当前位置:文档之家› 直流分布式电源系统的小信号稳定性研究

直流分布式电源系统的小信号稳定性研究

直流分布式电源系统的小信号稳定性研究
直流分布式电源系统的小信号稳定性研究

文章编号:100420366(2002)0420024204

收稿日期:2002-03-28

基金项目:浙江省教育厅科研计划项目(20020378)

直流分布式电源系统的小信号稳定性研究

杨相生

(宁波大学科学技术学院,浙江宁波 315211)

摘 要: 在一个直流分布式电源系统中,各独立设计的电源模块或子系统之间的相互作用,可能导致整个系统的不稳定1在小信号的意义下,系统稳定性能通过测定阻抗比Z o Z i 来判断1在讨论已有的基于阻抗分析法的直流分布式电源系统稳定性研究成果和存在问题的同时,改进了单独负载阻抗规范的禁止区域,不仅保证小信号系统的稳定性的充分条件,而且给实际测量系统的稳定裕量提供了一条方便的途径1

关键词: 直流分布式电源系统;阻抗分析法;小信号稳定性

中图分类号: TM 13113 文献标识码: A

分布式电源系统物理上由许多小的电源模块或子系统组成1通常,这些模块和子系统是独立设计的,对每个模块或子系统的设计仅仅是保证自身运行的稳定性1因而,当这些模块(子系统)被集成、连接后,他们之间的相互作用会导致整个系统性能的下降甚至不稳定[1,2]1

在小信号的意义下,系统稳定性能通过阻抗分析法来判断1设Z o 和Z i 分别为源和负载连接面上的源输出阻抗和负载输入阻抗1阻抗分析法是用Z o Z i 作为系统的闭环增益来判别系统的稳定性[2]1根据奈氏(N yquist )判据,系统的小信号稳定性由Z o Z i 曲线是否环绕S 平面上的点(-1,0)来决定1为保证整个系统稳定所做的努力可以分成两个步骤:系统级和模块级1在系统级,每个子系统的阻抗规格可以根据整个系统稳定性的要求来决定;而在模块级中,则应找出模块或子系统的输入输出阻抗和模块内部特性之间的关系,这一关系对改进子系统输入输出阻抗设计具有指导作用1

1 阻抗规范

根据稳定性的阻抗判定标准,直流分布式电源系统源与负载之间的相互作用能通过回路增益Z o Z i 得到测定1因此制定源 负载子系统阻抗规范的目标就是使该回路增益Z o Z i 的N yquist 曲线不环绕S 平面上的点(-1,0)1

1.1 密迪布克(M i ddlebrook )设计方针

密迪布克提出的关于开关电源及其输入滤波电路的设计方法[2]可以认为是制定阻抗规范的最早贡献1为了防止变换器及其输入滤波电路间的相互作用,密迪布克建议,在全频率范围中,滤波电路的输出阻抗Z o 应远小于变换器的输入阻抗,即 Z o << Z i 1

除了确保系统稳定,这一设计准则还能保证变换器和输入滤波电路之间的动态解耦1第14卷 第4期2002年12月 甘肃科学学报Journal of Gansu Sciences V ol .14 N o.4D ec .2002

1.2 禁止区域和负载阻抗规范

然而,在许多直流分布式电源系统中,想要在所有频率范围内都做到 Z o << Z i 是不切实际的1因为这将导致设计的过分保守和电源系统的高成本[1,3]1

为了定义一个相对不太保守的阻抗规范,参考文献[1,4]中提出了禁止区域的概念,如图1(a )1若保持Z o Z i 的奈氏曲线在这一禁止区域之外,将确保系统稳定性具有6dB 的增益裕量和60°的相位裕量1进一步说,假设源子系统的输出阻抗Z o 是已知的,则上述禁止区域能转换成对负载阻抗Z i 的规范1如图1(b ),在输入阻抗的幅值 Z i 大于 Z o +6dB 的区域,系统对输入阻抗的相位角∠Z i 没有任何限制,而在输入阻抗的幅值 Z i 小于 Z o +6dB 的区域,输入阻抗的相位角∠Z i 必须在图示的有效区域之内

1

(a ) (b )

图1 奈氏图禁止区域和负载阻抗规范

与密迪布克的设计原则相比,这一负载阻抗规范要不保守得多,当Z o 和Z i 之间的相位差小于120°时,它允许源模块的输出阻抗大于负载模块的输入阻抗( Z o > Z i )1

1.3 独立的负载阻抗规范

上述讨论的负载阻抗规范事实上是整个负载系统的组合输入阻抗Z i 的规范1为便于应用,必须建立对每一个负载模块的单独输入阻抗规范1

基于“所有并联的负载都相同是最坏情况”以及“当 Z o > Z i 时Z i 的相角∠Z i 在[-90°,

+90°]范围内”两个假设,独立的负载阻抗规范可以通过“功率分配法”[4,5]来定义1在给定并

联负载数量n 的情况下,对每一个Z o Z ik (k =1,2,…n )的禁止区域,可以通过将Z o Z i 的禁止区域图1(a )中的幅值减小到1 n 而得到见图2(a )1从而,在输出阻抗Z o 已知的情况下,独立的负载阻抗规范Z ik (k =1,2,…,n )可以通过将图2(a )变换成图2(b )而得到1

2 单独负载阻抗规范

上述单独负载阻抗规范存在着一个缺点1由于其不适当的假设[6],上述规范并不能保证系统小信号的稳定性1

2.1 改进的禁止区域

为改进这一规范,本文提出了一个新的Z o Z i 的S 平面禁止区,如图3所示1同样,这一新的禁止区域防止了Z o Z i 的奈氏曲线环绕点(-1,0),并确保具有6dB 的幅值裕量和60°

的5

2第14卷 杨相生等:直流分布式电源系统的小信号稳定性研究

(a ) (b )

图2 单个负载阻抗Z ik (k =1,2,…n )规范相位裕量,从稳定裕量这一点看,与图2(a )所示现有禁止区域相同1

图3 改进的禁止区域2.2 单独负载阻抗规范

在这里,我们仍使用“功率分配法”来推导出单个负载阻抗

规范1设模块源驱动n 个负载工作1并假设源与每个负载的

功率为P s ource ,P l oad1,P l oad2,…P l oadn 1

每个单独的小闭环增益Z o Z ik (k =1,2,…,n )的禁止区域,可以按照每个负载的功率大小百分比,乘以垂直坐标的变

换因子-1 2(见图3),变换到图4(a )1这一新定义的单个负

载Z o Z ik 的禁止区域可以描述为:

R e Z o Z ik ≥-12?P l oadk P s ource (k =1,2,…n )(1)

当Z o 为已知时,每个负载的单独阻抗规范可以通过将图

4(a )转换成图4(b )来定义1对每一负载(k =1,2,…,n )而言,假如其幅值满足关系式 Z ik > Z o +6dB

+20l og (P s ource P l oadk ),则就没有相位的限制;否则Z ik 的相位应满足关系式:

-90°-5k <∠Z o -∠Z ik <90°+5k (2)

(a ) (b )

图4 单独负载阻抗Z ik 规范

62 甘肃科学学报 2002年 第4期

其中

5k =arcsin 12?Z ik Z o ?P l oadk P s ource (3)

2.3 讨论使阻抗规范实用化仍要付出许多努力,主要包括:①减少阻抗规范的保守系数,以避免不必要的设计和生产成本;②输入滤波、输出阻抗、模块间的连接和控制等对系统稳定性的影响;③方便实用的工程测量方法等1

上述在总结阻抗分析法已有成果的基础上,改进了单独负载阻抗规范的定义方法(图3~4),该方法所定义的负载输入阻抗规范是保证系统小信号稳定性的充分条件,并对工程上测量系统的稳定裕量提供了一条方便的途径1

参考文献:

[1] W ildrick C M ,L ee F C .A M ethod of D efining the Load I mpedance Specificati on for a Stable D istributed Pow er Syste m

[J ].IEEE T ransacti on on Pow er E lectronics ,M ay .1995,10(3):2802285.

[2] M iddlebrook R D.Input F ilter Considerati on in D esign and A pp licati on of S w itching Regulators [A ].P roc IEEE

Industrial A pp licati on Society A nnualM eeting[C ].1976.3662382.

[3] Gholdston E W ,Kar m i m i K,L ee F C.Stability of L arge DC Pow er Syste m s U sing S w itch Converters w ith A pp licati on

to the Internati onal Space Stati on [A ].IECEC ’96[C ].1996.1662170.

[4] CarlM .W ildrick .Stability of D istributed Pow er Supp ly Syste m s [A ].Thesis ,V P I&S U ,B lacksburg ,VA [C ].Feb ,

1993.2232227.

[5] Patil A ,W ildrick C ,L ee F C .A ssess m ent of Space Stati on Pow er Syste m Perfor m ance and Stability [A ].quarterly

p rogress revie w for NA S A L e w is Research Center ,by V irginia Pow er E lectronics Center ,V P I&S U ,B lacksburg ,VAD

[C ].O ct ,1992.3122317.

[6] Steven F .Gl over ,Scott D .Sudhoff .A N onlinear Stabilizing Control for Pow er E lectronics Based Pow er Syste m s [M ].

1998ON R 2D rexel 2N S W C W orkshop on E lectric and Shi pboard Syste m M odeling ,Si m ulati on and Control ,D rexelU niv .,Philadel phia ,PA ,V II -8,1998.1210.

S M ALL -SI GNAL SENSE STAB I L I T Y ANALY SI S OF DC

D I STR I BUT

E D POW ER S Y STE M S

YAN G X iang 2sheng

(Colleg e of S cience &T echnolog y ,N ing bo U niversity ,N ing bo 315211Ch ina )

Abstract : In a DC distributed pow er syste m ,the in teracti on bet w een individually designed pow er modules subsyste m s m ay give rise to the in stability of the w ho le syste m .In the s m all 2signal sen se ,these in teracti on s can be p redicted by check ing i m pedance rati o Z o Z i .T h is paper summ arizes our w o rk in these areas ,and in troduces the m ethod of “individual l oad i m pedance

s pecificati on ”

.T h is m ethod is no t on ly a sufficien t conditi on to en sure sa m all 2signal syste m stability but als o leads to a very si m p le engineering app roach to m easure the syste m stability .Key words : DC distributed pow er syste m ;i m pedance analysis ;s m all 2singal sen se stability 作者简介:

杨相生,(19592)男,浙江省宁波人,1996在上海大学获自动化专业工学硕士学位,现任宁波大学科技学

院计算机系讲师,主要从事电路与系统控制、计算机应用研究和教学工作1

72第14卷 杨相生等:直流分布式电源系统的小信号稳定性研究

论电力系统稳定性

论电力系统稳定性 发表时间:2018-10-19T09:07:14.800Z 来源:《电力设备》2018年第17期作者:姚彦枝 [导读] 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。在当今电力作为推动社会飞速发展的主动力时代,电力网是否稳定对社会的生产、生活、发展起着决定性的影响。因此,研究电力系统在各种条件下的稳定性问题对社会的发展具有特别重要的意义。 关键词:电力系统;稳定性;措施 1电力系统稳定性的作用及要求 1.1电力系统稳定性的作用 (1)对于企业的调配与服务有优化作用。之所以说电力系统稳定性的提供对企业的调配与服务功能有一定程度的优化作用,是因为相关人员在电力系统应用中,可以根据具体运行情况来开展工作,根据不同类型的电力设备特点,来实现设备利用的最优化,为电力企业工作效率的提升做好准备。相关人员可以全面掌握设备的利用情况,以此来对设备进行合理而科学的配置,实现设备的高效率运行,从而还能降低企业成本的使用率。对于传统电力技术而言,稳定性技术式是一个大胆创新,相关人员在实际作业中可以利用该技术实现对电力设备的协调配置。 (2)有利于促进电力企业的高效发展。电力系统稳定性对电力企业的经济效益具有促进作业。众所周知,电对于人们的生活是何等重要,可以说生活处处都需要电。一旦电力系统稳定性受到冲击,便会发生大面积停电的安全事故,这种现状会导致电力系统的运行受到干扰,对企业的生产,人们的生活都起到了很大的影响。电力系统稳定性技术则可以在这种情况下,对相关干扰进行及时排除,保障用户的正常用电。 1.2电力系统稳定性的要求 电力系统稳定性要求电网结构与设备的选用必须科学合理,供电可靠性必须相对较高,工作人员的技术也必须相对过硬,以此来保证电力系统的正常运行,其中,工作人员的技术具有关键作用,他们必须在实际操作前,做好相关准备,采取有效措施来应对突发故障。 2确保电力系统稳定性的措施 目前,我国电力系统已步入大电网、大机组、超高压、远距离输电时代,随着电力系统的发展及其互联,电力系统稳定问题也将越来越突出。有关电力系统稳定问题的研究已成为国内外电力界的热门课题之一。因此,在当前,研究电力系统稳定问题的机理、以及提高电力系统稳定性的控制措施,具有重要的意义。 2.1对送电系统的控制 改善发电机励磁调节系统的特性:由电力系统功率极限的简单表达式可知,减小发电机的电抗,可以提高电力系统功率极限和输送能力。 改善原动机的调节特性:我们根据发电机功角变化对于再热式轮机可以采用快速调节轮机汽门与带有微机控制和带有功角检测仪的高速系统来消除故障后发电机输入以及输出功率之间的不平衡,交替关、开快速汽门,以缩短振荡时间,提高暂态稳定。 快速操作汽阀(快关):当系统受到较大干扰时,输出的电磁功率突变,这时,如果原动机的调节装置非常的准确、灵敏和快速,使得原动机自身的功率能跟上相应的变化的电磁功率,则能极大让系统稳定性得以提高[2]。 切机:提高系统暂态稳定的基本措施包括减小原发电机大轴不平衡功率。方法有两个一个是减少原发动机的输入功率,第二个是增大发电机发出的电磁功率,当系统有充足的备用电机时,我们同时切除故障线,同时切除部门联锁发电机,这样就能有效的增大系统稳定性。 2.2采用附加装置提高电力系统的稳定性 在输电线路串联电容:利用电容器容抗和输电线路感抗性质相反的特点,在输电线路中串联电容补偿线路中的电感来提高超高压远距离输电的功率极限,从而起到提高系统稳定的作用。 在输电线路中并联电抗:改善远距离输电系统稳定性的重要措施之一就是将电抗并联到输电线路中。因为随着输电线路长度的增加,产生的电抗就会越大,随之容抗也会变大,而增加的电容则会给线路带来大量的无功,当线路负荷较轻情况下,线路中大量的无功会造成线路末端电压过高。为改善这种情况,我们将电抗器并联到输电线路上来吸收由长距离线路所产生的大电容造成的无功功率,这样,可以减小发电机的运行功角,提高发电机的电势从而提高长距离输电系统的稳定性。 将变压器中性点改为小阻抗接地:电力系统发生接地短路情况时产生的暂态稳定和变压器中性点接地情况有着重要的联系。为了提高中性点直接接地系统的稳定性,我们利用电流流过阻抗会消耗有功功率原理将系统中变压器的中性点改为经小阻抗接地,这样系统短路时产生的零序电流经过变压器中性点小阻抗后消耗有功这就增加了发电机的输出电磁功率,减小了发电机转轴上存在的不平衡功率,进而提高了系统的暂态稳定。 2.3非线性控制技术在暂态稳定控制中的应用 为提高电力系统运行的稳定性,除应对电网进行合理的规划、建设、采取紧急措施之外,最主要的就是对相关部件采取有效的控制手段。根据电力系统采用模型的不同可选取不同的方法。通常对非线性系统进行控制的方法有: Lyapunov直接法:在假设非线性控制系统的原点为平衡点,寻找一个正定Lyapunov函数,,且,在此基础上求出反馈控制规律,使得,这就是正定函数的思想,当时闭环系统才会逐渐的趋向稳定。由此可见,要想使受干扰后的系统动态过程以较快的速度趋向平衡点则需要V越负越大。自适应、滑膜等控制设计都可以用Lyapunov直接法。 变结构控制方法:20世纪70年代中期科学研究者们开始研究变结构控制方法,该方法不但能有很好的全局渐进稳定性,而且它有很强的鲁棒性,能抗外部干扰和参数的摄动。该方法的基本思想是:预先选定一个超平面,利用切换函数和高速开关将电力系统的相轨迹按照一定的规律驱动到超平面上,我们将该运动定义为滑动模态,其基本思想是,利用高速开关和切换函数将系统的相轨迹按一定的趋近律驱动到一个预先选定的超平面S(X)=0(称滑行面或切换面)上,超平面上的系统运动称为滑动模态(Slidingmode),且系统的滑动模态

直流分布式电源系统稳定性分析

哈尔滨工业大学工学硕士学位论文 Abstract Distributed power system is widely used in new energy,communication, aerospace and other fields due to its high reliability,high power density and high flexibility.When the subsystem is designed separately,it can meet the requirements of stability and dynamic performance,but when several subsystems are cascaded into a distributed power system,it may lead to the instability of the whole system.In this thesis,the reason of the instability of cascaded system is studied by impedance analysis,and the corresponding solutions to reduce the output impedance are put forward. In view of the instability of the two converters,this thesis first establishes a small-signal model of the converter by the state space averaging method. Through the small-signal model,the open-loop and closed-loop output impedance of the front source converter and the open-loop and closed-loop input impedance of the post-stage load converter are obtained.The impedance characteristics and the optimized impedance are analyzed.The foundation is established,and then the common source effect and load effect transformation formula of cascaded system are derived according to the established converter model.The impedance criterion method suitable for cascaded systems is proposed.Finally,the constant power load characteristics,closed-loop input and output impedance characteristics of the cascaded system are analyzed,and the corresponding results are given. In order to solve the problem of large amplitude oscillation of the bus voltage caused by the overlapping of the input and output impedance,the influence factors of the voltage oscillation amplitude of the bus bar are studied and the performance of the cascaded system is analyzed.The impedance optimization method suitable for cascaded systems is proposed.The output current feedback is used to reduce the peak amplitude of the output impedance of the pre-stage converter,and the oscillation amplitude of the bus voltage in the cascaded system is reduced,thus the stability of the cascaded system is improved.Through the simulation and analysis of two cascaded voltage feedback Buck converter cascaded models,the effectiveness of the proposed output current feedback is verified and the voltage ripple amplitude of the cascaded system is reduced. In view of the instability of cascaded systems caused by constant power load,the reasons for instability of cascaded systems are given from the

浅谈电力系统电压稳定性

太原科技2009年第4期TAIYUAN S CI-TECH 浅谈电力系统电压稳定性 刘宝,李宝国 文章编号:1006-4877(2009)04-0035-02 最近30年来,世界各国的电力系统普遍进入大电网、高电压和大机组时代,巨量的电能需要通过长距离的高压输电线送到负荷中心,电力系统面临的压力越来越大,很多电力系统不得不运行在其稳定极限附近,极易发生失稳事故。这些事故损失是巨大的,引起人们对电压稳定问题的严重关注。可以说电压稳定问题目前已成为世界各国电力工业领域研究的热点。 1电力系统电压稳定的定义及分类 1.1电压稳定定义 电力系统电压稳定性是指给定一个初始运行条件,扰动后电力系统中所有母线维持稳定电压的能力。在发生电压失稳时,可能引起电网中某些母线上的电压下降或升高,从而导致系统中负荷丧失、传输线路跳闸、级联停电及发电机失去同步等。1.2电压稳定分类 目前,文献中可以见到与电压稳定的主要有静态电压稳定、暂态电压稳定、动态电压稳定、中长期电压稳定等,对它们的含义和范畴,至今还没有一个统一的定义。2004年,IEEE/CIGRE稳定定义联合工作组给出了电力系统电压稳定的分类:电力系统电压稳定分为小扰动电压稳定和大扰动电压稳定。 小扰动(或小信号)电压稳定是指电力系统受诸如负荷增加等小扰动后,系统所有母线维持稳定电压的能力。大扰动电压稳定是指电力系统遭受大干扰如系统故障,失去负荷,失去发电机或线路之后,系统所有母线保持稳定电压的能力。 2电力系统电压失稳的机理 对电力系统电压失稳机理的研究是十分重要的,合理解释和明确区分电压失稳现象,可以正确应对预想的事故。静态研究认为电压失稳原因是负荷超过了网络的最大传输极限,从而造成潮流方程无解。随着对电压稳定研究的进一步深入,越来越多的人们开始用非线性动力学系统的理论知识来解释电压失稳的机理。对于电压失稳机理,T.Van Custem提出:电压失稳产生于负荷动态地恢复其自身功率消耗的能力超出了传输网络和发电机系统所能达到的最大极限。把电压稳定问题仅当作静态问题的观念是不周全的;负荷是电压失稳的根源,因此,电压失稳这一现象也可称为负荷失稳,但负荷并不是电压失稳中唯一的角色;发电机不应视为理想的电压源,其模型(包括控制器)的准确性对准确的电压稳定分析十分重要。 3电压稳定性的分析方法 电力系统作为一个复杂的非线性动力系统,考虑其动态因素,数学上可用一组DAE(Differential Algebraic Equations)微分代数方程组来表示。微分方程组主要体现动态元件,代数方程组主要体现网络结构等约束条件。目前,电力系统电压稳定性的分析方法主要有:静态分析方法、动态分析方法、非线性动力学方法。 3.1静态电压稳定分析方法 潮流方程和扩展的潮流方程是静态分析方法的基本立足点。静态分析方法一般认为潮流方程的临界解就是电压稳定的极限静态方法,将一个复杂的微分代数方程组简化为简单的非线性代数方程实数,大体上可以归纳为:连续潮流法、特征值分析法、最大功率法等。 3.1.1连续潮流法 连续潮流法(CPFLOW)又称延拓法,连续潮流法使用包括有预估步和校正步的迭代方案找出随负荷参数变化的潮流解路径。连续潮流法跟踪负荷和发电机功率变化情况下电力系统的稳态行为,通 (辽宁工业大学,辽宁锦州121001) 摘要:介绍了电力系统电压稳定的定义和分类,提出了电压失稳机理和电压稳定的主要研究方法,反映出该领域的研究概貌和最新动向。 关键词:电力系统;电压稳定;静态;动态 中图分类号:TM712文献标志码:A 收稿日期:2009-01-05;修回日期:2009-02-05 作者简介:刘宝(1982-),男,山东滨州人。2006年9月就 读于辽宁工业大学,攻读硕士学位。 研究与探讨

电力系统稳定与控制

电力系统稳定与控制 廖欢悦电自101 2 电力系统的功能是将能量从一种自然存在的形式转换为电的形式,并将它输送到各个用户。电能的优点是输送和控制相对容易,效率和可靠性高。为了可靠供电,一个大规模电力系统必须保持完整并能承受各种干扰。因此系统的设计和运行应使系统能承受更多可能的故障而不损失负荷(连接到故障元件的负荷除外),能在最不利的可能故障情况些不知产生不可靠的广泛的连锁反应式的停电。 由此,电力系统控制所要实现的目的: 1.运行成本的控制:系统应该以最为经济的方式供电; 2.系统安全稳定运行的控制:系统能够根据不断变化的负荷变化及发电资源变化情况调整功率 分配情况; 3.供电质量的控制:必须满足包括频率、电压以及供电可靠性在内的一系列基本要求;一.电力系统的稳定性设计与基本准则 首先,一个正确设计和运行的电力系统: 1.系统必须能适应不断变化的负荷有功和无功功率需求。与其他形式的能量不同,电能不能方便地以足够数量储存。因而,必须保持适当的有功和无功的旋转备用。 2.系统应以最低成本供电并具有最小的生态影响 3.考虑到如下因素,系统供电质量必须满足一定的最低标准: a)频率的不变性 b)电压的不变性 c)可靠性水平 对于一个大的互联电力系统,以最低成本保证其稳定性运行的设计是一个非常复杂的问题。通过解决这一问题能得到的经济效益是巨大的。从控制理论的观点来看,电力系统具有非常高阶的多变量过程,运行于不断变化的环境。由于系统的高维数和复杂性,对系统作简化假定并采用恰当详细详细的系统描述来分析特定的问题是非常重要的。 二、电力系统安全性及三道防线可靠性-安全性-稳定性 电力系统可靠性:是在所有可能的运行方式、故障下,供给所有用电点符合质量标准和所需数量的电力的能力。是保证供电的综合特性(安全性和充裕性)。可靠性是通过设备投入、合理结构及全面质量管理保证的。 电力系统安全性:是指电力系统在运行中承受故障扰动的能力。通过两个特征表征(1)电力系统能承受住故障扰动引起的暂态过程并过渡到一个可接受的运行工况,不发生稳定破坏、系统崩溃或连锁反应;(2)在新的运行工况下,各种运行条件得到满足,设备不过负荷、母线电压、系统频率在允许范围内。 电力系统充裕性:是指电力系统在静态条件下,并且系统元件负载不超出定额、电压与频率在允许范围内,考虑元件计划和非计划停运情况下,供给用户要求的总的电力和电量的能力。 电力系统稳定性:是电力系统受到事故扰动(例如功率或阻抗变化)后保持稳定运行的能力。包括功角稳定性、电压稳定性、频率稳定性。 正常运行状态下,通过调度手段让电力系统保持必要的安全稳定裕度以抵御可能遭遇的干扰。要实现预防性控制,首先应掌握当前电力系统运行状态的实时数据和必要的信息,并及时分析电网在发生各种可能故障时的稳定状况,如存在问题,则应提示调度人员立即调整运行方式,例如重新分配电厂有功、无功出力,限制某些用电负荷,改变联络线的送电潮流等,以改善系统的稳定状况。 目前电网运行方式主要靠调度运行方式人员预先安排,一般只能兼顾几种极端运行方式,且往往以牺牲经济性来确保安全性。调度员按照预先的安排和运行经验监视和调整电网的运行状态,但他并不清楚当前实际电网的安全裕度,也就无法通过预防性控制来增强电网抗扰动的能力。因此,实现电力系统在线安全稳定分析和决策,得出当前电网的稳定状况、存在问题、以及相应的处理措

分析智能电网建设中电力工程技术的应用

分析智能电网建设中电力工程技术的应用 发表时间:2018-07-06T11:10:36.977Z 来源:《电力设备》2018年第8期作者:张卿华[导读] 摘要:随着我国的高速发展,各方各面也对电力越来越依赖,新时代对电力的需要也不断提高,我国电网建设规模不断扩大,对于技术水平和运行标准等方面的要求也不断提高严格。 (国网内蒙古东部电力有限公司克什克腾旗供电分公司内蒙古赤峰 024000)摘要:随着我国的高速发展,各方各面也对电力越来越依赖,新时代对电力的需要也不断提高,我国电网建设规模不断扩大,对于技术水平和运行标准等方面的要求也不断提高严格。而智能电网能够提使健康运行,保证电网安全,节省和解决能源消耗问题,所以电力工程技术在智能电网建设中的应用是势在必行,本文将简单分析电力工程技术在智能电网建设中的运用。 关键词:智能电网建设;电力工程技术;应用进入21世纪,我国能源变得越发的紧张,然而电力行业是消耗能源最大的一个行业。同时,随着我国社会经济不断的提高,对电力的需求越来越大。面对这样的情况,电力企业在智能电网建设的过程中,必须做出相应的选择和改变。另外,在智能电网建设的过程中,电力工程技术是整个建设的核心。因此,我国电力企业应当对电力工程技术进行合理、科学的利用,对节能环保等理念进行有效的利用,从而在最大程度上保证了智能电网的稳定、安全的运行,这对于我国电力行业的发展,起到了重要的作用和意义。 1智能电网概述 智能电网主要指在原有物理电网的前提下通过应用通信技术及计算机技术对科技性及自动化系统控制进行加强,从而能够为人们生产及生活提供更好的电能资源。通过智能电网的建设能够最大限度地满足电力市场的要求,使电力系统向智能化和自动化的方向发展,对提高电力系统运行稳定性有较大的积极作用,为此电力部门需要对其建设过程投入更多的精力和时间,保证其建设施工质量能够符合相关规定的要求,进而为人们提供充足且安全的电能。 2电力工程技术对智能电网建设的重要性 2.1有助于提高智能电网的效率 将电力工程技术运用于建设智能电网中,能够极大地提高智能电网的效率,电力工程技术作为高效的自动化技术应用到智能电网中,能够帮助智能电网自动的控制和采集用电对象的数据,与此同时还能够更加智能的对用电数据和用电用户进行快速处理,还能够更加准确的收回反馈信号,从而提高智能电网的控制效率。所以在智能电网的建设中融入电力工程技术能够降低传统技术中人为不确定因素对电网的影响,从而提升智能电网的运行效率。 2.2有利于提高电网数据收集能力 在传统的电网中,由于技术含量低,自动化程度低,无法对采集回收的数据进行自动分组,而在智能电网中融入电力工程技术能够极大地提高智能电网采集回收数据的能力,并且能够根据电力设备的功能以及种类进行分组,自动形成不同类别的数据回收记录。不但为检测电网设备的运行程度提供了技术支持,还能够通过运用高级自动化技术对电网运营系统进行优化,整体上提高了智能电网的运营水平,提高了电网数据的收集能力。 3智能电网建设中电力工程技术的应用分析 3.1电力工程技术在智能电网总体建设中的应用分析 3.1.1在电源中的应用 不同的电子设备在用电需求上存在较大的差异,为了更好地满足用电需求需要对电源进行合理设置,电源类型主要包括直流电源,交流电源以及恒定频率交流电源等,电力部门可以应用电力工程技术对电源进行有针对性的供应,例如:使用直流充电技术对蓄电池进行充电,使用交流及直流结合的方式对变电所进行充电,使用高频开关电源对大型电子设备进行充电等。 3.1.2在发电工程中的应用 电力工程技术在发电工程中应用较为广泛,在使用此项技术后电能转换效率明显提升,同时将电能消耗和电气设备损耗的情况降至最低,从而能够更好地为人们提供充足的电能。 3.1.3在输电过程中的应用 智能电网对运行稳定性提出了较高的要求,在使用电力工程技术中的谐波抑制技术及无功补偿技术能够更好地实现上述目标。随着科学技术的不断发展,一些新型装置应运而生,例如:薄型交流交换器、晶闸管变流装置以及无功补偿装置等,当输电工程输电容量相对较大且线路较长时电路部门会将晶闸管变流装置设置为受电及送电两端的逆变阀装置,在对其进行使用后电网输送容量明显提升,并且能够为输电的稳定性及安全性提供更多的保障。除此之外应用智能调度技术能够实现资源优化配置的目标,可以将大区域故障问题出现的概率降至最低,从而提高供电质量。 3.2电力工程技术在智能电网建设中的具体应用分析 3.2.1能源转换技术的应用 目前节能环保理念深入人心,各行业在生产及经营过程中均对其进行充分考虑,电力部门同样如此,环保型低碳能源是智能电网未来能源供给的重要形式,同时在使用能源转换技术后能够对电能远程运输能力进行提升。现阶段,智能电网能源应用包括分布式及可再生式两种,其中分布式又分为分布式储能及分布式发电,前者能够通过蓄电池,超导蓄能以及飞轮等方式对电能资源进行合理存储,后者主要通过燃料电池,风能以及潮汐能等实现发电的目标。除此之外通过使用电力工程技术使可再生能源的利用率明显增加,使智能电网建设施工过程符合节能环保及可持续发展的要求。 3.2.2电能优化技术的应用 在新时代背景下人们对电能质量提出了较高的要求,为了更好地满足人们的要求各大电力部门对电力工程技术中电能优化技术进行合理应用,使用此项技术使电能等级合理划分的目标得以实现,同时使用相应的评估方法能够对质量体系进行重新构建,提高其完整性及合理性,进而为电能优化效果提供更多的保障。除此之外电力部门可以使用电力工程技术对电网实际运行的经济性进行一定的分析和研究,进而对接口方式进行明确,此种情况不仅使智能电网具有自动化及数字化的特点,并且能够最大限度满足经济性的要求,进而为电力部门带来更多的经济效益。

分布式光伏发电系统设计方案(专业)

某学校 512K分布式光伏发电系统设计方案2013年10月10日 项目编号:XXX

目录 1 工程概述 (3) 1.1 工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2 太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3 方案设计 (4) 3.1 设计依据 (4) 3.2 设计原则 (5) 3.3 系统选型设计 (5) 3.4 主要设备的选型说明 (6) 3.4.1 电池组件 (6) 3.4.2 组件结构图 (7) 3.4.3 并网逆变器 (7) 3.4.4 并网逆变器规格 (8) 4 发电量估算 (11) 5 系统的社会效益 (11) 5.1社会效益(25年) (11) 6 设备材料清单及造价一览表(此报价含税不含物流费用) (11) 7 工程业绩表及典型工程 (12) 8 合利欧斯优势 (15) 8.1 与保利协鑫(GCL)的合作 (16) 8.2 与河北**的的合作........................ 错误!未定义书签。

1 工程概述 1.1工程名称 河南**外国语学校512kW户用分布式光伏发电项目。 1.2 地理简介 郑州位于东经112°42'-114°13' ,北纬34°16'-34°58',东西宽166公里,南北长75公里,总面积约为7446.2平方公里,其中市区面积约1010.3平方公里,山地面积约2377平方公里,水面面积约11.4平方公里。郑州市属北温带大陆性季风气候,冷暖适中、四季分明,春季干旱少雨,夏季炎热多雨,秋季晴朗日照长,冬季寒冷少雨。郑州市冬季最长,夏季次之,春季较短。统计资料表明郑州市的平原和丘陵地区春季开始的时间大致在3月27日,终止于5月20日,历时55天;夏季开始于5月21日,终止于9月7日,历时110天;秋季开始于9月8日,终止于11月9日,历时63天;11月10日至次年的3月26日为冬季,长达137天。处于西部浅山丘陵区的荥阳、巩义、新密和登封四市,年平均气温在14~14.3℃之间。郑州年平均降雨量640.9毫米,无霜期220天,全年日照时间约2400小时。 1.3 气象资料 气象资料以NASA数据库中郑州气象数据为参考。

系统稳定性意义以及稳定性的几种定义.

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

高压开关柜操作机构和操作电源

高压开关柜操作机构和操作电源 (成都贝锐智能电气有限公司) 1、开关柜分合闸的执行机构—电磁操作机构与弹簧操作机构 电磁操作机构:早先的开关柜,普遍采用电磁操作机构进行分合闸操作,这种机构需要较大的合闸电流,动作速度低,结构笨重,耗材较多,现已逐渐淘汰。 弹簧操作机构:弹簧操作机构是利用储存在弹簧中的能量完成分合闸的过程,弹簧的储能由储能电机完成。弹簧操作机构的优点是:需要的分合闸电流小,即可远方电动合、分闸,电机储能,也可就地手动合、分闸和电机储能。 对于弹簧操作机构,大多数的储能电机功率在100W~300W之间,分合闸线圈的功率在200W~400W之间。 2、直流操作电源-直流屏 直流屏的原理框图如下: 直流屏采用2V规格的电池,串成220V,需要110只,但2V规格的电池,其电压一般都高于2V,在2.2V甚至更高,所以电池组正负两端的电压会达到或超过240V。 直流屏的输出有二路,一路240V(左右),一路220V。240V输出直接来自于电池组的正负两端。这样高的电压,如果直接提供给开关柜的其他直流负载,如微机保护装置等,会使其无法承受,因此需要用降压硅链降压到220V,这一路输出就是控制母线电压(KM)。 而早先的电磁操作机构,刚好需要比较大的驱动电流,也能承受较高的直流电压,因此就把电池组两端的电压直接输出供分合闸使用,这一路输出就是合母电压(HM)。 3、分布式直流电源作为开关柜操作电源的使用 分布式直流电源具有体积小,造价低,方便使用的特点,其连续功率在100W~200W之间,短时功率(供储能电机)在350W左右(20S),短时功率(供分合闸线圈)能达到600W~100W之间,能完全满足1~2面弹簧操作机构的开关柜使用。 考虑到弹簧操作机构的分合闸线圈功率并不大,对于分布式直流电源,只安排一路输出,电压为220V,不在区分控母输出和合母输出。 4、早先采用两路电源的设计,现改用分布式单路电源时,设计图子的调整方法 使用弹簧操作机构的断路器,已无需再分控母(HM)与合母(HM),只需将分布式电源的直流输出直接连接到原来的合母与控母线端即可。

分布式直流电源使用说明书

分布式直流电源 使 用 说 明 书 专业、专注、专一全系列电源装置提供商

目录 一、产品简介 (2) 二、应用范围 (2) 三、产品型号说明 (3) 四、技术参数 (3) 1、使用环境条件 (3) 2、输入电源 (3) 3、输出功率及功耗 (3) 4、蓄电池的充放电 (4) 5、通信速率及规约 (4) 6、符合的相关标准 (4) 五、产品特点 (4) 1、分散安装,节省占地面积、降低造价 (4) 2、分布式供电方式,可靠性极大提高 (5) 3、多种输入输出方式,适用范围广 (5) 4、智能化管理维护 (5) 5、与直流屏、交流操作电源的比较优势 (5) 六、产品功能 (5) 1、产品基本功能 (5) 2、面板显示 (7) 3、告警信号的判断方法 (8) 4、指示灯的状态指示 (8) 5、装置内部原理图 (9) 6、通讯协议 (9) 七、外形与安装尺寸 (10) 1、装置外观尺寸图 (11) 2、安装方式 (11) 八、接线原理图 (12) 九、使用与操作 (12) 1、检查接线的正确性 (12) 2、装置的投入 (12) 3、外电消失情况下装置的操作 (12) 4、负载的投入 (13) 5、装置的充电 (13) 十、电池容量的计算方法 (13) 十一、订货须知 (14)

一、产品简介 此产品是在原分布式电源的基础上开发出的新一代分布式电源,此款与目前市面所使用的分布式电源无论从质量、功能、功率等方面都为电力系统供电的可靠性、经济性及自动化提供了新的选择方案。 分布式直流电源装置是一种新型的直流电源设备,主要应用于小型开关站和用户末端,为二次控制线路(如微机保护等智能终端及指示灯、模拟指示器等)提供可靠的不间断工作电源,避免交流失电时导致微机保护失去保护作用,解决因操作过电压及谐波等因素使UPS 失效从而导致微机保护失效的问题。同时还可为符合装置功率要求的一次开关设备(弹簧机构真空断路器、永磁机构真空断路器、电动负荷开关等)提供直流操作电源。 系列分布式直流电源装置具有市电输入和PT 输入两种方式,输出方式从DC220V 至DC24V 各种规格,可以满足各种使用场合。装置最大输出功率可达1000W ,可以满足不同负载的需求。 系列分布式直流电源装置体积小,安装接线方便,适合分散安装于各种型号的开关设备内。使之比一般直流屏系统更可靠,更经济(对小型用户终端更明显),又节省占地空间,降低线路损耗及安装工程量,且维护方便,为电力系统供电可靠性提供新的选择方案。 系列分布式直流电源装置采用高频电源技术,蓄电池采用自动充电管理模块进行维护,大大延长蓄电池的使用寿命,使得装置运行更加安全可靠。装置具备通讯、报警功能,可以方便地实现无人值守的远程自动化管理。 二、应用范围 分布式直流电源装置主要应用于各种型号的开关设备内,为主开关(断路器、负荷开关等)和二次保护装置提供可靠的直流操作电源。 用于环网开关设备及断路器柜为二次设备及负荷开关提供直流电源

分布式电源并网对配网系统的影响研究

分布式电源并网对配网系统的影响研究 发表时间:2017-06-13T16:31:38.470Z 来源:《电力设备》2017年第6期作者:陈小光 [导读] 摘要:近年来我国的电力系统在不断地发展之中。并且在未来的电力系统的发展之中,分布式电源必定会取代传统的电力模式。(武汉璞信电力设计咨询有限公司 430070) 摘要:近年来我国的电力系统在不断地发展之中。并且在未来的电力系统的发展之中,分布式电源必定会取代传统的电力模式。并且未来的电力系统也会更加的数字化,智能化。但是目前随着我国人口的不断增多,用电量也在急剧增加。这就使得传统配电网的运行遭遇到巨大的压力。所以说未来我国在电力系统的发展之中一定会投入更大的精力。 关键词:分布式电源;并网;配网系统 引言:进入二十一世纪以来,我国的经济社会在不断地提升之中,并且同时我国的人民生活水平也有了很大的提高,这就使得我国的用电量有了大幅的增长。用电量大了,逐渐对电量的过度消耗在某些方面也开始产生了一些问题。比如发电过程中对环境的影响。所以说,想要解决这一问题就必须发展开发一些高效的新的能源。而分布式的电源就是近年来我国新开发的一种新能源。并且在逐步的发展之中。相信未来分布式电源将对我国的电力系统的发展起到很大的推动作用。 一、分布式电源的分类 1.1风力发电 为了更好地解决发电过程中对环境的影响。可以采用风力发电。因为风力发电是一种非常环保的发电方式。并且这种发电方式对环境的影响非常之小。这样的发电方式我们就不需要在担心为了满足我国人民的用电量而进行大规模的发电而影响环境的问题了。并且近年来我国的风力发电技术已经发展的比较成熟了。但是风力发电也有他的缺点。那就是它受环境影响比较大。因为风大的时候发电量就会增大。但是一旦风力变小,发电量就可能急剧下降。 1.2微型燃气轮机发电 很多朋友看到微型燃气轮机可能比较陌生,没有风力发电那么好理解。他的主要优势是占地面积较小,但是他的发电效率却很高,并且造成的污染非常的小。所以说这也是一种比较常用的分布式电源。微型汽轮发电机还有一个优点就是他的综合成本比较低,不像风力发电那样需要较高的成本作为基础。所以在以后的市场发展中,微型燃气轮机将成为一种非常普遍的分布式电源。 1.3光伏发电 这是一种比较环保清洁的分布式电源。他的主要原理是通过半导体有着光电效应的特点将太阳能转变为电能。就目前的发展状况来看,光伏发电几乎不会消耗燃料,它是利用该太阳的光能进行发电。并且发电量也非常的大。而且没有其他负面的影响。唯一的缺点就是也会受到天气的影响。不过这依然是一种非常受欢迎的分布式电源。相信在未来这种发电模式也将更加广泛的被利用。 1.4生物质能发电 对于生物质能发电相信学过生物的朋友都可以很好的理解。她主要就是利用对一些生活垃圾以及一些工业废物为原料进行发电的过程。这种发电模式的最大特点就是它不但对环境的污染较小,而且它主要以一些生活垃圾以及工业废物为原料。所以说他不仅不会浪费那些比较稀缺的资源,而且可以处理掉那些没用的资源。这也很好的符合了我国的可持续发展的发展战略。 二、分布式电源的并网方式 2.1独立并网 在当今资源还比较丰富的背景下,很多的分布式电源可以采用相应的并网方式。所谓的分布式电源采用独立并网的方式。就是对他周围的一些负荷进行供电工作。并且选择一定的接口所在位置。对于独立并网方式来说,他是目前来看分布式电源的主要的接线的方式方法。他有着很多的优点,比如说他的安装灵活多变,并且他的可靠性比较高。我相信将来我国的独立并网会更加的强大。 2.2联合并网 在目前的发展来看,现代很多的分布式电源都采用了联合并网。因为分布式电源采用的联合并网有很多好处。首先他可以使得各个分布式电源之间相互的进行协调合作,使得各个分布式电源之间都可以发挥出自身的特点优势。这样就可以使得他们之间进行优势互补,改善存在的一些问题。从而使我国的电力系统更加的完善。并且提高电力系统的运行的稳定性。 三、分布式电源对配网的影响探究 3.1分布式电源对电压的分布影响 分布式电源再接入配网以后将会对电网产生很大的影响。从而就会对电压造成一定的影响。会影响的电压的大小变化。所以说我们必须对分布式电源对电压的影响以及在其他方面的各种影响做一个深入地了解。只有这样我们才能更好的对分布式电源进行有效的利用。也只有这样我国的电力系统才能够真正的得到一定的发展。 3.2分布式电源对系统可靠性的影响 随着我国经济水平以及工业水平的不断发展,我国的电力系统也在不断地进步之中,例如我们前面提到的各种各样的发电方式。以及各种分布式电源的介绍。但是我们在发展的过程中必须保证相应的这些分布式电源的可靠性,因为只有他们的可靠性得到一定的保障,我们的用户才能放心的用电,才不至于在用电过程中遇到用电危险。所以说我国必须在分配式电源的对系统地可靠性工作上增加工作管理的强度。 结束语: 我国正在为了解决用电量的急剧上升问题而做着不懈的努力。首先本文对一些分配式电源的发电模式进行了一个简要的介绍。并且对各种发电方式的优缺点也做了一定的分析探讨。我相信随着我国科学技术水平的不断提高,我国的电力网络系统一定会更加的完善。从而我国的居民用电也将会更加的安全可靠。而且我国的电力系统以及那些上面所提到的分配式的电源才能发展的更加完善,而且我国的用电量才能供大于求。进而我国的工业水平以及科学技术水平也会进一步的提高。 参考文献: [1]王守相,王慧,蔡声霞.分布式发电优化配置研究综述[J].电力系统自动化,2009,33(18):110-115.[2]叶萌,刘文霞,张鑫.考虑电压质量的分布式电源定容选址[J].现代电力,2014,27(4):30-34.

分布式直流电源

目录 一、产品简介 (2) 二、应用范围 (2) 三、产品型号说明 (3) 四、技术参数 (3) 1、使用环境条件 (3) 2、输入电源 (3) 3、输出功率及功耗 (3) 4、蓄电池的充放电 (4) 5、通信速率及规约 (4) 6、符合的相关标准 (4) 五、产品特点 (5) 1、分散安装,节省占地面积、降低造价 (5) 2、嵌入式供电方式,可靠性极大提高 (5) 3、多种输入输出方式,适用范围广 (5) 4、智能化管理维护 (5) 5、与直流屏、交流操作电源的比较优势 (5) 六、产品功能 (5) 1、产品基本功能 (5) 2、面板显示 (6) 3、告警信号的判断方法 (7) 4、指示灯的状态指示 (7) 5、装置内部原理图 (8) 6、通讯协议 (8) 七、外形与安装尺寸 (10) 1、装置外观尺寸图 (10) 2、安装方式 (10) 八、接线原理图 (11) 九、使用与操作 (11) 1、检查接线的正确性 (11) 2、装置的投入 (11) 3、外电消失情况下装置的操作 (11) 4、负载的投入 (12) 5、装置的充电 (12) 十、电池容量的计算方法 (12) 十一、订货须知 (13)

一、产品简介 FZD 系列嵌入式直流电源装置是一种新型的直流电源设备,主要应用于小型开关站和用户末端,为二次控制线路(如微机保护等智能终端及指示灯、模拟指示器等)提供可靠的不间断工作电源,避免交流失电时导致微机保护失去保护作用,解决因操作过电压及谐波等因素使UPS 失效从而导致微机保护失效的问题。同时还可为符合装置功率要求的一次开关设备(弹簧机构真空断路器、永磁机构真空断路器、电动负荷开关等)提供直流操作电源。 FZD 系列嵌入式直流电源装置具有市电输入和PT 输入两种方式,输出方式从DC220V 至DC24V 各种规格,可以满足各种使用场合。装置最大输出功率可达600W ,可以满足不同负载的需求。 FZD 系列嵌入式直流电源装置体积小,安装接线方便,适合分散安装于各种型号的开关设备内。使之比一般直流屏系统更可靠,更经济(对小型用户终端更明显),又节省占地空间,降低线路损耗及安装工程量,且维护方便,为电力系统供电可靠性提供新的选择方案。 FZD 系列嵌入式直流电源装置采用高频电源技术,蓄电池采用自动充电管理模块进行维护,大大延长蓄电池的使用寿命,使得装置运行更加安全可靠。装置具备通讯、报警功能,可以方便地实现无人值守的远程自动化管理。 二、应用范围 FZD 系列嵌入式直流电源装置主要应用于各种型号的开关设备内,为主开关(断路器、负荷开关等)和二次保护装置提供可靠的直流操作电源。 用于环网开关设备及断路器柜为二次设备及负荷开关提供直流电源

稳定性分析答案

稳定性分析 2009-10-14 14:18 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ 是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ 能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=S2 δ=δ0+δ/dt2 所以PI=*2PI*f/10t方 t=更号10/50=

相关主题
文本预览
相关文档 最新文档