当前位置:文档之家› 溶胶-凝胶法在材料领域的应用

溶胶-凝胶法在材料领域的应用

溶胶-凝胶法在材料领域的应用
溶胶-凝胶法在材料领域的应用

溶胶-凝胶法在材料领域的应用

摘要溶胶-凝胶法是一种条件温和的材料制备方法,本文简述了溶胶-凝胶法的基本原理,总结了溶胶-凝胶技术发展现状,着重介绍了溶胶技术在制备块状、纤维、涂层和薄膜、超细粉末及复合材料方面的应用现状。

关键词溶胶-凝胶法,应用,材料制备

ABSTRACT Sol-gel method is a method for material preparation under mild condition. This paper describes briefly basic principles of Sol-Gel method, and reviews its recent development, especially its current application in the preparation of monolith, fiber, coating and film, powder and composite.

KEYWORDS Sol-Gel method, application, material preparation

1 引言

溶胶-凝胶法是制备材料的湿化学方法中新兴起的一种方法,其初始研究可追溯到1846年,J.J.Ebelmen[1]SiCl4与乙醇混合后,发现在湿空气中发生水解并形成了凝胶,制备了单一氧化物(SiO2),但未引起注意。20世纪30年代W.Geffcken[2]利用金属醇盐水解和胶凝化制备出了氧化物薄膜,从而证实了这种方法的可行性,但直到1971年德国联邦学者H.Dislich[3]利用溶胶-凝胶法成功制备出SiO2-B2O-Al2O3-Na2O-K2O多组分玻璃之后,溶胶-凝胶法才引起科学界的广泛关注,并得到迅速发展,这被认为是溶胶-凝胶技术的真正开端。1975年B.E.Yoldas[4]和M.Yamane[5]等仔细地将凝胶干燥,制得了整块陶瓷材料以及多孔透明氧化铝薄膜。80年代以来,溶胶-凝胶法开始被广泛应用于铁电材料、超导材料、冶金粉末、陶瓷材料、薄膜的制备及其它材料的制备等,尤其是传统方法难以制备的复合氧化物材料,高T c氧化物超导材料的合成中均得到成功的应用。在一类新的无机材料-磷酸盐体系-化学结合键材料中也采用溶胶-凝胶法合成。可以认为,溶胶-凝胶法已经成为无机材料合成中的一个独特的方法,必

将日益得到有效的利用[6]。

2溶胶-凝胶法的基本原理

2.1 几个相关概念

胶体(colloid)是一种分散相粒径很小的分散体系,分散相粒子的重力可以忽略,粒子之间的相互作用主要是短程作用力。溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在1~1000nm之间。凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间[7]。

2.2 溶胶-凝胶法的基本原理

溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。这种特殊的网架结构赋予凝胶很高的比表面。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料[8]。

表1 溶胶与凝胶的结构比较

Tab 1 The structure comparison between sol and gel

溶胶无固定形状固相粒子自由运动

凝胶固定形状固相粒子按一定网架结构固定不

能自由移动

其基本反应如下:

(1)、溶剂化:能电离的前驱物——金属盐的金属阳离子Mz+吸引水分子形

为保持它的配位数而具有强烈的释放H+的趋势。

成溶剂单元M(H2O)+z

n

→M(H2O)n-1(OH)z-1+H+

M(H2O)+z

n

(2)、水解反应:非电离式分子前驱物,如金属醇盐M(OR)n(n为金属M的原子价,R代表烷基),与水反应。

M(OR)n+xH2O=M(OH)x(OR)n-x+xROH

反应可延续进行,直至生成M(OH)n。

(3)、缩聚反应:按其所脱去分子种类,可分为两类。

A)失水缩聚:-M-OH+HO-M-=-M-O-M-+H2O

B)失醇缩聚:-M-OR+HO-M-=-M-O-M-+ROH

2.3 溶胶-凝胶法的特点:

溶胶-凝胶法是湿化学反应方法之一,其特点是用液体化学试剂(或将粉状试剂溶于溶剂)或溶胶为原料,而不是用传统的粉状物体,反应物在液相下均匀混合并进行反应。反应生成物是稳定的溶胶体系,不应有沉淀发生,经放置一定时间转变为凝胶。其中含有大量液相。需借助蒸发除去液体介质,而不是用机械脱水。在溶胶或凝胶状态下即可成型为所需的制品,再在较低于传统烧成的温度下烧结。

与传统烧结法相比溶胶-凝胶法的优点[9]:

1)制品均匀度高,尤其是多组份制品,均匀度可达分子或原子尺度。

2)制品纯度高,因为所用原料纯度高,且溶剂在处理过程中易被除去。

3)烧成温度比传统方法约低400~500℃,因为所需生成物在烧成前已

部分形成,且凝胶的比表面积很大。

4)反应过程易于控制,大幅度减少支反应、分相,并可避免结晶等(对

制玻璃而言)。

5)从同一种原料出发,改变工艺过程即可获得不同的制品,如纤维、

粉料或薄膜等。

溶胶-凝胶法的缺点:

1)所用原料大多数是有机化台物,成本较高,有些对健康有害,若加

以防护可消除。

2)处理过程的时间长达l~2个月。

3)制品易开裂,这是由于凝胶中液体量大,干燥时产生收缩引起的。

4)若烧成不完善,制品中会残留细孔、OH-或C,后者使制品带黑色。

上述缺点正在或已经解决,例如有时可用无机原料代替有机物,金属醇盐已形成行业,价格在降低。凝胶收缩问题可用热压成型解决,或用过量细溶胶粒作填料亦很有效。至于多余细孔或OH-对形成玻璃虽不利,但对陶瓷并无多大危害,OH-可作玻璃陶瓷的触媒剂,而且对制造电子器件膜还有利。过程太长的缺

点还没有有效解决方法[10]。

3 溶胶-凝胶法的应用领域

溶胶-凝胶法可制得的材料主要分为5类:块状材料、纤维材料、涂层和薄膜材料、超细粉末材料及复合材料。

3.1溶胶-凝胶法制备块状材料

溶胶-凝胶法制备的块状材料是指每一维尺度大于1 mm的各种形状并无裂纹的产物[11]。通过此方法制备的块状材料具有在较低温度下形成各种复杂形状并致密化的特点。现主要用于制备光学透镜、梯度折射率玻璃和透明泡沫玻璃等。如用溶胶-凝胶法制造的直径为7mm的PbO-K2O-B2O3-SiO2玻璃棒的折射率梯度为1×10-2/mm,直径为2mm的TiO2-SiO2玻璃棒折射率梯度为2×10-2/mm[12]。这些折射率梯度是由成分梯度造成的。而在凝胶中通过离子交换或离子浸析方法很容易形成成分梯度。因此,溶胶-凝胶法制备梯度折射率玻璃是一种非常有前途的制备方法。

另外,对于一些用传统制备方法难以制备的块状材料,人们也在尝试使用Sol-Gel法,并获得了成功。如成分为Ba(Mg1/3Ta2/3)O3 (BMT)的复合钙钛矿型材料,被认为是迄今为止在微波频率下品质因素(Q)值最高的一种材料。此材料的烧结性能很差,要在1600℃以上的高温中才能烧结,为此一些学者用添加烧结助剂的方法来改善其烧结性能。但杂相或烧结助剂的引入,总会不同程度地降低Q值。因此单相、成分均匀的B MT粉料是制备高Q值微波介质材料的关键。采用Sol-Gel法制备BMT粉料,将粉料烧结成块,其烧结温度比传统固相反应法低600℃左右[13]。

3.2 溶胶-凝胶法制备纤维材料

溶胶-凝胶法可用于制备纤维材料。当分子前驱体经化学反应形成类线性无机聚合物或络合物间呈类线性缔合时,使体系粘度不断提高,当粘度值达10~100 Pa·s时,通过挑丝或漏丝法可从凝胶中拉制成凝胶纤维,经热处理后可转变成相应玻璃或陶瓷纤维[14]。如采用醇化物作为前驱体能制备出可纺的Al2O3、Al2O3-SiO2[w(SiO2)为0%~15%]陶瓷纤维,其杨氏模量达150GPa以上。Al2O3-SiO2耐热纤维历来是利用离心法使溶液从旋转的容器孔中喷出制备的,是短纤维。但

采用Sol-Gel法使制造长纤维成为可能。另外还可制备出用于陶瓷或高分子材料补强剂的TiO2, ZrO2, ZrO2-Al2O3陶瓷纤维和高T c的YBa2Cu3O7-x超导陶瓷纤维。

3.3 溶胶-凝胶法制备涂层和薄膜材料

制备涂层和薄膜材料是溶胶-凝胶法最有前途的应用方向。其制备过程为:将溶液或溶胶通过浸渍法或转盘法在基板上形成液膜,经凝胶化后通过热处理可转变成无定形态(或多晶态)膜或涂层。膜层与基体的适当结合可获得基体材料原来没有的电学、光学、化学和力学等方面的特殊性能[15]。目前采用溶胶-凝胶法通过对膜厚控制已制备出由Ta2O5,SiO2-TiO2和SiO2-B2O3-Al2O3-BaO等组成的减反射膜,其反射率仅为1%,使太阳能电池效率提高48%。由SiO2-BaO,SiO2-B2O3-Al2O3形成膜经过化学处理后,不仅能控制膜的孔结构,而且还能在控制膜厚度方向上组成梯度。这些梯度折射率膜在高能激光上得到很有价值的应用,如当激光波长为1.06μm时,其反射率为0. 15%~0.70%,同时这些膜激光损坏阈值比一般减反射膜大4倍。目前此法的主要应用是制备减反射膜、波导膜、着色膜、电光效应膜、分离膜、保护膜、导电膜、敏感膜、热致变色膜、电致变色膜等[16]。

3.4 溶胶-凝胶法制备超细粉末

运用溶胶-凝胶法,将所需成分的前驱物配制成混合溶液,经凝胶化、热处理后,一般都能获得性能指标较好的粉末。这是由于凝胶中含有大量液相或气孔,使得在热处理过程中不易使粉末颗粒产生严重团聚,同时此法易在制备过程中控制粉末颗粒度。目前采用此法已制备出种类众多的氧化物粉末和非氧化物粉末。如在900℃时将凝胶处理后可获得颗粒度为0.1~0.5μm的NaZr2P3O12晶相粉末[17];在1200℃时将凝胶处理后可制备出平均粒径为0.4μm的α-Al2O3粉末[18];在1350℃时将凝胶处理后可形成粒径为0.08~0.15μm的Al2TiO5晶相粉末[19];在400℃时将凝胶处理后也可形成粒径较小的Na-B-Si-O粉料,此粉料可熔融形成玻璃,其熔融温度比常规方法低250℃。在一定的气流速度和压力下可制得最小颗粒尺寸为8.9nm的纳米级SiC-SiN复合超细粉末[20]。

3.5溶胶-凝胶法制备复合材料

溶胶-凝胶法制备复合材料,可以把各种添加剂、功能有机物或分子、晶种均匀地分散在凝胶基质中,经热处理致密化后,此均匀分布状态仍能保存下来,

使得材料更好地显示出复合材料特性。由于掺入物可多种多样,因而运用溶胶-凝胶法可生成种类繁多的复合材料,主要有:补强复合材料、纳米复合材料和有机-无机复合材料等。如有机掺杂SiO2复合材料,这类材料可作为发光太阳能收集器、固态可调激光器和非线性光学材料等。起初是将有机着色剂分子直接添加到溶液里通过溶解而引入到SiO2中,凝胶化后着色分子分布于Si-O网络中。这种材料的一个明显缺点是常存在连通的残余气孔,原因是有机物在高温下将产生分解,故凝胶化后不能将其加热到足够高的温度使SiO2致密化,而用溶胶-凝胶法,则克服了这一缺陷。

纳米掺杂微晶半导体玻璃是应用最为广泛的三阶非线性光学材料,1983年,Jain曾报道包含CdS和CdSe微晶的硅酸盐滤色玻璃具有较高的三阶非线性效应和快速开关效应[21],该材料曾计划用于光开关装置,但由于熔融法不能精确控制化学组成和纯度,且微晶的分布和粒径很难控制,因此该材料长时间使用后易产生光致变黑现象。为解决上述问题,80年代后期以来,许多研究者开始以溶胶-凝胶法替代熔融法,大大提高了材料的性能。

4结束语

溶胶-凝胶技术经过80年代的理论探讨与90年代的应用研究,已从聚合物科学、物理化学、胶体化学、配位化学、金属有机化学等有关学科角度探索而建立了相应基础理论,应用技术逐步成熟,应用范围不断扩大,形成了一门独立的溶胶-凝胶科学与技术的边缘学科。随着人们对溶液反应机理、凝胶结构和超微结构、凝胶向玻璃或晶态转变过程等基础研究工作的不断深入,溶胶-凝胶法的应用将更加广泛。为适应现代技术发展的需要,在应用方面将会着重开发微结构可调材料、无机-有机杂交复合材料、非线性和电光等光学功能材料、定向生长膜、超细粉末和生物材料。相信经过科学工作者的不断努力,在21世纪溶胶-凝胶技术的发展必将会有一个新的飞跃[22]。

参考文献:

[1] C.J. Briuker and G.W.Schercr. Sol-Gel Science-The physics and Chemistry of S-G Processing. Academic Press, INC,1990.

[2] W.Geffcken and Berger. German Patent, 736411(May,1939) .

[3] H.Dislich. Angecoandi Chemie, 1971,10[6]:363-370.

[4] B.E.Yoldas.J.mater.Sci.,1975,10:1856~1860,1977,12:1203-1208.

[5] M.Yamane,A,Shinji and T.Sakaino.J.Mater.Sci,1978,13:865-870.

[6] 周明,孟广耀,彭定坤。材料科学与工程,19991,9(3):8-14.

[7] 黄剑锋。溶胶-凝胶原理与技术。化学工业出版社,2005年9月1日第一版:13-14.

[8] 曹茂盛,关长斌,徐甲强等.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001.

[9] J.D.Mackenzie.J.of Non-crystalline Solids 1982,48:1-10.

[10] 杨南如,余桂郁。溶胶-凝胶法简介[J]。硅酸盐通报,1992年第2期.

[11] Brinker C J, Scherer G W. Sol-Gel Science-The Physic sand Chemistry of Sol-Gel Processing. San Diego: Academic Press, 1990.839-870.

[12] Mackenzie J D.Sol-Gel optics present status and future trends. SPIE,1990,(1328):2.

[13] 卞建江,赵梅瑜,殷之文。用柠檬酸盐-凝胶法低温合成单相Ba(Mg1/3Ta2/3)O3.无机材料学报,1998,13(1):43-47.

[14] Sakka S.Sol-Gel processing of insulating, electro conducting and super conducting fibers. Journal of Non-crystaline Solids, 1990,121:147.

[15] Uhlmann D R,Doulton Jm,TeoweeG. Sol-Gel synthesis of optical thin film sand coatings. SPIE,1990,(1328):270.

[16] Valla B, Macedo M, Aegerter M A. Electro chromicsm art windows. Journal of Non-crystaline Solids, 1992, 147:792.

[17] A grawal D K, A dair JH.Low-temperature Sol-Gel synthesis of NaZr2P3O12. J.Am. Ceram. Soc. ,1990,73(7):2153.

[18] 朱孝信。超微细粉末材料的发展。材料开发与应用,1998,5(13):28-33.

[19] 王育华,杨宏孝。络合法制备钛酸铅陶瓷粉料研究。西北轻工业学院学报,1992,10(3):77.

[20] 许宇庆,胡国君,丁子上。纳米SiC-Si3N4复合超细粉末的研制。硅酸盐学报,1994,22(3):239-245.

[21] 滕立东,李霞。溶胶-凝胶光学材料研究进展。硅酸盐通报,1995,14(6):41-45.

[22] 徐建梅,张德。溶胶-凝胶法的技术进展与应用现状。地质科技情报,990423,1999年第18卷第四期.

溶胶凝胶法制备纳米材料

利用溶胶凝胶法制备纳米材料的基本原理学院:材料学院班号:1109102 学号:1110910209 姓名:袁皓 摘要:本文介绍了纳米材料的性能用途以及制备方法,主要是新兴的制备纳米材料低温工艺——溶胶凝胶法,在文中详细说明了溶胶凝胶法的类型和特征,重点描述了利用溶胶凝胶法制备纳米材料的类型,基本原理以及简略的操作流程。 关键词:纳米材料溶胶凝胶基本原理 一溶胶凝胶法的基本原理 溶胶凝胶(sol-gel)法是一种制备超细粉末的一种湿化学法,它是以液体的化学试剂配制成金属有机或无机化合物或者是金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或是醇解反应,反应生成物在液相下均匀混合,均匀反应,生成稳定且无沉淀的溶胶体系,放置一段时间后或是干燥处理溶胶之后转变为凝胶,在凝胶中通常含有大量的液相物质,需要利用萃取或蒸发除去液体介质,并在远低于传统的烧结温度下热处理,最后形成相应物质化合物粉体,利用溶胶凝胶法还可以制备其他形态的材料包括单晶、纤维、图层、薄膜材料等。 表2-1 对于制备纳米材料的溶胶凝胶法类型和特征 1.1 溶剂化 能电离的前驱物-金属盐的金属阳离子M z+吸引水分子形成溶剂单元(M(H2O)n)z+(z 为M 离子的价数),为保持它的配位数而具有强烈的释放H+的趋势。 (M(H2O)n)z+==(M(H2O)n-1(OH))(z-1)++H+ 1.2 水解反应 非电离式分子前驱物,如金属醇盐M(OR)n(n 为金属M 的原子价,R 代表烷基),与水反应,反应可延续进行,直至生成M(OH)n。 M(OR)n+xH2O→M(OH)x(OR)n-x+xROH 1.3 缩聚反应 可分为失水缩聚:-M-OH+HO-M→M-O-M-+H2O 失醇缩聚:-M-OR+HO-M→-M-O-M+ROH

溶胶-凝胶法在制备纳米材料方面的应用资料讲解

溶胶-凝胶法在制备纳米材料方面的应用

溶胶-凝胶法在制备纳米材料方面的应用 前言 纳米科技是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米加工及表征等。纳米材料的合成与制备一直是纳米科学领域内一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。最早是采用金属蒸发凝聚"原位冷压成型法制备纳米晶体,相继又发展了各种物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等 溶胶-凝胶法是上个世纪6、70年代发展起来的一种制备无机材料的新工艺,近年来多被用于制备纳米微粒和薄膜。溶胶-凝胶法具有反应条件温和通常不需要高温高压,对设备技术要求不高,体系化学均匀性好,可以通过改变溶胶-凝胶过程的参数裁剪控制纳米材料的显微结构等诸多优点。不仅可用于制备超微粉末和薄膜,而且成功应用于颗粒表面包覆,成为目前合成无机纳米材料的主要技术,引起了材料科学技术界的广泛关注,是一个具有挑战性和应用前景非常广阔的领域。 1.溶胶-凝胶法的工艺原理: 溶胶凝胶法的工艺原理是:以液体化学试剂配制成金属无机盐或金属醇盐的前驱体,前驱体溶于溶剂中形成均匀的溶液(有时加入少量分散剂)加入适量的凝固剂使盐水解、醇解或发生聚合反应生成均匀、稳定的溶胶体系,再经过长时间放置(陈化)或干燥处理使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分、最后得到无机纳米材料。因此,也有人把溶胶凝胶法归类为前驱化合物法。

根据原料的不同,溶胶凝胶法一般可分为两类,即无机盐溶胶凝胶法和金属醇盐水解法。 (1)在无机盐溶胶凝胶法中,溶胶的制备是通过对无机盐沉淀过程的控制,使生成的颗粒不团聚成大颗粒而生成沉淀,直接得到溶胶;或先将部分或全部组分用适当的沉淀剂沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成胶体颗粒溶胶的形成主要是通过无机盐的水解来完成。反应式如下 (2)金属醇盐水解法通常是以金属有机醇盐为原料 ! 通过水解与缩聚反应而制得溶胶’首先将金属醇盐溶入有机溶剂 ! 加水则会发生如下反应: 式中M为金属R为有机基团,如烷基。经加热去除有机溶液得到金属氧化物材料。 2.溶胶-凝胶法的工艺过程: 溶胶凝胶法制备无机纳米材料过程主要包括5个步骤 (1)均相溶液的制备:溶胶凝胶法的第一步是制取包含醇盐和水均相溶液,以确保醇盐的水解反应在分子级水平上进行。在此过程中,溶剂的选择和加入量是关键。 (2)溶胶的制备:在溶胶凝胶法中,最终产品的结构在溶胶形成过程中即已初步形成,后续工艺均与溶胶的性质直接相关,因此溶胶制备的质量是十分重要的。有两种方法制备溶胶,一是先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成原始颗粒。这种颗粒的大小一般在

试验题目材料专业试验—溶胶凝胶法制备陶瓷薄膜

专业实验(2) 一:溶胶凝胶法制备陶瓷薄膜 这是材料系设置的基础实验课。材料专业实验(2)要求针对材料领域的各种制备方法以及热处理方法进行自我设计,自我准备,完成工艺的全过程,并得到预期的实验结果,并结合理论知识,分析实验结果与制备工艺参数之间的关系。通过材料专业实验(2),让学生基本掌握常用的类制备方法或热处理工艺的原理和工艺过程,了解工艺过程对最终的结果的影响规律,进一步强化学生的理论知识,培养学生的实际动手操作能力,为其毕业设计做基础。 一、实验目的 1.了解溶胶-凝胶过程 2.掌握用溶胶-凝胶法制备薄膜的制备工艺与原理 二、实验要求 1、学生应该在讲义的基础上,先查阅相关文献,了解溶胶凝胶法概念及在材料制备方面的基本应用,了解该方法制备材料特别是陶瓷薄膜的一般流程和制备过程中的一些关键问题,以及制备过程中可能的影响因素。 2、学生可以制备讲义中给出的陶瓷薄膜ZnO,也可以自己决定制备的陶瓷薄膜材料(不过需要提前一周报知教师以方便准备实验药品),讲义中给出了ZnO陶瓷薄膜制备的一般流程和参考方案,学生可以自主调整参考方案中的各种参数如溶胶的浓度、粘度、匀胶机的转速、匀胶时间、热处理的温度及时间等,可以选择不同的基片、甚至选择用其他的涂膜方式如浸滞提拉法,最终目的是在基片上得到陶瓷薄膜样品。由于实验条件以及实验时间的限制,实验取消了最后一步热处理的过程,而且测试条件只是采用金相显微镜进行粗略的表面质量观测,另外,实验并不要求每个学生都能得到质量很好的样品,而是不同的同学选取不同的实验方案,相互之间要进行横向比较。 三、实验所需仪器设备 一台匀胶机及吸片用小型真空泵,一台可调温电炉,一台搅拌器,以及化学配备溶胶的一些玻璃器皿; 实验测试采用普通的金相显微镜进行粗略的表面质量观察。 四、实验原理 近代科学和生产发展使薄膜科学与技术成为新材料和新器件研发的重要领域。 薄膜的研究首先是从研究如何制作薄膜这种特殊形态材料开始的。传统上采用得较多的方法是真空蒸发法、溅射法和气相生长法等,但它们都存在一定的局限性。如真空气相沉积设备中的真空腔大小限制着生产元件的尺寸,溅射法由于薄膜材料与基片之间可能发生反应而导致产品污染等,薄膜生产价格昂贵。而溶胶-凝胶法不需要特别昂贵的设备,具有工艺过程简单,薄膜组分化学计量比容易控制,容易形成大面积的均匀膜等优点。因此越来越得到人们的重视和应用. 1、溶胶凝胶法 溶胶-凝胶法是60年代发展起来的一种制备玻璃、陶瓷等无机材料的新工艺,近年来许

溶胶凝胶法制备材料

溶胶-凝胶法制备材料 摘 要:溶胶-凝胶法广泛应用于制备薄膜材料和粉体材料,其主要原理是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料。本文主要介绍了一些溶胶-凝胶法制备材料的发展历史,原理以及一些溶胶-凝胶法实际应用案例。 关键词:溶胶-凝胶法;纳米材料;陶瓷薄膜材料;掺杂;锂电池;包覆材料 溶胶-凝胶法发展过程:1846年法国化学家J.J.Ebelmen 用SiCl 4与乙醇混合后,发现在湿空气中发生水解并形成了凝胶。20世纪30年代W.Geffcken 证实用金属醇盐的水解和凝胶化可以制备氧化物薄膜。1971年德国H.Dislich 报道了通过金属醇盐水解制备了SiO 2-B 2O-Al 2O 3-Na 2O-K 2O 多组分玻璃。1975年 B.E.Yoldas 和M.Yamane 制得整块陶瓷材料及多孔透明氧化铝薄膜。80年代以来,在玻璃、氧化物涂层、功能陶瓷粉料以及传统方法难以制得的复合氧化物材料得到成功应用。 分类:溶胶-凝胶法按产生溶胶凝胶过程机制主要分成三种类型: (1)传统胶体型:通过控制溶液中金属离子的沉淀过程,使形成的颗粒不团聚成大颗粒而沉淀得到稳定均匀的溶胶,再经过蒸发得到凝胶。 (2)无机聚合物型:通过可溶性聚合物在水中或有机相中的溶胶过程,使金属离子均匀分散到其凝胶中。常用的聚合物有聚乙烯醇、硬脂酸等。(3)络合物型:通过络合剂将金属离子形成络合物,再经过溶胶,凝胶过程成络合物凝胶。 制备方法及原理:溶胶一凝胶科学技术是以金属醇盐为原料制作玻璃、玻璃陶瓷、陶瓷以及其它功能无机材料的一种新工艺方法。溶胶-凝胶法制备材料的方法属于化学制备方法,溶胶-凝胶体的制备有3种途径:(1)溶胶溶液的凝胶化; (2)醇盐或硝酸盐前驱体的水解聚合,继之超临界干燥凝胶;(3)醇盐前驱体的水解聚合。 溶胶-凝胶法的化学过程首先是将原料分散在溶剂中,然后经水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需材料。其基本反应式为: ;)()()(424nHOR OH OR M O nH OR M n n +→+-水解: ;])()([)(22214-4O H O OH OR M OH OR M n n n n +→--)(缩聚:

溶胶凝胶法制备纳米薄膜材料

实验名称:溶胶-凝胶法制备TiO2薄膜材料 纳米TiO2具有许多特殊功能,如良好的抗紫外线性能、耐化学腐蚀性能和耐热性、白度好、可见光透射性好以及化学活性高等。TiO2纳米材料还具有净化空气、杀菌、除臭、超亲水性等功能,已广泛应用于抗菌陶瓷,空气净化器、不用擦拭的汽车后视镜等领域,20世纪80年代末纳米发展起来成为主要的纳米材料之一。研究表明,紫外线过量照射人体,会使人的记忆力减退、反应迟钝、视力下降、易失眠等影响。在玻璃上负载TiO2膜可以有效地吸收紫线。本次实验利用溶胶凝胶法制备TiO2纳米薄膜材料,在一定程度上是对TiO2在实际生活中应用的尝试。 一.实验目的 1.了解溶胶-凝胶法制备纳米薄膜材料的应用。 2.掌握溶胶-凝胶法制备纳米薄膜材料的原理以及实际应用。 3.掌握XRD颜射原理以及实际操作技能。 4.掌握根据X-射线衍射图分析晶体的基本方法。 二.实验原理 溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体。 其基本反应如下: (l)水解反应:M(OR)n + H2O → M (OH) x (OR) n-x + xROH (2) 聚合反应: -M-OH + HO-M-→ -M-O-M-+H2O -M-OR + HO-M-→ -M-O-M-+ROH 三.实验试剂与实验仪器

溶胶-凝胶法在制备纳米材料方面的应用

溶胶-凝胶法在制备纳米材料方面的应用 前言 纳米科技是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米加工及表征等。纳米材料的合成与制备一直是纳米科学领域内 一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有 重要的影响。最早是采用金属蒸发凝聚"原位冷压成型法制备纳米晶体,相继又发展了各种 物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等 溶胶-凝胶法是上个世纪6、70年代发展起来的一种制备无机材料的新工艺,近年来多 被用于制备纳米微粒和薄膜。溶胶-凝胶法具有反应条件温和通常不需要高温高压,对设备 技术要求不高,体系化学均匀性好,可以通过改变溶胶-凝胶过程的参数裁剪控制纳米材料 的显微结构等诸多优点。不仅可用于制备超微粉末和薄膜,而且成功应用于颗粒表面包覆, 成为目前合成无机纳米材料的主要技术,引起了材料科学技术界的广泛关注,是一个具有挑战性和应用前景非常广阔的领域。 1.溶胶-凝胶法的工艺原理: 溶胶凝胶法的工艺原理是:以液体化学试剂配制成金属无机盐或金属醇盐的前驱体,前驱体溶于溶剂中形成均匀的溶液(有时加入少量分散剂)加入适量的凝固剂使盐水解、 醇解或发生聚合反应生成均匀、稳定的溶胶体系,再经过长时间放置(陈化)或干燥处理使 溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分、最后得到无机纳米材料。因此,也有 人把溶胶凝胶法归类为前驱化合物法。 根据原料的不同,溶胶凝胶法一般可分为两类,即无机盐溶胶凝胶法和金属醇盐水解法。(1)在无机盐溶胶凝胶法中,溶胶的制备是通过对无机盐沉淀过程的控制,使生成的颗粒 不团聚成大颗粒而生成沉淀,直接得到溶胶;或先将部分或全部组分用适当的沉淀剂沉淀出 来,经解凝,使原来团聚的沉淀颗粒分散成胶体颗粒溶胶的形成主要是通过无机盐的水解来 完成。反应式如下 (2)金属醇盐水解法通常是以金属有机醇盐为原料! 通过水解与缩聚反应而制得溶胶’首先将金属醇盐溶入有机溶剂! 加水则会发生如下反应: 式中M为金属R为有机基团,如烷基。经加热去除有机溶液得到金属氧化物材料。 2.溶胶-凝胶法的工艺过程: 溶胶凝胶法制备无机纳米材料过程主要包括5个步骤 (1)均相溶液的制备:溶胶凝胶法的第一步是制取包含醇盐和水均相溶液,以确保醇盐的 水解反应在分子级水平上进行。在此过程中,溶剂的选择和加入量是关键。 (2)溶胶的制备:在溶胶凝胶法中,最终产品的结构在溶胶形成过程中即已初步形成,后 续工艺均与溶胶的性质直接相关,因此溶胶制备的质量是十分重要的。有两种方法制备溶胶,一是先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成 原始颗粒。这种颗粒的大小一般在溶胶体系中胶核大小的范围内,因而可制得溶胶;另一种方法是由同样的盐溶液,通过对沉淀过程的严格控制,使首先形成的颗粒不致团聚为大颗粒 而沉淀,从而直接得到胶体溶液。 (3)凝胶化过程:缩聚反应形成的聚合物或粒子聚集体长大为小粒子簇,后者逐渐相互连 接成为一个横跨整体的三维粒子簇连续固体网络。在陈化过程中,胶体粒子聚集形成凝胶, 由于液相被包裹于固相骨架中,整个体系失去活动性,随着胶体粒子逐渐形成网络结构, 溶胶也从Newton体向Bingham体转变,并带有明显的触变性。在许多实际应用中,制品的成型就是在此期间完成的。

实验 溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验 一、实验目的 1、掌握溶胶-凝胶法制备纳米粒子的原理。 2、了解TiO 2 纳米粒子光催化机理。 二、实验原理 溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。 溶胶凝胶法制备TiO 2 纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为: Ti(OR)n+H 2O Ti(OH)(OR) n-1 +ROH Ti(OH)(OR)n-1+H 2O Ti(OH) 2 (OR) n-2 +ROH …… 反应持续进行,直到生成Ti(OH)n. 缩聚反应: —Ti—OH+HO—Ti——Ti—O—Ti+H 2 O —Ti—OR+HO—Ti——Ti—O—Ti+ROH 最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。 三、原料及设备仪器 1、原料:钛酸正四丁脂(分析纯)、无水乙醇(分析纯)、冰醋酸(分析纯)、盐酸(分析纯)、蒸馏水 2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉 四、实验步骤 以钛酸正丁酯[Ti(OC 4H 9 ) 4 ]为前驱物,无水乙醇(C 2 H 5 OH)为溶剂,冰醋酸(CH 3 COOH)为 螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶。 1、室温下量取10 mL钛酸丁酯,缓慢滴入到35 mL无水乙醇中,用磁力搅拌器强力搅拌10 min,混合均匀,形成黄色澄清溶液A。 2、将2 mL冰醋酸和10 mL蒸馏水加到另35 mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3。 3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中。 4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1 h后得到白色凝胶(倾斜烧瓶凝胶不流动)。 5、置于80 ℃下烘干,大约20 h,得黄色晶体,研磨,得到淡黄色粉末。 6、在 600 ℃下热处理2 h,得到二氧化钛(纯白色)粉体。 五、思考题 1、溶胶-凝胶法制备材料有哪些优点 2、纳米二氧化钛粉体有哪些用途 六、实验报告要求 实验报告按照学校统一模板书写,包括下列内容: 1、实验名称、目的和实验步骤。 2、解答思考题。

溶胶凝胶法

溶胶凝胶法 1 溶胶,凝胶法 溶胶,凝胶(Sol-Gel)技术是指金属有机或无机化合物经过溶胶,凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程:用液体化学试剂(或粉状试剂溶于溶剂)或溶胶为原料,而不是用传统的粉状物为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系,放置一定时间后转变为凝胶,经脱水处理,在溶胶或凝胶状态下成型为制品,再在略低于传统的温度下烧结。 2 溶胶凝胶法基本原理 溶胶,凝胶法的主要步骤为将酯类化合物或金属醇盐溶于有机溶剂中,形成均匀的溶液,然后加入其他组分,在一定温度下反应形成凝胶,最后经干燥处理制成产品。 2.1 水解反应 金属盐在水中的性质受金属离子半径,电负性,配位数等因素影响,如Si、Al 盐,它们溶解于纯水中常电离出Mn+,并溶剂化[3]。水解反应平衡关系随溶液的酸度,相应的电荷转移量等条件的不同而不同。有时电离析出的Mn+又可以形成氢氧桥键合。 水解反应是可逆反应,如果在反应时排除掉水和醇的共沸物,则可以阻止逆反应进行,如果溶剂的烷基不同于醇盐的烷剂,则会产生转移酯化反应,这些反应对合成多组分氧化物是非常重要的。 2.2 聚合反应 硅、磷、硼以及许多金属元素,如铝、钛、铁等的醇盐或无机盐在水解的同时均会发生聚合反应,如失水、失醇、缩聚、醇氧化、氧化、氢氧桥键合等都属于聚合反应,性质上都属于取代反应或加成反应。主要反应:,M,OH , HO,M, ? ,M,O,M,+H2O ;,M,OR + HO,M, ? ,M,O,M,+ROH 等。Okkerse等提出硅酸

在碱性条件聚合成六配位过渡态,Swain等则提出形成稳定的五配位的过渡态,由于硅酸盐的水解和聚合作用几乎同时进行,它的总反应过程动力学将决定于3个反应速率常数,使得在最临近的尺度范围内,中心Si原子可以有15种不同的化学环境,R.A.Assink等曾描述了这15种配位方式的关系。可见聚合后的状态是很复杂的[4-6]。 3 溶胶,凝胶法工艺过程 在Sol-Gel的全过程中,金属醇盐、溶剂、水及催化剂组成均相溶液,由水解缩聚而形成均相溶胶;进一步陈化成为湿凝胶;经过蒸发除去溶剂或蒸发分别得到气凝胶或干凝胶,后者经烧结得到致密的陶瓷体。同时,均相溶胶可以在不同衬底上涂膜,经过焙烧等热处理得到均匀致密的薄膜;也可以拉丝,得到玻璃纤维;以及均相溶胶经不同方式处理得到粉体[7]。 3.1 均相溶液的制备 这一步是制取包含醇盐和水的均相溶液,以确保醇盐的水解反应在分子级水平上进行。由于金属醇盐在水中的溶解度不大,一般用醇做溶剂,因为醇与醇盐溶液互溶,也跟水互溶,所以醇的加入量应适当,否则可能落入三元不混溶区。因为醇是醇盐水解产物,对水解反应有抑制作用,为保证起始溶液均匀性,对配置的混合液必须施以搅拌。为防止反应过程中易挥发组分散失,造成组成变化,一般需加回流冷凝装置。 3.2 溶胶的制备 一般将制备溶胶的方法分为聚合法和颗粒法。对醇盐来说,这两种方法的区别在于加水量的多少。在溶胶,凝胶法中,最终产品的结构在溶液中以初步形成,后续工艺与溶胶的性质直接相关,因此溶胶的质量是十分重要的。醇盐的水解和缩聚反应使均相溶液转变为溶胶,显然控制醇盐水解缩聚的条件是制备高质量溶胶的前

利用溶胶凝胶法制备纳米材料讲课教案

利用溶胶凝胶法制备 纳米材料

哈尔滨师范大学 学年论文 题目利用溶胶凝胶法制备纳米材料的基本原理学生杨微 指导教师徐玲玲副教授 年级 2009级 专业物理学 系别物理系 学院物理与电子工程学院 哈尔滨师范大学 2012年4月

论文提要 随着社会的发展,纳米材料从开始的微观的概念到现如今纳米材料,从产生到发展到不断创新,大量的新产品已经渗透到了我们的日常生活,纳米纤维、纳米陶瓷、纳米芯片等都已经在市面上有重要应用。 然而纳米材料的制备却成了摆在我们面前亟待解决的最大障碍,但是热爱科学的科学家门在经过了艰苦卓绝的探索,在今天我们已经在纳米材料的制备方面有了新的突破,研究出来很多方法,其中包括物理方法,化学方法,而在化学方法中,本文主要讨论了溶胶凝胶技术制备纳米材料的分类,基本原理以及简单的工艺过程。

利用溶胶凝胶法制备纳米材料的基本原理 杨微 摘要:本文介绍了纳米材料的性能用途以及制备方法,主要是新兴的制 备纳米材料低温工艺——溶胶凝胶法,在文中详细说明了溶胶凝胶法的类型和特征,重点描述了利用溶胶凝胶法制备纳米材料的类型,基本原理以及简略的操作流程。 关键词:纳米材料溶胶凝胶基本原理 The basic principle of the use of sol-gel Nano – materials Yang Wei Abstract: This paper introduces the performance and complication of Nano - materials as well as preparation methods, emphatically introduced the emerging Preparation Nano – materials , that is low - temperature process, the sol-gel method describe in detail the types and characteristics of sol-gel method, the focus describes the type of sol-gel Nano - materials, the basic principle, and brief operation process. Key words: sol-gel Nano-materials basic principle 一、纳米材料 (一)纳米材料的产生: “纳米”是一个尺度单位,以“纳米”来命名的材料是在20世纪80年代,它作为一种新兴材料的定义把纳米颗粒尺度限制在1~100nm范围。1990.7在美国巴而的摩召开了第一次国际纳米科学技术学术会议,正式把纳米材料科学作为材料科学的一个分支公布于世。这标志着纳米材料科学作为一个相对比较独立学科的诞生。 (二)纳米科学技术的发展及分类 纳米科学技术是在纳米尺寸范围内通过直接操作和安排原子、分子创制新的物质。纳米科技主要包括:(1)纳米体系物理学;(2)纳米化学:(3)纳米材料学:(4)纳米生物学;(5)纳米加工学;(6)纳米电子学;(7)纳米力学。 (三)纳米材料的使用范围

溶胶凝胶法

溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 胶体(colloid)是一种分散相粒径很小的分散体系,分散相粒子的重力可以忽略,粒子之间的相互作用主要是短程作用力。 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在1~1000nm之间。 凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间。 溶胶-凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。其最基本的反应是: (l)水解反应:M(OR)n +H2O →M (OH) x (OR) n-x +xROH (2) 聚合反应:-M-OH +HO-M-→-M-O-M-+H2O -M-OR +HO-M-→-M-O-M-+ROH 优点: 容易达到分子水平均匀,便于控制掺杂量,热处理温度低、设备简单、价格低廉等 溶胶凝胶法,其物质可以形成有聚合能力的线型分子结构的水解中间产物,在与其他物质结合,缩聚成复合水解中间产物,或是进行缩聚反应而进入复合水解中间产物网络中。形成的物质较为稳定。且形成的凝胶于加水量有关系,若是加水量较少,水解不够彻底,加水量多,不易形成溶胶。 柠檬酸与乙二醇混合才会形成溶胶凝胶,而柠檬酸时很强的络合剂,在酸性条件下,会与金属形成稳定的络合物。

溶胶凝胶法

溶胶—凝胶法制备粉体 溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。 一、基本原理 溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。 凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。 溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。在溶液中前驱物进行水解、缩合反应,形成凝胶。传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。因此在很多领域中应用较多的是络合溶胶-凝胶法。该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。 溶胶-凝胶过程具体包括以下两个反应过程: 1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解: ML + nH 2O → M(OH 2 )z+ n + L z- M(OH 2)z+ n → M(OH)(OH)(z-1)+ n-1 + H+ 2.缩聚反应是把OR或L和OH换去,转换成氧化态: M-OH + M-OH → M-O-M + H 2 O M-OH + M-OH → M-O-M + ROH 聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。如果水解反应速率大于缩聚反应速率,能够促进凝胶的形成。但在许多情况下,水解反应比缩聚反应快的太多,往往形成沉淀而无法形成稳定的均匀凝胶。要成功合成稳定的凝胶,关键在于降低络合物的水解速率,配制在pH值增大的条件下也足够稳定的前驱液。金属离子络合的目的是控制配位水分子在去离子反应中的水解速度,尽量减慢水解反应速度使缩聚反应完全。 二、影响因素

溶胶凝胶法制备纳米材料

利用溶胶凝胶法制备纳米材料的基本原理 学院:材料学院班号:1109102 学号:1110910209 姓名:袁皓 摘要:本文介绍了纳米材料的性能用途以及制备方法,主要是新兴的制备纳米材料低温工艺——溶胶凝胶法,在文中详细说明了溶胶凝胶法的类型和特征,重点描述了利用溶胶凝胶法制备纳米材料的类型,基本原理以及简略的操作流程。 关键词:纳米材料溶胶凝胶基本原理 一溶胶凝胶法的基本原理 溶胶凝胶(sol-gel)法是一种制备超细粉末的一种湿化学法,它是以液体的化学试剂配制成金属有机或无机化合物或者是金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或是醇解反应,反应生成物在液相下均匀混合,均匀反应,生成稳定且无沉淀的溶胶体系,放置一段时间后或是干燥处理溶胶之后转变为凝胶,在凝胶中通常含有大量的液相物质,需要利用萃取或蒸发除去液体介质,并在远低于传统的烧结温度下热处理,最后形成相应物质化合物粉体,利用溶胶凝胶法还可以制备其他形态的材料包括单晶、纤维、图层、薄膜材料等。 表2-1 对于制备纳米材料的溶胶凝胶法类型和特征 1.1 溶剂化 能电离的前驱物-金属盐的金属阳离子M z+吸引水分子形成溶剂单元(M(H2O)n)z+(z 为M 离子的价数),为保持它的配位数而具有强烈的释放H+的趋势。 (M(H2O)n)z+==(M(H2O)n-1(OH))(z-1)++H+ 1.2 水解反应 非电离式分子前驱物,如金属醇盐M(OR)n(n 为金属M 的原子价,R 代表烷基),与水反应,反应可延续进行,直至生成M(OH)n。 M(OR)n+xH2O→M(OH)x(OR)n-x+xROH 1.3 缩聚反应 可分为失水缩聚:-M-OH+HO-M→M-O-M-+H2O 失醇缩聚:-M-OR+HO-M→-M-O-M+ROH

溶胶凝胶法制备薄膜

东南大学材料科学与工程 实验报告 学生姓名徐佳乐班级学号12011421 实验日期2014/9/3 批改教师 课程名称电子信息材料大型实验批改日期 实验名称溶胶-凝胶法制备薄膜材料报告成绩 一、实验目的 1、了解溶胶-凝胶法制备薄膜的基本原理。 2、掌握旋涂法制备薄膜的具体方法。 二、实验原理 溶胶-凝胶法基本过程是一些易水解的金属化合物(金属醇盐或无机盐)在魔种有机溶剂中与水发生作用。通过水解缩聚反应形成凝胶膜,再通过热分解,去除凝胶中残余的有机物和水分,最后通过热处理形成所需要的结晶膜。一般的工艺流程图如下。 溶胶形成凝胶的水解和缩聚反应如下: M(OH)n+xH2O→(RO)n-xM-(OH)x+xROH (水解反应) -M-OH+OH-M→M-O-M-+H2O (脱水缩聚反应) -M-OH+RO-M→M-O-M+ROH (脱醇缩聚反应) 溶胶-凝胶技术由于各组分在溶液或溶胶中彻底混合,达到分子级接触,因而具有微区组分高度均匀,化学计量比较准确,易于掺杂及低温下获得高熔点化合物的优点。 三、实验设备及材料 实验仪器:电子天平、磁力搅拌器、甩胶机、净化操作台、快速退 火处理设备、玻璃仪器。 实验药品:醋酸钡、钛酸丁酯、冰乙酸、乙二醇甲醚、硅片等。 四、实验内容及步骤 1.配置溶液 (1)计算配置10ml,0.3mol/L的BaTiO3前体溶液所需的醋酸钡和

钛酸丁酯的用量。经计算得:醋酸钡0.76g 钛酸丁酯1.02g。 (2)在电子天平上铺称量纸调零后称取醋酸钡0.76g,将醋酸钡放入称量瓶中,放入磁子。 (3)用量筒量取2ml冰乙酸加入放有醋酸钡的称量瓶盖紧塞子后将称量瓶放在磁力搅拌器上,使醋酸钡充分溶解。 (4)将另一个称量瓶放在电子天平上,调零,称取1.02g钛酸丁酯,用量筒称取4ml乙二醇甲醚调入装有钛酸丁酯的称量瓶内,将称量瓶放在磁力搅拌器上使液体混合均匀。 (5)最后将钛酸丁酯溶液缓慢加入醋酸钡溶液,将称量瓶放在磁力搅拌器上使液体混合均匀。最后将称量瓶中的溶液加乙二醇甲醚配至10ml,将称量瓶放在磁力搅拌器上使液体混合均匀,然后用玻璃漏斗过滤。 (6)测试所配溶液的pH值,测得pH值为6。 2.甩胶法制膜 (1)将硅片用丙酮清洗再用乙醇清洗。 (2)开净化操作台电源,开通风电源,开甩胶机电源,调整转速为3000rpm,甩胶时间为20s。 (3)用镊子将清洗好的硅片放在甩胶头上,开真空泵,用滴管将2-3滴溶液滴在基片上,溶液铺满基片表面,启动电源进行甩胶,甩好的基片在热台(250℃)上烘烤5min。然后利用设定好的快速热处理升温曲线,在快速热退火处理设备内进行退火。 (4)重复甩胶和热处理步骤两次,得到一定厚度的BaTiO3薄膜。 (5)在显微镜下观察薄膜表面。如下图:

溶胶凝胶法

溶胶-凝胶法 溶胶-凝胶法(Sol-Gel法,简称S-G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 溶胶-凝胶法由于其前驱物及其反映条件的不同可以分为以下几种制备方法。 l、金属醇盐水解法 该方法的基本过程是将醇盐溶于有机溶剂,然后在搅拌的同时缓慢加入蒸馏水的醇溶液,控制一定的pH值,经反应一定时间即可得到溶胶。溶胶的化学均匀程度一方面受到前驱液中各醇盐混合水平的影响,这与醇盐之间的化学反应情况密切相关;另一方面,每种醇盐对水的活性也有很大的差异。当金属醇盐之间不发生反应时,各种金属醇盐对水的活性起决定作用,反应活性的不同导致溶胶不均匀。添加有机络合剂是克服这些问题切实可行的办法,常用的络合剂有羧酸或β-二酮等添加剂。 2、强制水解法 该方法的基本过程是将将所要制备的金属氯化物加到氯化氢的水溶液中,将其加热到沸腾反应一段时间即得到对应的溶胶。这种方法在制备氧化物在氧化物阳极材料的制备中也得到了较为广泛的应用。 3.金属醇盐氨解法 4、原位聚合法及聚合螫合法 这种方法的作用机理是有机单体聚合形成不断生长的刚性有机聚合网络,包围稳定的金属螫合物,从而减弱各种不同离子的差异性,减少各金属在高温分解中的偏析 溶胶-凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。 ⑴Sol-Gel法的基本原理及特点 S01-Gel法的基本反应步骤如下: 1)溶剂化:金属阳离子M z+吸引水分子形成溶剂单元M(H2O)n x+,为保持其配位数,具有强烈释放H+的趋势。 M(H2O)n x+→M(H2O)n-1(OH)(x-1)+H+ 2)水解反应:非电离式分子前驱物,如金属醇盐M(OR)n与水反应。 M(0R)n+xH20=M(OH)x(OR)n-x,+xROH—M(OH)n 3)缩聚反应:按其所脱去分子种类,可分为两类 a)失水缩聚 —M—OH+HO—M—=—M—O—M—+H20 b)失醇缩聚 —M—0R+HO—M—=—M—O—M—+ROH

实验溶胶凝胶法制备纳米二氧化钛实验

实验溶胶凝胶法制备纳米 二氧化钛实验 The following text is amended on 12 November 2020.

实验八溶胶-凝胶法制备纳米二氧化钛实验 一、实验目的 1、掌握溶胶-凝胶法制备纳米粒子的原理。 2、了解TiO 2 纳米粒子光催化机理。 二、实验原理 溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。 溶胶凝胶法制备TiO 2 纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为: Ti(OR)n+H 2O Ti(OH)(OR) n-1 +ROH Ti(OH)(OR)n-1+H 2O Ti(OH) 2 (OR) n-2 +ROH …… 反应持续进行,直到生成Ti(OH)n. 缩聚反应: —Ti—OH+HO—Ti——Ti—O—Ti+H 2 O —Ti—OR+HO—Ti——Ti—O—Ti+ROH 最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。 三、原料及设备仪器 1、原料:钛酸正四丁脂(分析纯)、无水乙醇(分析纯)、冰醋酸(分析纯)、盐酸(分析纯)、蒸馏水 2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉 四、实验步骤 以钛酸正丁酯[Ti(OC 4H 9 ) 4 ]为前驱物,无水乙醇(C 2 H 5 OH)为溶剂,冰醋酸(CH 3 COOH)为 螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶。 1、室温下量取10 mL钛酸丁酯,缓慢滴入到35 mL无水乙醇中,用磁力搅拌器强力搅拌10 min,混合均匀,形成黄色澄清溶液A。 2、将2 mL冰醋酸和10 mL蒸馏水加到另35 mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3。 3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中。 4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1 h后得到白色凝胶(倾斜烧瓶凝胶不流动)。 5、置于80 ℃下烘干,大约20 h,得黄色晶体,研磨,得到淡黄色粉末。 6、在 600 ℃下热处理2 h,得到二氧化钛(纯白色)粉体。 五、思考题 1、溶胶-凝胶法制备材料有哪些优点 2、纳米二氧化钛粉体有哪些用途 六、实验报告要求 实验报告按照学校统一模板书写,包括下列内容: 1、实验名称、目的和实验步骤。 2、解答思考题。

溶胶凝胶法制备氧化锌薄膜

一、所需试剂和实验仪器 试验中所需试剂(均为国药集团生产)及其作用: 二水合醋酸锌Zn(CH3COO)2?2H2O 金属前驱物 乙二醇甲醚CH3OCH2CH2OH 溶剂 无水乙醇CH3CH2OH 溶剂、清洗 异丙醇(CH3)2CHOH 溶剂 乙醇胺H2NCH2CH2OH 稳定剂 二乙醇胺HN(CH2CH2OH)2 稳定剂 九水合硝酸铝Al(NO3)3?9H2O 掺杂 丙酮CH3COCH3 清洗基片 浓盐酸HCL 清洗基片 去离子水H2O 清洗基片 制备薄膜的实验仪器设备 仪器型号用途 物理电子天平FA1104电子天平,测量前驱物及掺杂等物质 d=0.1mg,上海方瑞仪器 恒温磁力搅拌器78HW-1 型,金坛荣华仪器配制溶胶 台式匀胶机KW-4A 型台式匀胶机涂胶制备薄膜 中科院微电子研究所 电热恒温鼓风干燥箱DHG-9101.OSA 型预热处理薄膜 管式电阻炉SK-2-2-12 型预热和最终高温处理薄膜 上海实验电炉 测试仪器 X-射线衍射仪、高分辨透射电子显微镜、扫描电镜SEM、Hitachi-F4500荧光光谱仪等。 其它 石英硅片

二、实验步骤 (一)ZnO 前驱溶胶的制备 1、配制0.75 M 的溶胶: 用电子天平(精度为0.1mg)准确称取8.2621g 二水合醋酸锌放入大约30 mL 的乙醇溶剂中用具塞三角瓶盛放,用恒温磁力搅拌器搅拌并保持温度为70℃,10 分钟后加入4.60 mL的乙醇胺稳定剂,搅拌10 分钟后,待其冷却后在50 mL 容量瓶中用乙醇滴定,配制成0.75 M 的溶胶,最后在70℃的恒温磁力搅拌器上搅拌 1 小时后,形成均一透明的溶胶,至少静置48 小时后待用。在相同的条件下,分别用异丙醇(IPA),乙二醇甲醚(EGME)做为溶剂配制0.75 M 的ZnO 前驱物溶胶,至此我们配制了三种不同溶剂的ZnO 溶胶备用。 2、ZnO 薄膜的制备 我们选用石英片作为衬底。 (1)基片的清洗:采用石英片为基板,在涂膜前依次用浓盐酸、酒精、丙酮和丙酮酒精混合物以及去离子水在超声仪中清洗15 分钟,然后用于涂膜。 (2)薄膜的制备:我们在这次实验中采取四次涂膜。采用旋涂法进行涂膜,涂膜时先低转速600r/min,时间 6 s,然后高转速为3000 r/min,旋转时间为30s。涂膜结束后立即放入200o C 的烘箱中干燥10min,然后放入管式炉中进行500o C 热处理10 min。每一薄膜试样重复上述涂膜过程4 次。获得的ZnO 薄膜样品最后在600℃热处理 1 小时。 三、厚度、表面形貌及光学性质检测 1、X-射线衍射仪(X-Ray Diffraction) 从XRD 的结果可以确定晶体的物相、晶格常数和颗粒大小,还可根据峰的

溶胶凝胶制备微晶玻璃

溶胶—凝胶技术制备微晶玻璃 摘要:玻璃的制备工艺多种多样,而用溶胶-凝胶法制备玻璃是近年来兴起的新工艺,本文简单介绍了利用溶胶-凝胶法制备微晶玻璃的状况。 关键词:溶胶凝胶;微晶玻璃;新型; 0 前言 玻璃是一种经过高温熔融得到的非晶态固体材料,具无规则结构的非晶态无机物,原子排列近似液体,近程有序,形状又象固体那样保持一定的形状。通常可按照生产工艺、成分和性能进行分类,具有各向同性、亚稳性、无固定熔点、可逆渐变性和连续性的特性。 玻璃的制备方法多种多样,根据不同的方法可分别从固态、气态、液态进行制备[1]。气态:气体辉光放电法、电解沉积法、溅射法、化学气相沉积法、物理气相沉积法;液态:急冷法(熔融冷却法);固态:粉末冶金法。这些方法都是较为传统的制备方法。随着制备技术的不断研究和发展,一些新的制备技术不断被应用于制备玻璃。如:辐照法、悬浮熔炼技术、溶胶-凝胶法、落管技术、粒子注入法、冲击波法、低熔点氧化物包裹法等。其中急冷法又可以细化出几种:喷枪法、锤砧法、离心法、压延法、单辊法、熔体沾出法和融滴法。 溶胶-凝胶合成法是在20世纪60年代中期作为制备玻璃、陶瓷材料的一种工艺发展起来的、在低温或温和条件下合成无机化合物和无机材料的重要方法。溶胶是指微粒尺寸介于1-100nm之间的固体质点分散于介质中所形成的多相体系;凝胶则是溶胶通过凝胶化作用(gelation)转变而成的、含有亚微米孔和聚合链的相互连接的坚实的网络,是一种无流动性的半刚性(semi-rigid)的固相体系。 1 特点 溶胶-凝胶法的优点:①通过溶液混合,易获得需要的均相多组分体系;②可大幅降低制备温度,在较温和的条件下合成出陶瓷、玻璃、纳米复合材料等功能材料;③可制备高纯或超纯物质,且可避免在高温下对反应容器的污染等问题;④溶胶或凝胶的流变性质有利于某种技术如喷射、旋涂、浸拉、浸渍等的实现。该制备方法存在的不足:①原料(金属醇盐)价格昂贵,醇的回收使技术和设备投资增加,且有机物危害健康,工业化生产有一定难度;②整个溶胶-凝胶过程通常需几天或几周的时间,时间较长;③凝胶中存在大量微孔,干燥过程中会逸出许多气体和有机物,干燥收缩大。 2微晶玻璃的制备 溶胶-凝胶法制备玻璃和制备薄膜、超细粉体的部分原理与技术相同或相似。即先由金属与醇类反应,醇氧化物分子中的有机基团与金属离子通过氧原子键合得到金属的醇氧化物[3]。醇氧化物一方面可溶于相似的醇溶剂中,另一方面当加入水时,醇氧化物与

综合实验-溶胶凝胶法制备

综合实验:溶胶-凝胶法制备纳米TiO2微粉 1 实验目的:1. 用溶胶-凝胶法制备纳米TiO2微粉。 2.掌握溶胶-凝胶法制备纳米粒子的原理。 3.了解纳米粒子常用的表征手段。 2 实验原理 自70年代初发现二氧化钛电极具有光照下分解水的功能以来,有关二氧化钛半导体光催化剂的研究成为环境领域的一个热点。用半导体光催化分解毒性有机物有两个优点:第一,适当选择催化剂,可以利用太阳能处理毒物,节约能源;第二,一些半导体的光生空穴具有很强的氧化能力,能彻底降解绝大多数有机物质,而且能将它们最后分解为二氧化碳、水和无机物,避免了用化学方法处理带来的二次污染。制备纳米粒子的方法很多,如化学沉淀法、溶胶-凝胶法、水热法、微乳液法、反相胶团法、气相法等。 溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。溶胶是指微小的固体颗粒悬浮分散在液相中,并且不停的进行布朗运动的体系。根据粒子与溶剂间相互作用的强弱,通常将溶胶分为亲液型和憎液型两类。由于界面原子的Gibbs自由能比内部原子高,溶胶是热力学不稳定体系。凝胶是指胶体颗粒或高聚物分子互相交联,形成空间网状结构,在网状结构的孔隙中充满了液体(在干凝胶中的分散介质也可以是气体)的分散体系。并非所有的溶胶都能转变为凝胶,凝胶能否形成的关键在于胶粒间的相互作用力是否足够强,以致克服胶粒-溶剂间的相互作用力。对于热力学不稳定的溶胶,增加体系中粒子间结合所须克服的能垒可使之在动力学上稳定。因此,胶粒间相互靠近或吸附聚合时,可降低体系的能量,并趋于稳定,进而形成凝胶。 该方法的优点是:(1)反应温度低,反应过程易于控制;(2)制品的均匀度和纯度高、均匀性可达分子或原子水平;(3)化学计量准确,易于改性,掺杂的范围宽(包括掺杂的量和种类);(4)从同一种原料出发,改变工艺过程即可获得不同的产品如粉料、薄膜、纤维等;(5)工艺简单,不需要昂贵的设备。但目前该项技术还处于发展完善阶段,如采用的金属醇盐成本较高以及如何选择催化剂、溶液的pH值、水解、聚合温度以及防止凝胶在干燥过程中的开裂等。随着科学工作者的不断努力,对溶胶-凝胶机理的进一步认

相关主题
文本预览
相关文档 最新文档