当前位置:文档之家› 粘结固体润滑涂层的研究及其应用

粘结固体润滑涂层的研究及其应用

粘结固体润滑涂层的研究及其应用
粘结固体润滑涂层的研究及其应用

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
粘结固体润滑涂层的研究及其应用 中国科学院兰州化学物理研究所( 730000) 陈建敏 周惠娣 冶银平 胡丽天
摘 要 粘结固体润滑涂层是固体润滑材料的主要类型之一,在航空航天等军工高技术领域和民用工业领域获 得了广泛的应用。本文介绍了几种主要类型的粘结固体润滑涂层及其性能特点;概述了在粘结固体润滑涂层 基础和应用研究方面的最新进展;结合典型应用事例,评述了粘结固体润滑涂层在解决特殊工况条件下机械 的磨损、润滑、粘着冷焊等摩擦学问题中所发挥的重要作用;最后列表介绍了中科院兰州化物所近年来研制 的几种粘结固体润滑涂层材料。 1 引言 近 30 年来, 摩擦学研究的重大进展之一就是其研究重点从传统的流体动力润滑与润滑系统向摩擦学材料科学 与技术(包括表面工程)的转变 ⑴ 。作为这一转变的重要标志之一的新型固体润滑材料与技术不仅在航空 航天等军工高技术领域解决了一系列特殊工况条件下的润滑难题, 而且在民用工业领域的应用也在迅速扩展。 粘结固体润滑涂层是固体润滑材料的主要类型之一, 这是一种将固体润滑剂分散于有机或无机粘结剂体系 中,再用类似于油漆的涂装工艺在摩擦部件表面上成膜以降低其摩擦 与磨损的一种新型润滑技术。在西方发 达国家,自 1946 年美 国 NASA 研制出第一种含 MoS 2 的有机粘结固体润滑涂层以后,因其性能独特,有 关这一类材料的研究和应用均得到了迅速的发展。有关国家不仅制定了相关的技术标准,而且创建了多个专 门从事这一类材料研究和开发生产的实体,截止目前,仅实现商品化生产的就有上百个品种,其应用已遍布 从高技术的航空航天到日常生活的各个方面。
国内粘结固体润滑涂层研究的起步并不算晚, 60 年代初以来,结合国防军工高技术产业的发展要求,先后研 制了几十个品种的粘结固体润滑涂层材料,解决了一大批航空航 天等重点军工型号建设中的重大润滑难题。 尤其是近年来, 针对高温、真空、高负载、强辐射等极端苛刻工况条件下的使用要求,在系统开展粘结固体 润滑涂层应用基础研究的基础上,研制出了多种具有特殊性能并具有良好综合性能的先进粘结固体润滑涂层 材料,其中有些品种达到了美国军标的要求,使我国的粘结固体润滑涂层材料的研究达到了国际同类材料的 先进水平,为国防现代化做出了重要的贡献;另一方面,在民用工业领域,自八十年代以来,随着引进技术

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
的不断增多,带来了大量的粘结固体润滑涂层的应用技术,国产 粘结固体润滑涂层亦以此为契机,开始获得 了广泛的应用, 并取得了显著的经济和社会效益。本文在系统概述各种类型粘结固体润滑涂层性能特点的基 础上, 重点评述了近年来中科院兰州化学物理研究所在粘结固体润滑涂层的基础和应用研究方面的最新进展, 介绍了粘结固体润滑涂层在军用和民用工业领域的典型应用,目的是要推动我国粘结固体润滑涂层之研究和 应用的更快发展。 2 粘结固体润滑涂层的主要类型及性能特点 粘结固体润滑涂层种类繁多,但其基本组分由图 1 所示四部分组成,各组分的基本物理化学性质和组分间的 相互作用(相容匹配特性、协同作用等)对涂层性能有着决定性的重要影响。通常根据粘结固体润滑涂层的 固化特性、性能特点、固体润滑剂种类、粘结剂类型等对其进行分类,图 2 给出了各种分类方法,这些分类 方法都是实际应用中所经常采用的,但都有一定的局限性,如前二种分类方法没有反应涂层的材质特性,后 二种分类方法又不能全面反应涂层的工艺和性能特点。下面按粘结剂类型分类法分别介绍有机和无机粘结固 体润滑涂层,同时对粘结固体润滑涂层的性能特点做一简要说明。 2.1 有机粘结固体润滑涂层 有机粘结固体润滑涂层是利用有机树脂对底材表面优良的粘结能力而把分散于树脂体系中的固体润滑剂粘结 到摩擦部件的表面上,通常还需要加入分散剂和抗氧化剂等多种添 加剂。常用的有机树脂包括醇酸树脂、聚 氨酯、聚丙烯酸酯、 环氧树脂、酚醛树脂、有机硅树脂、聚酰亚胺树脂及其改性产品、芳香族杂环聚合物及 其它热塑性树脂等。为了便于涂膜施工,有机粘结固体润滑涂层喷剂中一般还需要加入有机溶剂或水作为稀 释剂,但近年来人们又成功地开发出了无溶剂型和粉末喷涂的有机粘结固体润滑涂层,其应用效果也同样很 好。 有机粘结固体润滑涂层是目前品种最多、应用面最广的一类粘结固体润滑涂层,其品种和用量都占整个粘结 固体润滑涂层的 80%以上,通过不同固体润滑剂与树脂粘结剂体系的组合,可以制备出具有不同性能特点的 粘结固体润滑涂层。固体润滑剂的种类、固体润滑剂与有机粘结剂的用量之比、涂层的内聚力与涂层同底材 的附着力之比等都是影响有机粘结固体润滑涂层性能的重要因素。含 MoS 2 、石墨等层状固体润滑剂的有机 粘结固体润滑涂层具有优异的耐负荷性能,适合于中低速高负荷条件下使用,而含 PTFE 等低摩擦聚合物的 有机粘结固体润滑涂层则具有较长的耐磨寿命,适合于中速低负荷条件下使用,从目前情况来看,要使某一 种粘结固体润滑涂层同时具备各种性能是不现实的。因此,在实际使用中,应当根据具体工作条件和要求, 针对性地选择具有相应性能特点的粘结固体润滑涂层。 由于可以作为涂层粘结组分的有机树脂粘结剂的种类很多,而且新的品种还在不断地涌现,这为我们设计新 的有机粘结固体润滑涂层提供了有利条件。此外,还可以针对具体要求,进行专门的高分子设计,合成具有 特定性能的粘结剂以满足特殊工况条件下的使用要求。 有机粘结固体润滑涂层 的最大缺陷是其作为粘结组分 的有机树脂大多耐温性有限, 难 以满足更高温度的使用要求,即使是耐高温型的有机树脂, 其最高使用温 度一般也不超过 400℃,而且还存在着真空出气率高、大气老化和低温脆性等问题,大多数品种不能在液氧 环境中使用等。 2.2 无机粘结固体润滑涂层 无机粘结固体润滑涂层是指以硅酸盐、磷酸盐、硼酸盐等无机盐以及陶瓷、金属等作为粘结组分的粘结固体

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
润滑涂层。与有机粘结固体润滑涂层相比,其突出的优点是使用温度范围宽、真空出气率低、与液氧的相容 性好等,但却存在着脆性大、耐负荷性差、摩擦学性能不及有机粘结固体润滑涂层等缺点。因此,截止目前 大多数无机粘结固体润滑涂层还只局限于在特殊工况条件下(如液氧环境、特殊高温、忌有机蒸气污染的卫 星机械等)使用。
近年来,金属和陶瓷粘结的固体润滑涂层发展很快,其成膜技术包括电化学复合共镀、粉末冶金、自曼延技 术、等离子热喷涂和激光热喷涂等。目前,国内外已经得到实际应用的金属粘结 固体润滑涂层有 Ni-P-石墨、 Ni-P-石墨-SiC、Ni-P-碳化硼、 Ni-P-BN、Ni-P-SiC、Ni-PTFE、Ni-氟化石墨、Cu – (CF ) n 、Ni-石墨、Cu-In 和 Ni-铜合金-CaF 2 -Ag-玻璃等;在陶瓷粘结的固体润滑涂层方面,研究的重点是试图将其应用于高效绝热发 动机的气缸和活塞表面以提高发动机的效率,但离实用尚有一定的距离。 除了上述有机和无机二类粘结固体润滑涂层外,近年来,随着有机无机纳米复合技术的进步,使得制备有机 无机复合粘结固体润滑涂层成为了可能,目前专家们正在致力于开发多种类型的有机无机复合粘结固体润滑 涂层,人们希望这类涂层能兼具有机和无机二类涂层的优点,在具有优异综合物理机械性能的同时,解决较 宽温度范围内的摩擦学问题,可以认为这是一类很有发展前景的粘结固体润滑涂层。 2.3 粘结固体润滑涂层的性能特点 a.由于粘结固体润滑涂层比较薄, 因此可以用到几乎所有的摩擦部件上而不需改变部件的尺寸。 机械设备采用 粘结固体润滑涂层技术,可以改进机械设计,省去油润滑所必需的复杂的油泵油路系统。 b.与常规油脂润滑相比,粘结固体润滑涂层可在高温、高负荷、超低温、超高真空、强氧化还原和强辐射等环 境条件下有效地润滑,有些品种的粘结固体润滑涂层的承载能力比常规油脂的高十倍甚至几十倍(图 3),且 无油脂润滑所存在的污染及漏油等问题,可作为特殊工况及忌讳油脂存在的机械零部件的润滑材料。 c.粘结固体润滑涂层适用于多种类型材质的底材, 且不随时间发生变化和流动, 可以作为频繁起动和长期不动 偶尔起动的机械零部件的润滑材料,有些粘结固体润滑膜与润滑油脂的相容性好,配合使用可以产生良好的 复合效应,如改进初期磨合、防止起动咬合和延长使用寿命等;还有一些品种可以在水介质条件下有效润滑。

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
d.粘结固体润滑涂层不仅具有突出的摩擦学性能, 而且还具有优良的防腐性能和动密封性能, 能起到防止机械 振动和减少机械噪音的作用。 e.粘结固体润滑涂层除适用于金属部件外,还适用于普通润滑油脂难以润滑的工程塑料、橡胶、木质材料、纤 维材料和陶瓷材料部件等,解决这些材料部件的摩擦学问题。
f.一定品种的粘结固体润滑涂层的适用范围有限,为了适应多种工况下的润滑要求,必须制备多种不同类型的粘 结固体润滑涂层,品种繁多给正确选用带来了一定的困难,因而需要在有经验的工程技术人员或专家的指导下 使用。 g.与油脂润滑相比,粘结固体润滑涂层的补充工艺比较复杂,且不象油脂润滑那样具有冷却作用,因此一般不 适用于高速滑动的机械零部件。 3 国内粘结固体润滑涂层应用基础研究的新进展 国内粘结固体润滑涂层的主要研究和生产单位是中国科学院兰州化学物理研究所。近年来,该所针对国防军 工高技术型号建设对极端苛刻工况条件使用的高性能粘结固体润滑涂层的迫切需求和已有粘结固体润滑涂层 难以满足使用要求的状况,在重点开展型号配套特种粘结固体润滑涂层材料研制工作的同时,针对应用研究 工作中所遇到的难点问题,开展了相关的应用基础研究。其基本思路是着眼于影响涂层材料摩擦学性能的基 本因素,在选择或合成高性能原料的基础上,重点考察涂层中各组分之间的相容匹配特性和复合协同作用对 其性能的影响,研究涂层的润滑和失效机理,以找到改善涂层摩擦学性能的方法。有关研究结果对指导高性 能粘结固体润滑涂层的研制起到了十分重要的作用。 3.1 涂层中多组分之间的相互作用和协同效应

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
研究发现,在粘结固体润滑涂层中,有些组分复合使用会产生负效应,如石墨和聚四氟乙烯、石墨和尼龙等; 而另一些组份配合使用则存在协同效应 , 如石墨与 MoS 2 、MoS 2 与 PTFE 等,它们之间按适当配比复合 使用, 可明显改善润滑涂层的减摩抗磨性能和承载能力。对多种稀土化合物与 MoS 2 复合效应的研究结果表 明,LaF 3 、CeF3 等稀土氟化物与 MoS 2 在粘结固体润滑涂层中的复合添加,可大大延长涂层的耐磨寿命, 以氟化镧为例(见图 4),其机制是 LaF 3 具有抑制 MoS 2 氧化的作用,同时可以形成 MoS 2 ?nLaF 3 结 构,LaF 3 在活泼的 MoS 2 棱面上与 MoS 2 发生键合,阻止了 MoS 2 与氧和水键合 的机会,但又不破坏 MoS 2 的层状结构,因此具有协同效应。为了解决 MoS 2 润滑涂层的氧化磨损问题和石墨涂层对金属底材 的电化学腐蚀问题, 我们还合成了油溶性有机稀土化合物二正丁基磷酸铈(BuC),并将其加入到了含 MoS 2 和石墨的粘结固体润滑涂层中,发现由于 BuC 在溶剂中的可溶性而使得其在粘结涂层的表面和与底材接触 的界面上富集,因而阻止了空气与 MoS 2 的作用,同时也使石墨与被 BuC 钝化的金属表面的电化学作用受 到了抑制,改善了粘结固体润滑涂层的摩擦学性能和抗蚀性(图 5)。我们还发现,填料和固体润滑剂在粘结 剂体系中的润湿分散性和匹配稳定性对涂层的质量有着重要的影响,对固体润滑剂和填料进行预处理,如辐 照、表面活性剂处理、偶联剂处理等,可以改变表面基团性质和表面能等,使其与树脂体系的相容性得到根 本性的改善。上述研究结果为我们利用多种组分的相互作用研制高性能粘结固体润滑涂层奠定了基础。 粘结剂是粘结固体润滑涂层的基本组分之一,在很大程度上决定了涂层的附着力、强度、耐温性和固化特性 等基本性能,鉴于单一组分的粘结树脂往往难以满足实际应用的要求,因此利用化学和物理方法对粘结树脂 进行复合改性是研制高性能粘结固体润滑涂层的基础。 近年来, 我们主要进行了有机/无机复合树脂改性研究; 有机硅、有机钛和芳香族杂环聚合物改性酚醛、环氧和酚醛环氧树脂的研究;液体橡胶、热塑性聚合物对热 固性涂层树脂的增韧改性等研究。其目的是为了在保持原树脂粘结性能的基础上,改善其耐高温性能、耐介 质性能和综合物理机械性能。研究发现,有机硅和有机钛中的端羟基可以分别和酚醛和环氧树脂中的羟甲基 和环氧基发生加成缩合反应,使二者之间交链固化,生成以有机硅为主链的 三相网络结构,可在保持原树脂 粘结强度好等特性的基础上, 较大辐度地提高耐温性能;热塑性芳香族杂环聚合物和液体丁腈橡胶能够与大 部分热固性树脂实现分子水平复合,形成聚合物合金,使复合树脂的韧性和综合物理机械性能得到明显改善, 上述研究结果使制备有机耐高温、耐高负荷、长寿命粘结固体润滑涂层成为了可能。 3.2 粘结固体润滑涂层的润滑和失效机理的研究 用摩擦的粘着理论对粘结固体润滑涂层的润滑过程进行了分析,得到了涂层润滑条件下的摩擦系数表达式:

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
该式从形式上与一般薄膜的润滑理论公式非常相似,不同之处是出现了一个膜厚修正因子,它给出了粘结固 体润滑涂层润滑的作用本质以及改善涂层摩擦学性能(承载能力、润滑性能)的途径;较系统地研究了摩擦 工况条件对各类粘结固体润滑涂层摩擦学性能的影响, 发现对于以 MoS 2 、 石墨等层状固体为润滑剂的涂层, 滑动速度比负荷对其耐磨寿命有更大的影响,即这类涂层在重负荷、低速度条件下的使用寿命长于在同样 PV 值下低负荷、高速度下的耐磨寿命,适用于解决中低速度、高负载条件下的摩擦学问题,而对于以 PTFE 为 润滑剂的涂层,其摩擦学性能受负载的影响大,在中低载荷条件下有较低的摩擦系数和较长的耐磨寿命;研 究了粘结固体润滑涂层的物理机械性能和改性填料对其摩擦学性能的影响,发现涂层的柔韧性和硬质填料是 影响其承载能力的重要因素,纳米填料可以显著改善涂层在摩擦过程中转移膜的形成并大幅度延长其耐磨寿 命,由此指导研制了多种具有超高承载能力的粘结固体润滑涂层材料,其极限承载能力超出常规润滑材料几 十倍;对粘结固体润滑涂层的磨损失效过程进行了考察,发现粘结固体润滑涂层在摩擦过程中,摩擦表面气 泡(图 6)的形成、扩大和破裂是其加速失效的主要原因,并提出了气泡的形成主要是由于摩擦作用导致涂层 发生塑性变形,使涂层摩擦表面局部松驰,进一步的摩擦作用导致松驰膜中形成气泡并逐渐长大,直至破裂, 由此而导致了涂层磨损失效的观点,证实了通过增强涂层与底材的界面结合,改善摩擦表面的导热性,可以 有效地抑制摩擦过程中气泡的产生和扩展,延长涂层的耐磨寿命。以上研究结果对于我们认识粘结固体润滑 涂层的润滑本质,确定最佳涂层厚度和摩擦转移膜的作用,研制低摩擦、高承载、长寿命粘结固体润滑涂层 都具有理论指导意义。

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
3.3 底材预处理对润滑涂层摩擦学性能的影响 底材表面预处理是影响粘结固体润滑涂层摩擦学性能的重要因素,应当根据不同底材选择相应的处理工艺。 对于非金属底材,通常采用的是脱脂或喷砂处理的工艺,也有采用化学预处理的;对于金属材料,除了一般 采用的除锈和脱脂工艺外,针对不同的金属还可以进一步采用阳极氧化、化学氧化、电镀、氮化、喷砂、硫 化或磷化等。 脱脂是表面预处理工艺中较为重要的一环, 其处理的好 坏直接关系到涂层对底材的粘结及其它预处理步骤的 效果。 通常采用的脱脂方法有碱洗、酸洗、溶剂清洗、乳液清洗和电解脱脂等,可以根据具体情况选择其中 的一到两种方法,以洗净为原则。 对于同种金属底材,不同的预处理工艺对粘结固体润滑涂层的摩擦学性能具有不同的影响,日本的伊藤晁逸 进行过 这一方面的详细考察 ⑵ ,图 7 所示为经过 3 种不同工艺表面 处理之后粘结固体润滑涂层的耐磨寿 命,显然,喷砂+磷化处理的效果最好,喷砂处理的次之,而以研磨处理的最差;对于同一种预处理工艺, 处理表面的粗糙度亦有重要影响,经验表明,在进行喷砂处理时,对于硬质底材,应当采用粒径为 76μm 以 下的细砂,而对于软质底材,则以采用粒径约为 150μm 之粗砂处理的效果更好;对于磷化处理,不同的磷 化系列,以及同一系列中不同的结晶尺寸都对粘结固体润滑涂层的摩擦学性能有重要影响,如对于 45 号钢底 材,采用磷酸锰细晶处理比用粗晶处理的耐磨寿命几乎提高一倍,柱状细结晶的锰系磷化处理对提高粘结固 体润滑膜之耐磨性能的效果最好。 3.3 粘结固体润滑涂层配方的计算机辅助设计 在粘结固体润滑涂层的研制中,最基础的工作是配方的设计和选择,它包括:根据使用工况和性能要求选定 粘结剂和润滑剂的类型及相互之间的配比;根据各种组分之间的相互作用和协同效应规律确定采用何种复合 润滑剂方案及与此相适应的填料;根据树脂的溶解特性及涂敷工艺要求确定混合溶剂配方等。采用人工试验 筛选的方法确定配方,需要进行大量的组合设计和选择 , 试验工作量极大。为此, 我们根据近年来有关固体 润滑涂层基础研究和应用研究的成果,把上述各种因素及其对涂层性能的影响总结成若干个数学模型,如固 体润滑剂粒子的油吸附理论及粒子在有机树脂粘结剂中的紧密填充模型(图 8)、混合溶剂选择的溶解度参数 原则和挥发速度均衡适中原则等,然后通过计算机辅助设计 得出涂层的最佳计算配方,最后对计算配方进行 试验调整, 确定出最佳涂层配方。对环氧和酚醛树脂基粘结固体润滑涂层的研究结果表明,计算机辅助设计 配方与试验确定的最佳配方十分接近,而且可以显著缩短配方研制周期,节省大量的人力和物力,显示了重 要的推广价值。 4 粘结固体润滑涂层的应用 随着科学技术的发展,粘结固体润滑涂层在现代工业中获得了广泛的应用并取得了巨大的经济和社会效益。 粘结固体润滑涂层的成功应用是与其独特的性能分不开的,下面按使用工况分类分别阐述粘结固体润滑涂层 的主要应用。 4.1 在真空机械中的应用 润滑油脂在真空条件下会急剧蒸发干燥而失效,因而不宜作为真空机械的润滑材料,此时可考虑选择粘结固 体润滑涂层。尽管有机粘结固体润滑涂层在真空中亦会释放有机蒸汽,但其释放速率远低于油脂的蒸发速率,

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
一般不影响其作为润滑材料的性能。在忌讳有机蒸汽对紧密真空机械造成污染的情况下,可考虑选择无机粘 结固体润滑涂层。 研究表明,含 MoS 2 的粘结固体润滑涂层在真空中具有优异的摩擦学性能,在其它条件相同的情况下,其摩 擦系数约为大气中的 1/3,而耐磨寿命比在大气中长几倍甚至几十倍,是可用于真空机械润滑的诸多粘结固体 润滑涂层中的首选品种。此外,含 PTFE 的粘结固体润滑涂层也具有良好的真空润滑性能,也经常被用于解 决真空中的润滑问题。与此对应,含石墨的粘结固体润滑涂层在真空条件下的摩擦系数和磨损率都比较高, 因而不宜作为真空机械的润滑材料。 粘结固体润滑涂层在空间技术方面得到了广泛的应 用,例如,人造卫星上的天线驱动系统、太阳电池帆板机 构、 光学仪器的驱动机构和温控机构、星箭分离机构及卫星搭载机械等都使用了粘结固体润滑涂层技术,尤 其是在真空防冷焊方面,粘结固体润滑涂层更是发挥了其它润滑材料所无法替代的重要作用。近年来,粘结 固体润滑涂层技术在民用真空机械中的应用也在迅速增多。 4.2 在高低温条件下的应用
粘结固体润滑涂层的特点之一是其适用温度范围宽,从-200℃以下的极低温到接近 1000℃的高温,都有可供 应用的产品。就常用的品种而言,环氧树脂粘结系列的允许使用温度为-70~250℃,聚酰亚胺系列的使用温 度范围为-70~380℃,无机磷酸盐和硅酸盐粘结的固体润滑涂层的最高允许使用温度达 700℃。粘结固体润滑 涂层在适用温度范围内无相变化,而且摩擦系数也比较稳定,因而被广泛用于解决润滑油脂所无法解决的高 温机械的润滑和防粘问题。 目前,粘结固体润滑涂层在高低温条件下的应用已经非 常普遍,如各类发动机(包括火箭发动机)的高温滑 动部件、 汽缸、活塞环,飞机上的其它高温滑动件如高压压气机后几级、加力系统和反推力系统、远程炮的 炮膛、金属热加 工模具、炼钢机械、热电机械、原予能反应堆的有关部件、 耐高温烧蚀紧固件等;在低温 下的典型应用实例有如火箭氢氧发动机涡轮泵齿轮和超导设备的有关滑动部件等。粘结固体润滑膜在高低温 条件下的成功应用解决了高低温机械的一系列特殊润滑难题,为高低温机械的技术进步奠定了材料基础,显 示了重大的社会和经济效益。 4.3 在高负荷条件下的应用 现代机械的设计工况越来越苛刻,主要标志就是机械的运行速度和负荷越来越高。尽管固体润滑技术不太适 用于解决高速条件下的润滑问题,但在解决高负荷条件下的摩擦学问题方面却显示了其独特的优势,粘结固 体润滑涂层更是固体润滑材料中耐负荷性最为突出的材料类型之一,尤其是含 MoS 2 和石墨等层状固体润滑 剂的粘结固体润滑涂层的耐负荷性能最好,其耐负荷性超出极压性能好的润滑油脂的 10 倍以上,而且具有长

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网
期静压后不会从摩擦面流失的特性。近年来,结合航空、航天、兵器、金属加工、建筑等行业对耐高负荷粘 结固体润滑涂层的需求,研制了多种高承载的粘结固体润滑涂层材料,解决了许多高负荷条件下的润滑难题, 如鱼雷舵机涡轮涡杆组件的润滑、大型桥梁与立体高速公路支承台座的润滑、建筑减震支承滑移系统的润滑、 坦克支承传动系统的润滑、飞机前缘襟翼驱动系统的润滑以及机床卡盘和金属冷加工模具的润滑等。以建筑 减震滑移支承为例,长年作用在支承面上的静载荷达 200Mpa 以上,要求一旦地震发生时,支承面能迅即滑 移,这就对支承面所用润滑材料提出了很高的要求,不仅要求具有低的摩擦系数,而且要求在支承面上的润 滑材料在长期超高静载荷的作用下不被挤出或失效,常规润滑材料显然难以达到要求,采用复合粘结固体润 滑涂层方案,成功地解决了这一技术难题。 4.4 在防腐防污防震和降噪方面的应用 粘结固体润滑涂层除具有优异的摩擦学性能外,还具有防腐、防污、防震和降噪作用,是适用于腐蚀环境和 解决环境污染问题的理想润滑材料。事实上,某些粘结固体润滑涂层的防腐性能甚至与某些防腐涂料相当, 已经在海洋机械设备、化工设备、水中机械和野外作业设备等方面得到了广泛的应用。 如我国海军航空兵机 载导弹发射装置(机载导弹发射架导轨、外露卡簧、后防振器等部件)由于受导弹发射燃废气,污物和海洋 盐雾气氛的作用,腐蚀和烧蚀问题十分严重,不仅造成大量的材料和设备浪费,而且严重影响战斗力的发挥, 采用防腐耐磨耐烧蚀粘结固体润滑涂层技术,有效地解决了这一难题,取得了显著的效益。 新型纺织机械采用粘结固体润滑涂层技术, 成功地解决了油脂润滑对织物的污染问题而使产品质量明显提高, 其它类似的设备还有复印机和印刷机等;近年来,国外在自行车链条等部位采用粘结固体润滑涂层,不仅克 服了油脂润滑污染衣物的缺点,而且还避免了多雨地区因油脂干枯所产生的锈蚀;在新型汽车上采用粘结固 体润滑涂层技术,能够明显地降低震动和噪音,从而提高了行车的安定性和舒适感。 4.5 在其它方面的应用 利用粘结固体润滑涂层可以有效地解决钟表和电子仪表传动机构、照相机快门、自动记录仪表导轨、电子计 算机磁盘和电于音像设备磁带驱动机构等精密机械的润滑问题,使这些机械的反应灵敏度和精度得到大幅度 的提高。 粘结固体润滑涂层还可以作为动密封材料、非金属材料的润滑材料以及辐射环境和水介质环境中的润滑材料 等。研究表明,以二硫化钼和石墨作为润滑剂的无机粘结固体润滑涂层具有抗强辐射的能力,可以作为核反 应堆装置的润滑材料, 其中以硅酸钾为粘结剂的 MoS 2 润滑涂层已成功地解决了国产高温气冷堆滑动部件在 高温氦气、强辐射条件下的润滑问题;以石墨或某些低摩擦聚合物作为固体润滑剂的粘结固体润滑涂层在水 介质中具有良好的润滑性能,可作为水轮机、水泵的叶片与转轴的抗气蚀和抗浸蚀耐磨涂层等。 即使某些用油脂能够实现良好润滑的机械,若改用粘结固体润滑涂层润滑,亦可以改进机械设计而使产品的 结构更趋合理、性能更加稳定,从这个意义上说,粘结固体润滑涂层是进行产品更新换代所必不可少的新技 术之一。 5 几种新研制的粘结固体润滑涂层 近年来,结合国家航空航天型号建设的要求,我们先后为航空航天等国防军工重点型号配套研制了多种具有 不同性能特点的粘结固体润滑涂层材料,表 1 简要介绍了其中的几种主要类型。

中国涂料在线
https://www.doczj.com/doc/2b6527510.html, 中国领先的涂料行业门户网

润滑油基本知识培训资料

润滑油基本知识培训资料 一、基本概念(见资料1) 1、原油:天然原油一般都是黑色液体,其中含有几百种及至上千种倾倒物的混合物,主要是碳氢化合物,大体为石蜡基础油,环烷基原油和中间基原油三类。年产1亿两千万吨至1亿4千万吨(中国)。 2、基础油:原油在炼油厂经过减压蒸馏生的轻质产品可获得气、煤、柴油等产品,重质产品,经过进一步精制后即可获得基础油。 3、润滑油:为满足设备机具的具体润滑要求,选择适当的基础油及添加剂调制而成的产品。 4、基础油的品种一般国产分为32#、46#、68#、100#、150SN、200SN、350SN、500SN、650SN、150BS等。进口的日本能源公司500SN、韩国1次、2次加氢基础油(高档)等 5、润滑油添加剂:添加不同性能的添加剂以改善润滑油的各种性能。(见资料2) 6、润滑油质量指标(见资料3、1-6) 二、车用润滑油的分类:内燃机油、齿轮油、液压油、刹车液、润滑脂 1、什么是汽油机油、什么是柴油机油、齿轮油、液压油级别的区分 2、什么是多级油,什么是单级油、什么是通用机油 3、5W、10W、15W、30、40、50的意思,代表的具体指标范围 4、GB标准的理化指标,黏度黏度指数闪点倾点等要记牢 5、各种车型选用什么级别及黏度的油、以及夏、冬两季的选油 6、API SAE的含义国家标准、石化标准以及我们的企业标准制定有哪些 识别润滑油的规格 内燃机油 SF/CD 15W/40为例: SAE 15W/40

是美国汽车工程师协会对内燃机油黏度分类法的英文缩写 现在执行的是SAE J300 Apr。1991版本 表示该油品低温时的黏度等级。 有SAE 0W、5W 、10W、15W、20W等级别。“W”前面的数字越小,其低温流动性越好,能满足在更低气温条件下工作的发动机的要求 表示该油品高温时的黏度等级。 有SAE 20、30、40、50和50以上级别。数字越大黏度越大。可以保证润滑油在高温时仍然有足够的黏度和油膜厚度来达到润滑的效果。 另外SAE30、SAE40、SAE50只具有单黏度级别的特性,应注意适用的温度范围 API SF/CD 第一个字母“S”表示该机油适用于汽车发动机,简称“汽油机油”。 第二个字母表示机油质量性能的水平,字母越往后质量性能越高。 有SD、SE、SF、SG、SH、SJ~~等级别。 是美国石油协会对润滑油质量等级分类标准的英文缩写 第一个字母“C”表示该机油适用于柴油发动机,简称“柴油机油”。 第二个字母表示机油质量性能的水平,字母越往后质量性能越高。 有CD、CE、CF、CG-4、CH、CH-4~~等级别。 1)、API SF/CD表述的质量等级说明该油品是一种即适合汽油发动机同时又能满足柴油发动

固体润滑剂(优质参考)

固体润滑剂 固体润滑剂就是在两个有载荷作用的相互滑动面间,用以降低摩擦和磨损的固体状态的物质。 要求:剪切抗力低,与被润滑表面有较好的亲和力,不腐蚀被润滑表面、耐高温、耐低温等特点。 包括金属材料,无机非金属材料和有机材料等。 可分为固体粉末润滑材料、粘结或喷涂固体润滑膜、自润滑复合材料。 固体润滑材料的适应范围比较广,以1000℃以上的白热高温到液体氢的深冷低温;严重腐蚀气体环境中工作的化工机械,是受到强辐射的宇航机械上(如月球表面的工作机械),在原子能工业、宇航和国防工业、电子工业、化学工业、机械工业、交通运输、食品工业、纺织印染等轻工业部门都已经得到了应用。 固体润滑剂主要用在高温、低温、高真空、放射线高辐射场、腐蚀性大、挥发性低、不易测定条件润滑、不容许受润滑油、脂沾污等场合和机件上。 一、固体润滑三种机理 1、形成固体润滑膜,它的润滑机理与边界润滑机理相似; 2、软金属固体润滑剂,它利用软金属抗剪切强度低的特点来起润滑作用; 3、层状结构的特点起润滑作用。图6—8为石墨的品体结构,由图6—8可知石墨具有层状,在层与层之间的接合力较弱,所以剪切抗力低。 一般常用的固体润滑剂有:二硫化钼、石墨、云母、二硫化钨、滑石粉、氮

化硼;塑料包括聚四氟乙烯、聚胺脂、聚乙烯、浇铸尼龙—6等以及某些金属如铅、锌、锡、银等低熔点金属及其合金。 二、固体润滑剂的优点 1)免除了油脂的污染及滴漏。如在空气压缩机实现固体润滑(包括轴承、密封、活塞环)后,可以提供不被油污染的空气;又如在纺织机械、食品加工机械、造纸机械、印刷机械采用固体润滑后,能避免油污,提高产品质量; 2)取消了供油脂所用的润滑油站及油路系统,节省了投资、降低了维修费用; 3)适应比较广泛的温度范围。它可用于特殊的工况条件(如在具有放射性条件下能抗辐射、耐高真空、抗腐蚀)以及不适宜使用润滑油脂的场合。 4)增强了防锈蚀能力。这对于潮湿气候的南方具有重要意义。 5)固体润滑剂分散悬浮在液体润滑剂中,既可以发挥固体润滑剂本身的性能,弥补固体润滑剂的摩擦系数大和导热性能不良的缺点。 三、固体润滑材料缺点 1)摩擦系数较大(比润滑油等流体润滑的摩擦系数大100—500倍,比润滑脂润滑的摩擦系数大50—100倍), 2)散热性能差,因而固体润滑剂主要用在其他润滑材料不能承担的润滑场合。 3)固体润滑膜的寿命较短,保膜时不仅增加工作量,有时还要停车检查,在一定程度上影响生产。 4)导人性不好,即使是粉末状,不易补充到摩擦表面。 5)塑料自润滑材料存在强度不高、线膨胀系数大、导热性差、不耐高温、摩擦系数有的还不够低的缺点。因此目前还不能完全取代润滑油脂。 四、对固体润滑剂的要求 固体润滑剂应满足以下性能要求: 1)较低的摩擦系数在滑动方向要有低的剪切强度,而在受载方向则要有高的屈服极限。同时还要具有防止摩擦表面凸峰的穿透的能力(即材料的物理性能是各向异性的); 2)附着力要强。要求附着力要大于滑动时的剪切力,以免固体润滑剂(或膜)从底材上或金属表面被挤刷(或撕离)掉; 3)固体润滑剂粒子间要有足够的内聚力,以建立足够厚的润滑膜,以防止摩擦表面的凸峰穿透并能贮存润滑剂; 4)润滑剂粒子的尺寸在低剪切强度方向应最大,这样才能保证粒子在滑动表面间能很好地定向; 5)在较宽的温度范围内,能保持性能稳定而不起化学反应。 要完全满足上述要求是不容易的。 不同的固体润滑剂,具有不同的特殊性能,一般情况只能满足或达到上述要

固体润滑材料

固体润滑材料 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第四章: 固体润滑 二、固体润滑材料 固体润滑剂的作用是以固体润滑物质(如固体粉末、薄膜及固体复合材料等)来减少作相对运动两表面的摩擦与磨损,并保护该表面,在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低磨擦磨损。固体润滑剂的材料有无机化合物(石墨、二硫化钼、氮化硼等)、有机化合物(蜡、聚四氟乙烯、酚醛树脂)和金属(Pb\Sn\Zn)以及金属化合物,其中以石墨和二硫化钼应用最广。 固体润滑剂的适用范围比较广,从1000℃以上的白热高温到液体氢的深冷低温,无论在严重腐蚀气体环境中工作的化工机械,还是受到强辐射的宇宙机械,都能有效地进行润滑。 1、常见固体润滑剂的种类: ①粉状润滑剂:有二硫化钼粉剂、二硫化钨粉剂、二硫化钼P型、胶体石墨粉。 ②膏状润滑剂:有二硫化钼重型机床油膏、二硫化钼齿轮油润滑油膏、二硫化钼高温齿轮油膏、特种二硫化钼油膏、齿轮润滑用GM-1型成油膜膏。 2、固体润剂的基本性能 与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用。 ①、物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 ②、化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 要求固体润滑剂有较高的承载能力:因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 3、固体润滑剂的使用方法 1)作成整体零件使用:某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。 2)作成各种覆盖膜来使用:通过物理方法将固体润滑剂施加到摩擦界面或表面,使之成为具有一定自润滑性能的干膜,这是较常用的方法之一。成膜的方法很多,各种固体润滑剂可通过溅射、电泳沉积、等离子喷镀、离子镀、电镀、粘结剂粘结、化学生成、挤压、浸渍、滚涂等方法来成膜。市面上已出现了无润滑轴承及采用纳料技术的固体润滑剂。 3)制成复合或组合材料使用:所谓复合(组合)材料,是指由两种或两种以上的材料组合或复合起来使用的材料系统。这些材料的物理、化学性质以及形状都是不同的,而且是互不可溶的。组合或复合的最终目的是要获得一种性能更优越的新材料,一般都称为复合材料。 4)作为固体润滑粉末使用:将固体润滑粉末(如MoS2)以适量添加到润滑油或润滑脂中,可提高润滑油脂的承载能力及改善边界润滑状态等,如MoS2油剂、MoS2 油膏、MoS2润滑脂及

【CN110016277A】用于制备自润滑耐磨材料的组合物、自润滑耐磨涂料、自润滑耐磨涂层、自润滑耐

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910375103.9 (22)申请日 2019.05.07 (71)申请人 河南科技大学 地址 471003 河南省洛阳市涧西区西苑路 48号 (72)发明人 邱明 李迎春 程蓓 庞晓旭  谷守旭  (74)专利代理机构 郑州睿信知识产权代理有限 公司 41119 代理人 张兵兵 李宁 (51)Int.Cl. C09D 163/00(2006.01) C09D 7/61(2018.01) (54)发明名称 用于制备自润滑耐磨材料的组合物、自润滑 耐磨涂料、自润滑耐磨涂层、自润滑耐磨材料 (57)摘要 本发明涉及一种用于制备自润滑耐磨材料 的组合物、自润滑耐磨涂料、自润滑耐磨涂层、自 润滑耐磨材料,属于自润滑材料技术领域。本发 明的用于制备自润滑耐磨材料的组合物,主要由 树脂和以下重量份数的组分组成:二硫化钼11~ 12份、石墨烯0.088~0.3份。本发明的组合物,以 二硫化钼为润滑剂,以石墨烯作为润滑添加剂, 利用二硫化钼和石墨烯二维层状结构的相似性, 将两者按照特定比例与树脂进行复合制成耐磨 材料可以发挥二硫化钼和石墨烯的协同润滑效 应,使耐磨材料的耐磨性能和自润滑性能得到显 著提高;尤其是采用本发明的组合物制得的自润 滑减摩耐磨涂层在干摩擦和海水条件下均具有 良好的润滑减摩、 耐磨和环境自适应性能。权利要求书1页 说明书7页 附图2页CN 110016277 A 2019.07.16 C N 110016277 A

权 利 要 求 书1/1页CN 110016277 A 1.一种用于制备自润滑耐磨材料的组合物,其特征在于:主要由树脂和以下重量份数的组分组成:二硫化钼11~12份、石墨烯0.088~0.3份。 2.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述树脂与二硫化钼的质量比为2~3:1。 3.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述石墨烯的平均粒径为0.5~2μm。 4.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述石墨烯的平均层数为5~7层。 5.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述二硫化钼的平均粒径为10~20μm。 6.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述组合物还包括溶剂;所述溶剂与树脂的质量比为1:1~2.5。 7.一种自润滑耐磨涂料,其特征在于:包括组分A和组分B;所述组分A为如权利要求1所述的用于制备自润滑耐磨材料的组合物;所述组分B包括固化剂。 8.一种采用如权利要求7所述的自润滑耐磨涂料制得的自润滑耐磨涂层。 9.根据权利要求8所述的自润滑耐磨涂层,其特征在于:所述自润滑耐磨涂层的厚度为20~30μm。 10.一种自润滑耐磨材料,其特征在于:包括基体以及涂覆在基体上的自润滑耐磨涂层;所述自润滑耐磨涂层是将如权利要求7所述的自润滑耐磨涂料的组分A与组分B混合后涂覆在基体上固化得到。 2

第四章固体润滑材料

第四章: 固体润滑 二、固体润滑材料 固体润滑剂的作用是以固体润滑物质(如固体粉末、薄膜及固体复合材料等)来减少作相对运动两表面的摩擦与磨损,并保护该表面,在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低磨擦磨损。固体润滑剂的材料有无机化合物(石墨、二硫化钼、氮化硼等)、有机化合物(蜡、聚四氟乙烯、酚醛树脂)和金属(Pb\Sn\Zn)以及金属化合物,其中以石墨和二硫化钼应用最广。 固体润滑剂的适用范围比较广,从1000℃以上的白热高温到液体氢的深冷低温,无论在严重腐蚀气体环境中工作的化工机械,还是受到强辐射的宇宙机械,都能有效地进行润滑。 1、常见固体润滑剂的种类: ①粉状润滑剂:有二硫化钼粉剂、二硫化钨粉剂、二硫化钼P型、胶体石墨粉。 ②膏状润滑剂:有二硫化钼重型机床油膏、二硫化钼齿轮油润滑油膏、二硫化钼高温齿轮油膏、特种二硫化钼油膏、齿轮润滑用GM-1型成油膜膏。 2、固体润剂的基本性能 与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用。 ①、物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 ②、化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 要求固体润滑剂有较高的承载能力:因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 3、固体润滑剂的使用方法 1)作成整体零件使用:某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。 2)作成各种覆盖膜来使用:通过物理方法将固体润滑剂施加到摩擦界面或表面,使之成为具有一定自润滑性能的干膜,这是较常用的方法之一。成膜的方法很多,各种固体润滑剂可通过溅射、电泳沉积、等离子喷镀、离子镀、电镀、粘结剂粘结、化学生成、挤压、浸渍、滚涂等方法来成膜。市面上已出现了无润滑轴承及采用纳料技术的固体润滑剂。 3)制成复合或组合材料使用:所谓复合(组合)材料,是指由两种或两种以上的材料组合或复合起来使用的材料系统。这些材料的物理、化学性质以及形状都是不同的,而且是互不可溶的。组合或复合的最终目的是要获得一种性能更优越的新材料,一般都称为复合材料。 4)作为固体润滑粉末使用:将固体润滑粉末(如MoS2)以适量添加到润滑油或润滑脂中,可提高润滑油脂的承载能力及改善边界润滑状态等,如MoS2油剂、MoS2 油膏、MoS2润滑脂及Mo S2水剂等。

润滑基础知识

润滑基础知识 一、设备在运转时是怎样发生磨损的? 答:相对运动中的两物体接触表面材料的逐渐丧失或转移,即形成磨损。是伴随摩擦而产生的现象,是摩擦的结果。一个机体的磨损过程大致可分为:(1)跑合磨损阶段(2)稳定磨损阶段(3)剧烈磨损阶段。产生磨损的方式有以下几种:1、粘着磨损:当摩擦表面的微凸体在相互作用的各点处发生“冷焊”后,在相对滑动时,材料从一个表面转移到另一个表面。2、磨料磨损:硬的颗粒或硬的突起物,引起摩擦面材料脱落。3、疲劳磨损:摩擦面受周期性载荷的作用,使表面材料疲劳而引起材料微颗粒脱落。4、冲蚀磨损:当一束含有硬质微颗粒的流体冲击到固体表面上时就会造成冲蚀磨损。5、腐蚀磨损:摩擦表面受到空气中的酸或润滑油、燃油中残存的少量无机酸及水份的化学作用或电化学作用。 二、设备在运转时,是怎样润滑的? 答:摩擦表面间,由于润滑油的存在而大大改变了摩擦的特性。润滑油能在金属摩擦表面形成油膜,这种油膜能将两金属摩擦表面不断隔开,使其摩擦表面发生的粘着磨损、磨料磨损变得很小,同时润滑油还能起均化载荷作用,能降低两金属摩擦表面的疲劳磨损。具体润滑机理可分为: (一)边界润滑:当两个受润滑油润滑的表面在重载作用下靠的非常紧(两表面间可能只有一微米,甚至只有一两个分子那样厚的油膜存在,以致有相当多的摩擦表面微凸体发生接触),而润滑油的体积性质(即粘度)还不能起作用时,其摩擦特性便主要取决于润滑油和金属表面的化学性质。这种能保护金属不致粘着的薄膜,叫边界膜。其形成原理如下:1、物理吸附作用:当润滑油与金属接触时,润滑油就在两者的分子吸力的作用下紧贴到金属表面上,形成物理吸附膜。 2、化学吸附作用:当润滑油分子受化学键力的作用而贴附到金属表面上时,就形成化学吸附膜。 3、化学反应:当润滑油分子中含有以原子形式存在的硫、氯、磷时,在较高的温度(通常在150℃~200℃)下这些元素能与金属起化学反应,形成硫、氯、磷的化合物。前两种边界膜的润滑性能叫润滑油的油性,后一种则叫极压性。 (二)混合润滑:随着摩擦面间油膜厚度的增大,表面微凸体直接接触的数量在

润滑脂和固体润滑剂用的地方

润滑脂和固体润滑剂用的地方 (一).润滑脂: 润滑脂的性能包括: (1)触变性;(2)粘度;(3)强度极限;(4)低温流动性;(5)滴点;(6)蒸发性;(7)胶体安定性;(8)氧化安定性等。 润滑脂的种类和牌号繁多,分类方法也有许多种,有的按基础油组成分类,如分为石油基润滑脂和合成油润滑脂;有的按用途分类,如分为减摩润滑脂,防护脂和密封脂;有的按润滑脂的某一特性分类,如高温脂,耐寒脂和极压脂等。润滑脂中的稠化剂的类型,是决定润滑脂工作性能的主要因素。 现将几类润滑脂的特性简要介绍。 (1).烃基润滑脂以地蜡稠化基础油制成的润滑脂称为烃基润滑脂。具有良好的可塑性,化学安定性和胶体安定性,不溶于水,遇水不产生乳化。其缺点是熔点低,烃基润滑脂主要用作保护作用。 (2).皂基润滑脂皂基润滑脂占润滑脂的产量90%左右,使用最广泛。最常使用的有钙基,钠基,锂基,钙一钠基,复合钙基等润滑脂。复合铝基,复合锂基润滑脂也占有一定的比例,这两种脂是有发展前景的品种。 (3).无机润滑脂主要有膨润土润滑脂及硅胶润滑脂两类。硅胶润滑脂是由表面改质的硅胶稠化甲基硅油制成的润滑脂,可用于电气绝缘及真空密封。膨润土润滑脂是由表硅胶润滑脂是由面活性剂(如二甲基十八烷基苄基氯化铵或氨基酸胺)处理后的有机膨润土稠化不同粘度的石油润 滑油或合成润滑油制成,适用于汽车底盘,轮轴承及高温部位轴承的润滑。 (4).有机润滑脂各种有机化合物稠化石油润滑油或合成润滑油,各具有不同的特性,这些润滑脂大都作为特殊用途。如阴丹士林,酞青铜稠化合成润滑油制成高温润滑脂可用于200~250℃;含氟稠化剂如聚四氟乙烯稠化氟碳化合物或全氟醚制成的润滑脂,可耐强氧化剂,作为特殊部件的润滑。又如聚脲润滑脂可用于抗辐射条件下的轴承润滑等。 (二).固体润滑剂: 固体润滑是指利用固体粉末,薄膜或整体材料来减少作相对运动两表面的摩擦与磨损并保护表面免于损伤的作用。按照经济合作与发展组织(OECD)制定的摩擦学名词术语,固体润滑的定义是:能保护相对运动表面免于损伤并减少其摩擦与磨损而使用的任何固体粉末或薄膜。在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理,化学反应生成固体润滑膜,降低摩擦磨损。 固体润滑剂概念应用较晚,1829年伦尼(Rennie)进行了石墨和猪油复合材料的摩擦试验。二硫化钼是在20世纪30年代第一次用作润滑剂,目前固体润滑剂已在许多机械产品中应用,可在许多特殊,严酷工况条件下如高温,高负荷,超低温,超高真空,强氧化或还原气氛,强辐射等环境条件下有效地润滑,简化润滑维修,为航天,航空与原子能工业发展所必不可少的技术。

润滑基本常识

设备润滑与管理的基本知识(草稿) 一、润滑材料的选用 在机器的摩擦副之间加入某种介质,使其减少摩擦和磨损,这种介质称为润滑材料,也称润滑剂。由于摩擦副的类型和性质不同,相应地对润滑材料的要求和选用也有所不同。只有按摩擦副对润滑材料的性能要求,合理的选用润滑材料,才能减少摩擦、降低磨损,延长设备的使用寿命,从而达到节约能源、保证设备正常运转,提高企业经济效益的目的,尤其是现代化高精度、高速度、高效率的生产设备,对润滑材料的耐高温、高压、高速、腐蚀等要求愈来愈高,随着新型材料的不断发展,对润滑管理专业人员的业务水平提出了更高的要求。 1、润滑基本原理 在两个相互摩擦的表面间加入润滑剂,使其形成一层润滑膜,将两摩擦表面分开,其间的直接干摩擦为润滑分子间的摩擦所代替,从而达到降低磨擦、减少磨损的目的,这就是润滑作用的基本原理。按润滑状态的不同,润滑可分为以下三种: ⑴液体润滑(完全润滑) 润滑剂所形成的油膜完全将两摩擦表面隔开,呈现油膜内层间的液体分子摩擦,称为液体润滑。获得液体润滑的方法有两种:一为液体静压润滑,即人为的将压力油输入润滑表面之间,用以平衡外载而把两表面分离;二是液体动压润滑,即利用摩擦副两表面的相对运动作用,把油带入摩擦面之间,形成压力油膜把两表面分开。流体润滑的摩擦系数为0.001~0.008。 ⑵边界润滑 润滑剂在摩擦表面上形成一层吸附在金属表面上极薄的油膜,或与表面金属形成金皂,但不能形成流体动压效应;边界润滑状态下的摩擦是吸附油膜或金属膜接触的相对滑动所形成的摩擦,摩擦系数为0.05~0.1。当负荷增大或速度改变时,吸附油膜或金属皂可能破裂,引起摩擦表面直接接触而形成干摩擦。 精选范本

第六章 齿轮固体润滑高分子涂层材料

第六章齿轮固体润滑高分子涂层 一、概述 早在19世纪产业革命期间,诸如石墨、锡,铅等已经作为润滑剂用于低速运转的机器上。在二战期间,固体润滑就作为研究对象提了出来。德国的马克思?普朗克研究所和美国国家航空和宇航局的前身国家航空委员会都曾进行过研究开发,如将二硫化钼用于工业应用的试验,并开发了有机粘结固体润滑膜、二硫化钼润滑脂和聚四氟乙烯润滑剂等。到50年代初,美国制定了二硫化钼的美国军用标准,并将其作为军事机密。1957年,前苏联把固体润滑应用到人造卫星上。随后,二硫化钼溅射膜和离子镀膜相继出现,氟化石墨研制成功。在以后发射的气象卫星、国际通讯卫星、宇宙飞船等航天工程中大量使用着各种各样的固体润滑材料。在新兴的产业部门和新兴的技术领域中都在逐渐应用固体润滑,如以机器人和电子计算机为主的电子机械中,其主要的润滑部分(如齿轮机构、谐和减速器、轴承、滚珠丝杠、链索和链轮等)就是常用固体润滑剂聚四氟乙烯和二硫化钼作润滑剂。 齿轮的润滑是为了防止齿面的磨损、点蚀、胶合,以延长其使用寿命,提高齿轮的传动效率,从而达到提高生产率和节约能源的目的。要分析齿轮传动的润滑,就要了解齿轮传动的特点:齿轮传动是复合运动,除滚动外还有滑动,且滑动方向不断变化;两齿轮的相对曲率半径非常小;接触应力大;载荷变化大;接触点不固定;材料、加工、装配等条件不一样,可见其运动特性非常复杂。二、固体润滑涂层的作用 固体润滑涂层技术是指将固体物质涂或镀于摩擦副界面,作为固体润滑材料或固体润滑剂,对摩擦副界面进行润滑的方法,以降低摩擦或减少磨损。利用固体润滑材料进行润滑的方法称为固体润滑。摩擦副表面实施固体润滑涂层处理可在高温、高负荷、超低温、超高真空、强氧化还原、强辐射、少油或无油润滑的工况下使用,明显降低摩擦因数,提高耐磨性能,既可简化润滑机构,延长使用寿命,同时又提高了设备的可靠性。可作为固体润滑材料的物质有石墨、二硫化钼等层状固态物质、塑料和树脂等高分子材料、陶瓷、软金属及各种化合物等。固体润滑涂层技术由于其自身的优点已应用于军工、航空航天和高科技领域。解

固体润滑剂的特性

固体润滑剂的特性 文章来源:开拓者钼业 https://www.doczj.com/doc/2b6527510.html, 1.3.1 固体润滑剂的特性 1.3.1.1 摩擦特性 所有的摩擦副都要承受一定的负荷或传递一定的动力,并且以一定的速度运动。黏着于摩擦表面的固体润滑剂在与对偶材料摩擦时,在对偶材料表面形成转移膜,使摩擦发生在固体润滑剂之间。这样才能表现出零号的摩擦特性——较低的摩擦系数。 固体润滑剂的摩擦特性与其剪切强度有关,剪切强度越小,摩擦系数则越小。层状结构润滑材料在摩擦力的作用下,容易在层与层之间产生滑移,所以摩擦系数小。软金属润滑材料能产生晶间滑移,剪切强度也很小,因而这些物质可以作为固体润滑剂。 1.3.1.2 承载特性 对偶材料在摩擦时,由于摩擦表面的粗糙度,会使微凸体处产生局部高温,而且,负荷越大,温度越高,速度越快,温升也越大,因而磨损也越大。 固体润滑剂应该具有承受一定负荷和运动的速度的能力,即承载能力。在它所能承受的负荷和速度范围内,应该使摩擦副保持较低的摩擦系数,不使对偶材料间发生咬合,而且应使磨损减到最小。 为了使固体润滑剂在规定的工作条件下充分发挥其润滑作用,对于轴承等材料来说,有个特定的标量,即pv值(pa·m/s)——负荷与速度的乘积。对于每种润滑材料,都有其极限pv值(超过该值运行便

失效)和工作pv值(正常工作条件),通常,工作pv值为极限pv值的一半左右。 固体润滑膜的承载特性与其本身的材质有关,尤其受其物理学性能的影响,同时也与固体润滑剂在基材料上的结合强度有关。结合强度越高,承载能力越大。 1.3.1.3 耐磨性 对偶材料在一定负荷和速度下发生摩擦,总会产生磨损。固体润滑剂的耐磨性能与下列两个因素有关。 1)固体润滑剂对摩擦比偶民的黏着力越强,越容易形成转移膜,其耐磨性也越好,固体润滑膜的寿命越长。 2)固体润滑剂应该具有不低于基材的热膨胀系数。当摩擦引起升温时,由于其热膨胀系数较高而将突出基于基材表面,并与对偶材料接触,不断提供固体润滑剂,以维持较好的耐磨性能。 同时,固体润滑剂的耐磨性与气氛黄精条件有关。 1.3.1.4 宽温性 固体润滑剂应能在一定的温度范围内工作。目前,固体润滑剂的使用温度上限在1200℃(金属压力加工中所使用的固体润滑剂),最低温度在-270℃左右(液氧和液氮等输液泵轴承的固体润滑)。但是,无论何种固体润滑剂都没有这样宽的工作范围。实际使用的固体润滑剂只要求适用于某一特定的温度范围,而且通过制造特定的复合润滑材料便可以用于某个温度范围工作。在一定工作温度范围内,固体润滑剂应该具有较低的摩擦系数、较好的润滑性能和耐磨性。

第一节(三)固体润滑材料二硫化钼-(MoS2)固体润滑材料的制备方法

固体润滑材料二硫化钼-(MoS2)固体润滑材料的制备方法 文章来源:开拓者钼业 公司网址:https://www.doczj.com/doc/2b6527510.html, 三、固体润滑材料二硫化钼-(MoS2)的制备方法 在密闭的齿轮箱内放进一定量的固体润滑剂粉末,通过齿轮运动将其飞溅在摩擦表面,依靠它的粘着力附着在轮齿表面,便组成了最简单的固体润滑摩擦副。随着对固体润滑材料二硫化钼-(MoS2)要求的不断提高和科学技术的进步,固体润滑材料二硫化钼-(MoS2)的制备工艺也不断完善。从制备原理来讲,刚本润滑材料二硫化钼-(MoS2)的制备可归纳为以下几种方法。 1. 二硫化钼-(MoS2)机械混合 将几种作用互补的物质进行机械混合,使其成为均质混合体。 2. 二硫化钼-(MoS2)热压烧结 在一种粉末型基材中加人另一种(或多种)其他粉末,经机械混合后成为均质混合体。然后进行热压烧结(在不同的气氛、压力和温度下),使其成为具有一定物理机械和摩擦学性能的整体。用这种方法制备的固体润滑材料二硫化钼-(MoS2)较多,适用于金属基、非金属基和陶瓷等润滑材料二硫化钼-(MoS2)。 3. 二硫化钼-(MoS2)粘结 利用粘结剂将润滑剂粉末粘结在基材表面。如果将具有相当强度的金属或有机编织材料二硫化钼-(MoS2)作为背衬,其上再粘结润滑层,使形成了既有强度又有润滑性的复合层润滑材料二硫化钼-(MoS2)。 4 . 二硫化钼-(MoS2)气相沉积 通过物螋∫气相沉积(包括溅射、离子镀和等离子喷涂等)或化学气相沉积将润滑剂微粒粘着在基材表面形成固体润滑涂层。其粘着力由原子间的结合力呈现。 5 . 二硫化钼-(MoS2)化学反应 通过电镀化学镀,包括多层镀和复合镀等,将润滑剂微粒粘着在基材表癣形成固体润滑镀层。

粘结固体润滑涂层的研究及其应用

粘结固体润滑涂层的研究及其应用 摘要:粘结固体润滑涂层是固体润滑材料的主要类型之一,在航空航天等军工高技术领域和民用工业领域获得了广泛的应用。本文介绍了几种主要类型的粘结固体润滑涂层及其性能特点;概述了在粘结固体润滑涂层基础和应用研究方面的最新进展;结合典型应用事例,评述了粘结固体润滑涂层在解决特殊工况条件下机械的磨损、润滑、粘着冷焊等摩擦学问题中所发挥的重要作用;最后列表介绍了中科院兰州化物所近年来研制的几种粘结固体润滑涂层材料。 关键字:润滑,研究,技术,树脂 1 引言 近30年来,摩擦学研究的重大进展之一就是其研究重点从传统的流体动力润滑与润滑系统向摩擦学材料科学与技术(包括表面工程)的转变⑴。作为这一转变的重要标志之一的新型固体润滑材料与技术不仅在航空航天等军工高技术领域解决了一系列特殊工况条件下的润滑难题,而且在民用工业领域的应用也在迅速扩展。 粘结固体润滑涂层是固体润滑材料的主要类型之一,这是一种将固体润滑剂分散于有机或无机粘结剂体系中,再用类似于油漆的涂装工艺在摩擦部件表面上成膜以降低其摩擦与磨损的一种新型润滑技术。在西方发达国家,自1946年美国NASA研制出第一种含MoS2的有机粘结固体润滑涂层以后,因其性能独特,有关这一类材料的研究和应用均得到了迅速的发展。有关国家不仅制定了相关的技术标准,而且创建了多个专门从事这一类材料研究和开发生产的实体,截止目前,仅实现商品化生产的就有上百个品种,其应用已遍布从高技术的航空航天到日常生活的各个方面。 国内粘结固体润滑涂层研究的起步并不算晚,60年代初以来,结合国防军工高技术产业的发展要求,先后研制了几十个品种的粘结固体润滑涂层材料,解决了一大批航空航天等重点军工型号建设中的重大润滑难题。尤其是近年来,针对高温、真空、高负载、强辐射等极端苛刻工况条件下的使用要求,在系统开展粘结固体润滑涂层应用基础研究的基础上,研制出了多种具有特殊性能并具有良好综合性能的先进粘结固体润滑涂层材料,其中有些品种达到了美国军标的要求,使我国的粘结固体润滑涂层材料的研究达到了国际同类材料的先进水平,为国防现代化做出了重要的贡献;另一方面,在民用工业领域,自八十年代以来,随着引进技术的不断增多,带来了大量的粘结固体润滑涂层的应用技术,国产粘结固体润滑涂层亦以此为契机,开始获得了广泛的应用,并取得了显著的经济和社会效益。本文在系统概述各种类型粘结固体润滑涂层性能特点的基础上,重点评述了近年来中科院兰州化学物理研究所在粘结固体润滑涂层的基础和应用研究方面的最新进展,介绍了粘结固体润滑涂层在军用和民用工业领域的典型应用,目的是要推动我国粘结固体润滑涂层之研究和应用的更快发展。

常用润滑油基本知识简介(免费)

设备的润滑管理 设备的润滑管理是设备技术管理的重要组成部分,也是设备维护的重要内容,搞好设备润滑工作,是保证设备正常运转、减少设备磨损、防止和减少设备事故,降低动力消耗,延长设备修理周期和使用寿命的有效措施。 ①润滑的基本原理 把一种具有润滑性能的物质,加到设备机体摩擦副上,使摩擦副脱离直接接触,达到降低摩擦和减少磨损的手段称为润滑。 润滑的基本原理是润滑剂能够牢固地附在机件摩擦副上,形成一层油膜,这种油膜和机件的摩擦面接合力很强,两个摩擦面被润滑剂分开,使机件间的摩擦变为润滑剂本身分子间的摩擦,从而起到减少摩擦降低磨损的作用。 设备的润滑是设备维护的重要环节。设备缺油或油变质会导致设备故障甚至破坏设备的精度和功能。搞好设备润滑,对减少故障,减少机件磨损,延长设备的使用寿命起着重要作用。 ②润滑剂的主要作用 a. 润滑作用:减少摩擦、降低磨损; b. 冷却作用:润滑剂在循环中将摩擦热带走,降低温度防止烧伤; c. 洗涤作用:从摩擦面上洗净污秽,金属粉粒等异物; d. 密封作用:防止水分和其他杂物进入; e. 防锈防蚀:使金属表面与空气隔离开,防止氧化; f. 减震卸荷:对往复运动机件有减震、缓冲、降低噪音的作用,压力润滑系统有使设备启动时卸荷和减少起动力矩的作用; g. 传递动力:在液压系统中,油是传递动力的介质。 ③润滑油选择的基本原则 设备说明书中有关润滑规范的规定是设备选用油品的依据,若无说明书或规定时,由设备使用单位自己选择。选择油品时应遵循以下原则: a. 运动速度:速度愈高愈易形成油楔,可选用低粘度的润滑油来保证油膜的存在。选用粘度过高,则产生的阻抗大、发热量多、会导致温度过高。低速运转时,靠油的粘度来承载负荷,应选用粘度较高的润滑油。 b. 承载负荷:一般负荷越大选用润滑油的粘度越高。低速重载应考虑油品允许承载的能力。 c. 工作温度:温度变化大时,应选用粘度指数高的油品,高温条件下工作应选用粘度和闪点高、油性和抗氧化稳定性好,有相应添加剂的油品。低温条件下工作应选用粘度低水分少、凝固点低的耐低温油品。

使用固体润滑剂的优缺点

使用固体润滑剂的优缺点 使用固体润滑剂的优缺点 1.使用固体润滑剂的优点①固体润滑剂可以应用于高低温、高真空、强辐射等 特殊工况中,以及粉尘、潮湿、海水等恶劣环境中;②可以在不能使用润滑油 脂的运转条件和环境条件下使用;③重量轻、体积小,不象使用润滑油和脂那 样需要密封、贮存罐和供液系统(包括控制装置等),排除了漏油;④时效变化 小,减轻了维护保养的工作量和费用;⑤解决了润滑技术上的一些难题,增强 了潮湿环境中的防锈能力,减轻了设备的有形磨损。 2.使用固体润滑剂的缺点①固体润滑剂的摩擦系数大,一般比润滑油润滑的摩 擦系数大50~100倍,比润滑脂润滑时大100~500倍;②因热传导困难,摩擦 部件的温度容易升高;③会产生磨屑等污染摩擦表面;④有时会产生噪音和振 动;⑤自行修补性差。固体润滑剂不象润滑油脂那样具有自行修补性。在液体 润滑中,即使润滑油膜破裂,只要润滑油液流入破裂部位,润滑性能立即得到恢 复。而固体润滑剂基本没有这种功能。但是,与层状固体润滑材料相比较,软金 属毕竟还具有一些流动性,一旦接触到固体润滑膜的破裂部位,也能通过自行修 补性而适量恢复其润滑性能。 伟和联盈可以为您提供最佳的选择方案,如何选用固体润滑剂,以下是固体润滑剂的一些介 绍。固体润滑剂主要包括二硫化钼,聚四氟乙烯,铜,有机钼化合物 固体材料和固体润滑添加剂,用于防止进行相对运动的材料的表层损害,减少摩擦和移损。 对于超出润滑油能力的高温和重负荷或因使用润滑油而导致油膜损失的情况十分有效。 典型固体润滑剂和润滑添加剂的特性: 名称颜色摩擦系数负荷能力耐热性说明 MoS2(二硫化钼)灰/黑0.04 784MPa 350℃固体材料,切变分层晶体结 构,表现为低摩擦性 C(石墨)黑色0.04 490MPa 550℃固体材料,切变分层晶体结 构,表现为低摩擦性 PTFE(聚四氟乙烯)白色0.04 196MPa 300℃低摩擦性氟化合物。对于塑料 润滑剂特别有效 MCA(密胺氰尿酸加合物)白色————300℃展示负荷能力和抗磨性,主要 与聚四氟乙烯共同使用。 BN(氮化硼)白色0.05-~0.06 ——900℃甚至高于500℃时仍然显示润 滑性 Cu(铜)铜色————1083℃软金属,可在高温场所作为抗 烧结剂使用 Pb(铅)灰/黑0.05~0.5 ——327℃ AI(铝)银白————600℃

固体自润滑材料研究进展

固体自润滑材料研究进展 摘要:综述了固体自润滑材料的种类、性能、组织、应用以及自润滑机理。指出为了满足科技的日益发展,迫切需要研制从添加润滑剂到无须添加润滑剂而具有自润滑的材料。 关键词:自润滑摩擦磨损组织机理 前言 固体润滑是指利用固体材料来减少构件之间接触表面的摩擦与磨损的润滑方式。而自润滑材料是具有固体润滑的性能。固体润滑技术的发展,主要是从二战以后的航空工业、空间技术等高技术领域开始的。在某些不能或者无法使用润滑油和润滑油脂的高温、超低温、强辐射、高负荷、超高真空、强氧化、海水以及药物等介质的条件下,固体自润滑技术显示出良好的适应性能,被广泛应用于冶金、电力、船舶、桥梁、机械、原子能等工业领域,因而在欧美工业发达国家受到相当的重视。 1固体自润滑材料的性能 1.1铝、铅及石墨的含量对铝铅石墨固体自润滑复合材料性能的影响 固体润滑剂的加入对材料的摩擦学性能有较大的影响,采用常规的粉末冶金方法制备了铝铅石墨固体自润滑复合材料,并对其力学性能和摩擦磨损性能进行了研究。早在20世纪60年代初期,人们就已经发现,两种或者多种固体润滑剂混合使用时,会产生一种料想不到的协同润滑效应。其润滑效果比任何一种单独使用时都好[1]。考虑将石墨和铅作为组合固体润滑剂同时使用。多元固体润滑剂的复合使用是固体自润滑材料的一个发展方向。 实验通过不同的成分配比,采用常规的粉末冶金方法。将各种原料粉末按实验需要的配比称好后置于V型混料机中干混4~6h,在钢模中进行压制,压制压力为0.5Gpa,然后在高纯氮气保护气氛下烧结60 min。得到的样品,对其进行性能测试。主要是对其样品进行力学性能、物相分析、金相分析及摩擦学性能的测试。 通过实验的测试结果可得到以下结论[2]: 1)在铅和石墨总含量不变的情况下,随着石墨含量的增加,铝铅石墨固体自润滑复合材料的力学性能下降,但石墨含量对强度的影响不如对硬度的影响程度大。 2)铅和石墨有着良好的协同润滑效应,随着石墨含量的增加,复合材料的摩擦因数减小,同时材料的磨损量也明显下降。 3)在固体润滑剂含量相同的情况下,铝铅石墨材料的力学性能略低于铝铅材料,但是其摩擦磨损性能好得多,这是因为石墨的润滑性能比铅好,而且存在良好的协同润滑效应。 1.2石墨含量、粒度及温度对铜基自润滑材料力学和摩擦磨损性能的影响 铜基自润滑材料具有抗氧化、耐腐蚀及磨合性好等特性,含油粉末冶金铜基自润滑轴承和轴瓦在纺织机械、食品机械、办公机械及汽车工业中得到了广泛的应用.然而当温度高于300℃后,铜基材料强度明显降低、耐磨性变差.为了充分发挥铜基材料的优良特性,提高铜基自润滑材料的使用温度显得尤为重要。通过基体多元合金化和选用不同粒度的石墨颗粒,采用常规粉末冶金方法制备了铜基石墨固体自润滑材料,在大越式OAT-U型摩擦磨损试验机上考察了复合材料从室温到500℃温度条件下的摩擦磨损性能,利用扫描电子显微镜观察分析磨损表面形貌,进而探讨其摩擦磨损机理。深入研究铜基自润滑材料在较高温度条件下的摩擦磨损性能及机理,对研制开发高温铜基自润滑材料具有重要意义。选用不同粒度的石墨颗粒作为主要润滑组分,并对铜合金基体进行合金化优化设计,采用常规的粉末冶金方法制备了铜基石墨固体自润滑复合材料,考察了其在室温至500℃温度条件下的摩擦磨损性能。 通过实验测试可得到石墨含量对室温力学和摩擦磨损性能的影响、石墨粒度对室温力学和摩擦磨损性能的影响及温度对铜基石墨自润滑摩擦磨损性能的影响[3]。

高分子固体润滑耐磨涂层研究进展_乔红斌

高分子固体润滑耐磨涂层研究进展 乔红斌,郭强 (上海大学材料科学与工程学院,上海200072) 摘 要:在阐明高分子固体润滑耐磨涂层的主要类型和减摩耐磨机理的基础上,总结评述了常用的几种高分子树脂基体固体润滑耐磨涂层的摩擦学特性,分析讨论了高分子涂层固体润滑耐磨性能的影响因素,并且展望了高分子固体润滑耐磨涂层的发展趋势和研究方向。 关键词:高分子涂层;磨损;摩擦;固体润滑 中图分类号:T B322 文献标识码:A 文章编号:1000-3738(2004)02-0001-03 Research Progress of Solid Lu bricating and Wear Resistant Polymer Coatings QIAO Hong-bin,GUO Qiang (Shanghai University,Shanghai200072,China) A bstract:On basis of introducing primary types of poly mer coating s fo r the application in solid lubricating and w ear resistance and clarifying the mechanisms of anti-friction and wear resistance,the tribolo gical characteristics of several kinds o f so lid lubricating and w ear resistant poly mer coating s are summarized.T he facto rs o f effect on their solid lubricat-ing and wear resistance are discussed.I n additio n,the development trend and research direction of solid lubricating and w ear resistant polymer coatings are predicted. Key words:poly mer coating;w ear;friction;solid lubrication 1 引 言 近年来,随着摩擦学研究的重点从传统的流体动力润滑系统转向摩擦材料及其表面工程[1],固体润滑涂层研究日益受到重视。摩擦副表面实施固体润滑涂层处理可在少油或无油润滑的工况下使用,明显降低摩擦系数,提高耐磨性能,既简化了润滑机构,延长使用寿命,同时又提高了设备的可靠性。 2 高分子固体润滑耐磨涂层 固体润滑涂层的主要类型包括高分子涂层、金属涂层以及氧化物、氮化物、碳化物的陶瓷涂层[2]。高分子涂层又可以分为有机粘结型和涂料型两类。前者是采用一种粘结剂作为载体,把一种或多种固体润滑剂粘附在摩擦部件表面,这种传统的粘结型固体润滑涂层是目前品种最多、应用最广的一类。通常采用的粘结剂有环氧树脂、酚醛树脂、聚酰胺 收稿日期:2003-01-02;修订日期:2003-04-11 基金项目:国家自然科学基金资助项目(59675033) 作者简介:乔红斌(1973-),男,江苏泰州人,博士研究生。 导师:郭强教授树脂、聚酰亚胺树脂、聚氨酯等,采用二硫化钼(MoS2)、石墨、PTFE、金属氧化物、卤化物、硒化物、软金属等作为固体润滑剂。后者是由具有固体润滑和耐磨性能的特种高分子工程涂料形成的涂层。用作涂料的不仅有溶液型涂料,还包括粉末型涂料,如聚乙烯粉末涂料、聚酯粉末涂料、环氧树脂粉末涂料以及聚酯/环氧树脂粉末涂料等。溶液型涂料采用的树脂与上述粘结剂树脂类似。 高分子固体润滑耐磨涂层的作用机理可以是下述的一项或几项: (1)高分子涂层可以隔离摩擦副表面间直接接触,而涂层摩擦阻尼较小。 (2)高分子涂层在对磨金属表面形成转移膜,隔离摩擦表面间直接接触,降低摩擦阻尼。 (3)高分子涂层表面微观多孔状或桔皮状结构可储藏润滑油,与固体润滑剂产生减摩协同效应。 (4)高分子涂层易于塑性变形,与对磨表面相适配,增大真实接触面积,缓解应力集中。 (5)高分子涂层具有良好的防腐性能和吸震功能,从而避免了腐蚀磨损和冲击磨损的发生。 高分子涂层的使用性能主要依赖于基体树脂的种类和固体润滑剂配方,常以高分子树脂的种类来 第28卷第2期2004年2月 机 械 工 程 材 料 M aterials for Mechanical Engineering V ol.28 No.2 Feb.2004

相关主题
文本预览
相关文档 最新文档