毅 ()() N M k m k m k m a z Y z b z X z ??===∑∑两边取Z变换,得: ()00 1 () ()() 10M M m m m m m m N N k k k k k k k b z b z Y z H z X z a z a z a h n ??==??=== == ?≠∑∑∑∑只要有一个,序列就是无限长的。 如果一个离散时间系统的单位抽样响应h(n)延伸到无穷长,即n →∞时,h(n)仍有值,这样的系统称作无限长单位冲激响应(IIR)系统。 所谓“滤波器”就是这些“系统”。 ) (n y ) ()()(n h n x n y ?=)(n h () x n 对其进行Z变换,得:

按单位抽样响应的类型分: 01 1M k k k N k k k b z a z ?=?== ?∑∑1 0)()N n n h n z ??==∑滤波器(N -1阶) 滤波器(N 阶) 特点: 1、单位冲激响应h(n) 2、系统函数H (z )在有限()上有极点存在。 ∞<

1 1 arg[()]arg[]()j M N m k m k H e K N M ωθω ===+ ?Φ +?∑∑m m k ριG G G 零点向量,零点指向向量;极点向量,极点指向向量。14 零点在单位圆上0,处;极点在π。 。 一个例子:

用窗函数法设计FIR数字低通滤波器要点

河北科技大学课程设计报告 学生姓名:学号: 专业班级: 课程名称: 学年学期 指导教师: 20 年月

课程设计成绩评定表 学生姓名学号成绩 专业班级起止时间 设计题目 指 导 教 师 评 指导教师: 语 年月日

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计内容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 1.6心得体会 (14) 参考文献 (15)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 () ?????≤<≤=-π ωωωωωαω c c j j d ,, e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

数字低通巴特沃斯滤波器的设计实验报告

实验报告 姓名:学号:实验日期: 实验题目:数字低通巴特沃斯滤波器的设计 实验目的:掌握IIR数字滤波器的设计方法 实验内容: 1.设计一个低通巴特沃斯模拟滤波器,绘制滤波器的的幅频响应及零极点图。指标如下: 通带截止频率:WP=1000HZ, 通带最大衰减:RP=3dB 阻带截止频率:Ws=2000HZ, 阻带最小衰减:Rs=40 dB 参考程序butter1.m 2. 用冲激响应不变法和双线性变换法将一模拟低通滤波器转换为数字低通滤波器 并图释H(S)和H(Z),采样频率Fs=1000Hz 实验地点:4305机房 实验结果: %巴特沃兹滤波器的幅频响应图 subplot(1,2,1);%分两个窗口,幅频图在第一个窗口 wp=1000;ws=2000;rp=3;rs=40; %设置指标 [N,wn]=buttord(wp,ws,rp,rs,'s') %计算巴特沃斯低通滤波器的阶数和3dB截止频率[B,A]=butter(N,wn,'s'); %代入N和Wn设计巴特沃斯模拟低通滤波器 [Z,P,K]=buttap(N); %计算滤波器的零、极点 [h,w]=freqs(B,A,1024); %计算1024点模拟滤波器频率响应h,和对应的频率点w %画频率响应幅度图 plot(w,20*log10(abs(h)/abs(h(1)))) grid; xlabel('频率Hz');ylabel('幅度(dB)');%给x轴和y轴加标注 title('巴特沃斯幅频响应') %给图形加标题 axis([0,3000, -40,3]); line([0,2000],[-3,-3]); line([1000,1000],[-40,3]); %绘制巴特沃斯滤波器的极点图 subplot(1,2,2) %在第二个窗口画极点图 p=P';q=Z'; x=max(abs([p,q])); x=x+0.1;y=x; axis([-x,x,-y,y]); axis('square')

相关主题
文本预览
相关文档 最新文档