当前位置:文档之家› 导数练习题(含答案)

导数练习题(含答案)

导数练习题(含答案)
导数练习题(含答案)

导数概念及其几何意义、导数的运算

一、选择题:

1 已知32()32f x ax x =++,若(1)4f '-=,则a 的值等于 A

193

B

103

C

16

3

D

133

2 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为 A

3

B

-3

C

5

D

-5

3 函数2y x a a =+2()(x-)的导数为 A

222()x a -

B

223()x a +

C

223()x a - D 222()x a +

4 曲线313y x x =+在点4

(1,)3

处的切线与坐标轴围成的三角形的面积为 A

1

9

B 29

C 13

D 2

3

5 已知二次函数2y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1)

(0)

f f '的最小值为 A

3

B

52

C 2 D

32

6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B

()2(1)f x x =-

C

2()2(1)f x x =-

D ()1f x x =-

7 下列求导数运算正确的是 A 211()1x x x

'+=+

B

21

(log )ln 2

x x '=

C

3(3)3log x x e '=?

D 2

(cos )2sin x x x x '=-

8 曲线3

2153

y x x =-+在1x =处的切线的倾斜角为 A

6

π B 34π C 4π D 3

π

9 曲线3

2

31y x x =-+在点(1,1)-处的切线方程为 A

34y x =-

B

32y x =-+

C

43y x =-+ D 45y x =-

10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

11 一质点的运动方程为2

53s t =-,则在一段时间[1,1]t +?内相应的平均速度为 A

36t ?+

B

36t -?+

C

36t ?- D 36t -?-

12 曲线()ln(21)f x x =-上的点到直线230x y -+=的最短距离是

A

B

C

D 0

13 过曲线32y x x =+-上的点0P 的切线平行于直线41y x =-,则切点0P 的坐标为 A (0,1)(1,0)-或

B

(1,4)(1,0)--或

C

(1,4)(0,2)---或

D (2,8)(1,0)或

14 点P 在曲线3

2

3y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是 A

[0,]2

π

B

3[0,)[,)24πππ C 3[,)4ππ D 3(,]24

ππ 二、填空题

15 设()y f x =是二次函数,方程()0f x =有两个相等实根,且()22f x x '=+,则()y f x =的表达式是______________

16 函数2

sin x y x

=的导数为_________________________________

17 已知函数()y f x =的图像在点(1,(1))M f 处的切线方程是1

22

y x =

+,则(1)(1)f f '+=_________ 18 已知直线y kx =与曲线ln y x =有公共点,则k 的最大值为___________________________ 三、解答题

19 求下列函数的导数

(1)1sin 1cos x y x -=+

(2) y =

(3) y =

(4) tan y x x =? 20 已知曲线2

1:C y x =与2

2:(2)C y x =--,直线l 与12,C C 都相切,求直线l 的方程 21 设函数()b

f x ax x

=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --= (1)求()f x 的解析式

(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值。

22 已知定义在正实数集上的函数2

21()2,()3ln 2

f x x ax

g x a x b =

+=+,其中0a >,设两曲线(),()y f x y g x ==有公共点,且在公共点处的切线相同

(1)若1a =,求b 的值

(2)用a 表示b ,并求b 的最大值

导数概念及其几何意义、导数的运算答案

二、填空题:

15、 2

()21f x x x =++

16、

222sin cos sin x x x x y x -?'=

17、

3

18、

1e

三、解答题: 19、解:(1)

2

2

cos (1cos )(1)sin (1cos )cos 1sin (1cos )x x xinx x

y x x x x -?++-'=+-++=

+

(2)

33

2

2

52232

sin 33cos 2sin 2

x y x x

x y x x x x x x

-

---=++

'∴=-

+-

(3)

22

2(1)

(01)1y x x x x

=+=

≥≠-且

2

2

(1)(1)(1)(1)

2

(1)4(01)(1)x x x x y x x x x ''+---+'∴=-=≥≠-且

(4)

222sin (tan )()cos (sin )cos sin (cos )1cos cos tan (tan )tan cos x

x x

x x x x x x y x x x x x x x

''=''-==

'''∴=+=+

20、解:设直线l 斜率为k ,且与曲线12,C C 相切于点11122(,)(,)P x y x y 2,P 由 22(),()(2)f x x g x x ==-- 得 ()2,()24f x x g x x ''==-+

∴11()2k f x x '== (1)

22()24k g x x '==-+ (2)

又 2221122121

(2)y y x x k x x x x -+-==-

-- (3) 由 (1)(2)(3)式得:

1122

0220x x x x ==????==??或 ∴ 04k k ==或

且1(0,0)(2,0)P 2且P 或1(2,4)(0,4)P -2且P

∴ 所求直线l 的方程为 044y y x ==-或

21、解:(1)方程74120x y --=可化为7

34

y x =

- 当2x =时,12y =

又 2()b f x a x

'=+

于是 1222

744

b a b a ?-=????+=?? 解得

1

3

a b =??

=?

故 3()f x x x

=-

(2)设00(,)P x y 为曲线上任一点,由2

3

()1f x x '=+

,知曲线在点00(,)P x y 处的切线方程为 002

3

(1)()y y x x x -=+

- 即 0022

33()(1)()y x x x x x --

=+- 令 0

6

0,x y x ==-

得: 从而得切线与直线0x =的交点坐标为0

6(0,)x -

令 y x = 的 02y x x ==

从而得切线与直线y x =的交点坐标为00(2,2)x x

所以点00(,)P x y 处的切线与直线y x =0x =所围成的三角形面积为

00

16262S x x =

-?= 故曲线()y f x =上任一点处的切线与直线y x =0x =所围成的三角形面积为定值,此定值为6.

22、解:(1) 1a =

∴ 2

1()2,()3ln 2

f x x x

g x x b =

+=+ ∴ 3()2,()f x x g x x

''=+=

设两曲线的交点为00(,)P x y

∴ 0000()()

()()f x g x f x g x =??

''=?

∴ 2

00000123ln 2

32x x x b x x ?+=+???

?+=??

解得: 03x =-(舍去),或01x = 所以 52

b = (2)

0000()()

()()f x g x f x g x =??

''=?

∴ 22

0002

00123ln 232x ax a x b a x a x ?+=+??

??+=??

解得:03x a =-,或0x a =

00,a x a >∴=

所以

2

22123ln 2

a a a a

b +=+ 即 2

253ln (0)2

b a a a a =

-> 设 2

25()3ln (0)2

h a a a a a =

-> ∴ ()56ln 32(13ln )h a a a a a a a '=--=-

令 13

()0,h a a e '==

又当 13(0,)a e ∈时,()0h a '>,当13

(,)a e ∈+∞时,()0h a '<

∴ 当 1

3

a e =时,()h a 取最大值222

33353

22

e e e -=

即 b 的最大值为2

332

e

导数基础练习题

导数基础练习题 一 选择题 1.函数()22)(x x f π=的导数是( C ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( A ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( B ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则(A ) (A ) 10<b (D ) 2 1,对于任意实数x 都有()0f x ≥,则 (1) '(0) f f 的最小值为( C ) A .3 B .5 2 C .2 D .32 9.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( B ) A.充分不必要条件 B.必要不充分条件

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

(完整word版)第一章导数及其应用测试题(含答案)

第一章导数及其应用测试题 一、 选择题 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 2 2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ). A .]21,21[2π e B .)2 1 ,21(2πe C .],1[2πe D .),1(2π e 8.积分 =-? -a a dx x a 22( ).

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

导数的四则运算法则

§4 导数的四则运算法则 一、教学目标: 1.知识与技能 掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。 2.过程与方法 通过用定义法求函数f (x )=x+x 2 的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。 3.情感、态度与价值观 培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象的数学思维方法。 二、教学重点:函数和、差、积、商导数公式的发掘与应用 教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导函数的概念和导数公式表。 1.导数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0 / x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(000 0/ 2. 导数的几何意义:是曲线)(x f y =上点()(,00x f x )因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 )(()(00/0x x x f x f y -=-

3. 导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个 ),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f , 称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数, 4. 求函数)(x f y =的导数的一般方法: (1)求函数的改变量()(x f x x f y -?+=?(2)求平均变化率 x x y ?= ?? (3)取极限,得导数/ y =()f x '=x y x ??→?0lim 5. 常见函数的导数公式:0'=C ;1)'(-=n n nx x (二)、探析新课 两个函数和(差)的导数等于这两个函数导数的和(差),即 证明:令)()()(x v x u x f y ±==, )] ()([)]()([x v x u x x v x x u y ±-?+±?+=?v u x v x x v x u x x u ?±?=-?+±-?+=)]()([)]()([, ∴ x v x u x y ??±??=??,x v x u x v x u x y x x x x ??±??=? ?? ????±??=??→?→?→?→?0000lim lim lim lim 即 )()()]()([' ' ' x v x u x v x u ±=±. 例1:求下列函数的导数: (1)x x y 22 +=; (2)x x y ln -= ; (3))1)(1(2-+=x x y ; (4) 2 2 1x x x y +-= 。 解:(1)2ln 22)2()()2(2 2 x x x x x x y +='+'='+='。 (2)x x x x x x y 121)(ln )()ln (- = '-'='-='。 (3) [] 123)1()()()()1()1)(1(223232+-='-'+'-'='-+-=' -+='x x x x x x x x x x y 。 例2:求曲线x x y 1 3- =上点(1,0)处的切线方程。

(完整版)导数的几何意义(基础练习题)

导数的几何意义(1) 1.设f(x)=1 x ,则lim x→a f x-f a x-a 等于( ) A.-1 a B. 2 a C.-1 a2 D. 1 a2 2.在曲线y=x2上切线倾斜角为π 4 的点是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 3.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( ) A.1 B.1 2 C.-1 2 D.-1 4.若曲线y=h(x)在点P(a,h(a))处切线方程为2x+y+1=0,则( ) A.h′(a)<0 B.h′(a)>0 C.h′(a)=0 D.h′(a)的符号不定 5.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t 之间的函数关系为s=1 8 t2,则当t=2时,此木块在水平方向的瞬时速

度为( ) A. 2 B. 1 C.12 D.14 6.函数f (x )=-2x 2+3在点(0,3)处的导数是________. 7.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________. 8.设曲线y =x 2在点P 处的切线斜率为3,则点P 的坐标为________. 9.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程. 10.求双曲线y =1 x 在点(1 2 ,2)处的切线的斜率,并写出切线方程.

导数的几何意义(2) 1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那 么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0 D .f ′(x 0)不存在 2.函数在处的切线斜率为( ) A .0 B 。1 C 。2 D 。3 3.曲线y =12x 2-2在点? ? ???1,-32处切线的倾斜角为( ) A .1 B. π4 C.5 4 π D .- π 4 4.在曲线y =x 2上切线的倾斜角为 π 4 的点是( ) A .(0,0) B .(2,4) C.? ?? ?? 14,116 D.? ?? ??12,14 5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x ) 2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A .2 B .-1 C .1 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x

【高中数学选修2-2:第一章-导数及其应用-单元测试题

数学选修2-2第一章 单元测试题 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )的图像如图所示,则函数f (x )在开区间(a ,b )有极小值点( ) A .1个 B .2个 C .3个 D .4个 2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +1 x 2在 同一点处取得相同的最小值,那么f (x )在[1 2 ,2]上的最大值是( ) A.13 4 B.54 C .8 D .4 3.点P 在曲线y =x 3-x +2 3 上移动,设点P 处的切线的倾斜角为 α,则α的取值围是( )

A .[0,π 2] B .[0,π2]∪[3 4π,π) C .[3 4 π,π) D .[π2,3 4 π] 4.已知函数f (x )=1 2x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立, 则实数m 的取值围是( ) A .m ≥32 B .m >32 C .m ≤32 D .m <32 5.函数f (x )=cos 2 x -2cos 2 x 2 的一个单调增区间是( ) A.? ????π3,2π3 B.? ???? π6 ,π2 C.? ???? 0,π3 D.? ???? -π6 ,π6 6.设f (x )在x =x 0处可导,且lim Δx →0 f x 0+3Δx -f x 0 Δx =1, 则f ′(x 0)等于( ) A .1 B .0 C .3 D.13 7.经过原点且与曲线y =x +9 x +5 相切的切线方程为( ) A .x +y =0 B .x +25y =0 C .x +y =0或x +25y =0

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

导数的四则运算规则

§4 导数的四则运算法则 主讲:陈晓林 时间:2012-2-23 一、教学目标: 1.知识与技能 掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算 的导数,能运用导数的几何意义,求过曲线上一点的切线。 2.过程与方法 通过用定义法求函数f (x )=x+x 2的导数,观察结果,发掘两个函数的和、差求导方法, 给结合定义给出证明;由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两 个函数积、商的求导发则。 3.情感、态度与价值观 培养学生由特别到一般的思维方法去探索结论,培养学生实验——观察——归纳——抽象 的数学思维方法。 二、教学重点:函数和、差、积、商导数公式的发掘与应用 教学难点:导数四则运算法则的证明 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导函数的概念和导数公式表。 1.导数的定义:设函数在处附近有定义,如果时,与的比 )(x f y =0x x =0→?x y ?x ?(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫x y ??x y ??做函数在处的导数,记作,即 )(x f y =0x x →0 / x x y =x x f x x f x f x ?-?+=→?) ()(lim )(000 0/2. 导数的几何意义:是曲线上点()处的切线的斜率因此,如果 )(x f y =)(,00x f x 在点可导,则曲线在点()处的切线方程为 )(x f y =0x )(x f y =)(,00x f x )(()(00/0x x x f x f y -=-3. 导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每一个 )(x f y =),(b a 后进行 高中资料试卷调整试验;通电检查所有

(完整版)导数基础练习测试

导数基础练习(共2页,共17题) 一.选择题(共14题) 1.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是()A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0 3.若函数f(x)=sin2x,则f′()的值为() A.B.0 C.1 D.﹣ 4.函数f(x)=xsinx+cosx的导数是() A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx 5.的导数是() A.B.C.D. 6.y=xlnx的导数是() A.x B.lnx+1 C.3x D.1 7.函数y=cose x A.﹣e x sine x B.cose x C.﹣e x D.sine x 8.已知,则f′()=() A.﹣1+ B.﹣1 C.1 D.0 9.函数的导数是()

A.B.C.e x﹣e﹣x D.e x+e﹣x 10.函数y=x2﹣2x在﹣2处的导数是() A.﹣2 B.﹣4 C.﹣6 D.﹣8 11.设y=ln(2x+3),则y′=() A.B.C.D. 12.已知函数,则f′(x)等于() A.B.C.0 D. 13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是() A.4 B.5 C.6 D.7 14.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为() A.(1,3)B.(3,3)C.(6,﹣12) D.(2,4) 二.填空题(共2题) 15.求导:()′=_________. 16.函数y=的导数是_________. 三.解答题(共1题) 17.求函数y=e x5 +2的导数.

导数公式及其运算法则

§1.2.2基本初等函数的导数公式及导数的运算法则(两课时) 学习目标 1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 3.复合函数的分解,求复合函数的导数. 一、预习与反馈(预习教材P 14~ P 19,找出疑惑之处) 复习1:常见函数的导数公式: (1) '____C =(C 为常数);(2)()'________n x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =; (7)(ln )'______x =; (8) e x x a a log 1)'(log = 复习2:根据常见函数的导数公式计算下列导数 (1)6y x = (2 )y = (3)21y x = (4 )y = 新知 1.可导函数的四则运算法则 法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差). 法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)() u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)

例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x =-++导数. 变式:( 1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =- 例2求下列函数的导数: (1)32log y x x =+; (2)n x y x e = (3)y=2e -x 2. 复合函数: 1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住 2.复合函数的求导法则 复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。 例。3 求下列函数的导数: (1)2(23)y x =+; (2)1x y e -+=; (3)sin()y x π?=+

导数及其应用单元测试(带答案)

第三章导数及其应用单元测试 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后 的括号内(本大题共12个小题,每小题5分,共60分)。 1.函数y=x+2cosx在[0,]上取得最大值时,x的值为()A.0 B.C.D. 2.函数的单调递减区间是() A.B.C.D. 3.若函数的图象的顶点在第四象限,则函数的图象是 () 4.点P在曲线 上移动,设 点P处切线倾斜角为α, 则α的取值范围是 ()A.[0,] B.0,∪[,π C.[,πD.(, 5.已知(m为常数)在上有最大值3,那么此函数在 上的最小值为() A.B.C.D. 6.函数的单调递增区间是()A. B.(0,3) C.(1,4) D. 7.已知函数时,则()

A.B. C.D. 8.设函数的导函数,则数列的前n项和是 ()A.B.C.D. 9.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为()A.[-,+∞] B.(-∞,-3) C.(-∞,-3)∪[-,+∞] D.[-,] 10.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)<0,设a=f(0),b= f(),c= f(3),则() A .a<b<c B.c<a<b C.c<b<a D.b<c<a 11.曲线在点处的切线与坐标轴围成的三角形面积为() A.B.C.D. 12.如图所示的是函数的大致图象,则等于()A.B. C.D.

第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 13.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________. 14.已知曲线交于点P,过P点的两条切线与x轴分别交于A,B两点,则△ABP的面积为; 15.函数在定义域内可导,其图象如图,记的导函数为, 则不等式的解集为_____________ 16.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。 17.(12分)已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

基本初等函数导数公式附导数运算法则

1.2.2基本初等函数的导数公式及导数的运算法则(一)教学目的:1熟练掌握基本初等函数的导数公式。 2掌握导数的四则运算法则; 3能利用给出的公式和法则求解函数的导数。 教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点:基本初等函数的导数公式和导数的四则运算法则的应用 教学安排:两课时 教学过程: 引入:复习巩固导数的基本公式,及其基本运算规律。 且 知识讲解: 一:基本初等函数的导数公式 为了方便我们将可以直接使用的基本初等函数的导数公式表如下:

关于表特别说明:1 常数函数 的导 数是 0; 2幂函数 导数是以对应幂函数的指数为系数 3 余弦函 数的导数是正弦函数的相反 数。 从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正, 和余弦函数在该区间的正负是一致的, 余弦函数在区间上是单调递减,瞬时变化率为负, 和正弦函数在该区间的正负是相反的,故 有一个负号。 4

的导数是它自身。 5 例1计算下列函数的导数 强调:1幂函数和指数函数是两种不同的函数,关键是看变量所处的 位置是在底数上还是在指数上。 2 导函数的定义域决定于原函数的定义域。 练习:求下列函数的导数。 例 2.(课本P14例1)假设某国家在20 那么在第10个年头,这种商品的价格上涨的速度大约 是多少(精确到0.01 )? /年) 在第10个年头,这种商品的价格约为0.08元/年的速度上涨.

提出问题: 10个年头,这种 0.01)? 二导数的计算法则 推论1 导数不变) 2 (常数与函数的积的导数,等于常数乘函数 的导数) 3 解决问题: 公式和求导法则,有 /年) 0.4元/年的速度上涨.例3 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数,并注明定义域。

导数基础知识专项练习.

导数专项练习 一、选择题(本大题共21小题,共105.0分) 1.函数f(x)=x3+x在点x=1处的切线方程为() A.4x-y+2=0 B.4x-y-2=0 C.4x+y+2=0 D.4x+y-2=0 2.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为() A.1 B.2 C.-1 D.-2 3.已知曲线y=2x2+1在点M处的瞬时变化率为-4,则点M的坐标是() A.(1,3) B.(1,4) C.(-1,3) D.(-1,-4) 4.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能() A. B. C. D. 5.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调递减函数,则实数a的取值范围是() A.(-∞,-]∪[,+∞) B.[-] C.(-∞,-)∪(,+∞) D.(-) 6.已知函数f(x)=x在区间[1,2]上是增函数,则实数m的取值 范围为() A.4≤m≤5 B.2≤m≤4 C.m≤2 D.m≤4 7.设点P是曲线上的任意一点,点P处切线的倾斜角为α,则角α 的取值范围是() A. B.[0,)∪[,π) C. D. 8.函数y=f(x)导函数f'(x)的图象如图所示,则下列说法正确的是() A.函数y=f(x)在(-∞,0)上单调递增 B.函数y=f(x)的递减区间为(3,5)

C.函数y=f(x)在x=0处取得极大值 D.函数y=f(x)在x=5处取得极小值 9.已知y=+(b+6)x+3在R上存在三个单调区间,则b的取值范围是() A.b≤-2或b≥3 B.-2≤b≤3 C.-2<b<3 D.b<-2或b>3 10.函数在R上不是单调增函数则b范围为() A.(-1,2) B.(-∞,-1]∪[2,+∞) C.[-1,2] D.(-∞,-1)∪(2,+∞) 11.已知函数f(x)的定义域为(a,b),导函数f′(x)在(a, b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点 的个数为() A.1 B.2 C.3 D.4 12.已知曲线C:y=x3-x2-4x+1直线l:x+y+2k-1=0,当x∈[-3, 3]时,直线l恒在曲线C的上方,则实数k的取值范围是() A.k>- B. C. D. 13.曲线y=2lnx上的点到直线2x-y+3=0的最短距离为() A. B.2 C.3 D.2 14.已知函数f(x)=x-alnx,当x>1时,f(x)>0恒成立,则实数a的取值范围是() A.(1,+∞) B.(-∞,1) C.(e,+∞) D.(-∞,e) 二、填空题(本大题共4小题,共20.0分) 22.函数f(x)的图象在x=2处的切线方程为2x+y-3=0,则f(2)+f'(2)= ______ . 23.已知函数f(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a的取值范围是 ______ . 24.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线与直线x+4y=0垂直,则实数a= ______ . 25.曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为 ______ . 三、解答题(本大题共6小题,共72.0分) 26.已知函数f(x)=x3+ax2+bx(a,b∈R).若函数f(x)在x=1处有极值-4. (1)求f(x)的单调递减区间; (2)求函数f(x)在[-1,2]上的最大值和最小值. 27.已知函数f(x)=x2+lnx-ax. (1)当a=3时,求f(x)的单调增区间; (2)若f(x)在(0,1)上是增函数,求a得取值范围.

相关主题
文本预览
相关文档 最新文档