当前位置:文档之家› 路基路面课程设计

路基路面课程设计

路基路面课程设计
路基路面课程设计

路基路面课程设计

目录

1章重力式挡土墙设计 (1)

1.1重力式路堤墙设计资料 (1)

1.2破裂棱体位置确定 (1)

1. 3荷载当量土柱高度计算 (2)

1.4土压力计算 (2)

1.6基地应力和合力偏心矩验算 (4)

1.7 墙身截面强度计算 (5)

1.8设计图纸 (6)

第2章沥青路面设计 (7)

2.1基本设计资料 (7)

2.2轴载分析 (7)

2.3结构组合与材料选取 (10)

2.4压模量和劈裂强度 (10)

2.5 设计指标的确定 (10)

2.6 路面结构层厚度的计算 (11)

2.7 防冻层厚度检验 (12)

2.8沥青路面结构图 (12)

第3章水泥混凝土路面设计 (13)

3.1 交通量分析 (13)

3.2 初拟路面结构 (14)

3.3 确定材料参数 (14)

3.4 计算荷载疲劳应力 (15)

3.5 计算温度疲劳应力 (16)

3.6防冻厚度检验和接缝设计 (16)

3.7混凝土路面结构结构图 (17)

参考文献 (18)

附录A HPDS计算沥青混凝土路面结果 (19)

1章 重力式挡土墙设计

1.1重力式路堤墙设计资料

1.1.1墙身构造

墙高5m ,墙背仰斜坡度:1:0.25(=14°),墙身分段长度20m ,其余初始拟采用尺寸如图1.1示; 1.1.2土质情况

墙背填土容重γ=18kN/m 3,内摩擦角032φ=;填土与墙背间的摩擦角δ=16°;地基为石灰岩地基,容许承载力[σ]=480kPa ,基地摩擦系数0.5μ=; 1.1.3墙身材料:

5号砂浆,30号片石,砌体容重γ=22kN/m3, 砌体容许压应力[σ]=610kPa ,容许剪应力[τ]=110kPa ,容许压应力[]65l MPa σ=。

图1. 1初始拟采用挡土墙尺寸图

1.2破裂棱体位置确定

1.2.1破裂角(θ)的计算

假设破裂面交于荷载范围内,则有:

14163234ψαδφ++-++ ===,90ω< 因为

路基路面课程设计

00000111

()(22)tan 0(00)(2)tan 222B ab b d h H H a h h H H h αα=++-++=++-+

01

(2)tan 2

H H h α=-+

00011

(2)()(2)22

A a H h a H H H h =+++=+

根据路堤挡土墙破裂面交于荷载内部时破裂角的计算公式:

tg tg θψ=-+

tg ψ=-+

34tg =- 0.75=

故36.74θ=

1.2.2验算破裂面是否交于荷载范围内

破裂面至墙踵:()tan (52)tan 36.86 5.23o H a m θ+=+=

荷载内缘至墙踵: tan 5tan36.8630.5 4.75o H b d m θ?++=?++= 荷载外缘至墙踵: 0tan 5tan 36.8630.5 5.510.25o H b d l m θ?+++=?+++= 因为4.75<5.25<10.25,假设满足要求。

1. 3荷载当量土柱高度计算

墙高5米,按墙高确定附加荷载强度进行计算。按照线性内插法,计算附加荷载强度:2010

(105)1016.25/102

q KN m -=-?

+=-, 016.250.90318

q h m γ===,即当量土柱高度为0.903m 。

1.4土压力计算

1.4.1土压力大小计算

()()()()011

22 5.022 5.030.3322A a H a H +++=++?+=0=

h 0.903 ()()011

22tan 22B ab b d H H a α++-++00=h h

()

()5.05222t a n 144.25

???+?+?-=

=23/2+(3+0.5)0.903-0.50.903

根据路堤挡土墙破裂面交于荷载内部土压力计算公式:

()

()()

()

()()

a 0036.7432tan 1830.330.7512.5871.21sin sin 36.7434E A B KN

θφγθθψ++=-=??-=++ cos cos ()()X a 71.21141671.16E E KN αδ=+=-+= cos cos

()()y a sin 71.21sin 1416 2.49E E KN αδ=+=-+=

1.4.2土压力作用点位置计算

10.5 1.0tan tan tan 36.740.25

o d h m C θα=

==+-

3tan 32tan 36.743tan tan tan 36.740.25o

o

b a h m θθα--?===+- 4136132h H h h m =--=--=

3041222222320.8332(1)(1) 1.69325255

h h h a H H H ???-+=-+=?K =1+

1+ 223044221()(32)52(53)0.8332(3225)

1.67733335 1.693

y a H h h h h H H Z m

H K -+++?-+???-?=+=+=??1.5稳定性验算

1.5.1墙体重量及其作用点位置计算

挡墙按单位长度计算,为方便计算从墙趾处沿水平方向把挡土墙分为两部分,上部分为四边形,下部分为三角形:

1110.98 4.48 4.71V b H m =?=?= 11 4.712094.28G V KN γ=?=?= ()G1111 1.09Z H tg b m α=+=/2

21110.50.980.190.093V b h m =??=??=/2 221 1.86G V KN γ=?=

G20.6510.6510.980.64Z b m =?=?=

1.5.2抗滑稳定性验算

00α水平基地(=),取挡土墙宽B=2m ,验算公式: Q10Q1x (0.9)0.9tan 0y G E G E γμαγ++->

即:()0.9220 1.4 2.490.5 1.471.16 1.120?+??-?=>

路基路面课程设计

所以抗滑稳定性满足。 1.5.3抗倾覆稳定性验算

验算公式:()G Q1y x x y 0.90GZ E Z E Z γ+->

()0.9220 1.311 1.4 2.49 2.41971.16 1.677166.00??+??-?=>

其中,/2tan /210.25 2.5/2 1.311G Z B H α=+?=+?=

t a n 21.6770.252.

x y Z B Z m α=+=+?= 所以倾覆稳定性满足。

1.6基地应力和合力偏心矩验算

为了保证挡土墙基底应力不超过地基承载力,应进行基底应力验算;同时,为了避免挡土墙不均匀沉陷,控制作用于挡土墙基底的合力偏心距。 1.6.1基础地面压应力和偏心距 1)轴心荷载作用时:

1N p A

=

11010

()c o s s i n G Q y Q x N G E W E γγαγα=+-+ (220 1.2 1.4 2.49)c o s 00KN =?+?+=

所以1

N p A

=

=267.5÷(2×1)=133.7kPa <[σ]=480kPa 故基础地面压应力满足要求。 合力偏心距 2)偏心荷载作用时

作用于基底的合力偏心距2

N B

e Z =-

2201.3112.492.41971.161.677

2202.49

g y y

x x Y

N y

G Z E Z E Z M M

Z N

G E +--?+?-?=

=

=

++∑∑∑|||||2/2

0.79|0.2130.333

26

N B

B

e Z =-=-=<=

则:max 1min

0219.26267.560.213(1)(1)[]48048.222MPa N e P

MPa MPa A b σ??=+=±=<=??

故偏心距与基础地面压应力均满足要求。

1.6.2地基承载力验算

1)轴心荷载作用时,P =133.7<480=0σ

2)当偏心荷载作用时, max 219.24801.2576P =

1.7 墙身截面强度计算

1.7.1强度计算

要求:0/d k k k N AR γαγ≤

其中:8

020*******k e B e B α??- ?

??=??+ ?

??

=0.569,为轴向力偏心影响系数,按每延米长计算; 0011()d G G Q Q Qi ci Qi N N N N γγγγγψ=++∑ =0.95×[1.2×220+1.4×2.49]=254.1kN

k k

k

a AR γ=0.69×2×610÷2.31=364.4KN

所以 j N <

k k

k

a AR γ,故强度满足要求。

1.7.2稳定计算

要求:0/d k k k k N AR γψαγ≤ 其中: k ψ=

2

01

[1(3)][116(/)

s s s e B αββ+-+ 21

0.977

10.0025(53)[116(0.213/2)]

=

=+??-+ 0d N γ≤

k k k

k

a AR ψγ=0.977×0.569×2×610=293.57KN ,故稳定性满足要求。 1.7.3正截面直接受剪验算

要求:j Q ≤

j j

k

A R γ1m f N +

其中j Q =x E =71.16KN ,j j

k

A R γ1m f N +=2×110÷2.31+0.42×207.58=207.59kN

即j Q <

j j

k

A R γ1m f N +,抗剪满足要求。

路基路面课程设计

由上述可得K10+000截面的挡土墙符合要求,挡土墙最终截面按照拟定设计。

1.8设计图纸

1.8.1典型断面、立面布置图、平面布置图

典型断面如图1.2所示,立面布置图1.3所示,平面布置图1.4所示。

每间隔10米设置变形缝一道,缝内用沥青麻絮嵌塞;泄水孔尺寸10×10cm,2--3米布置一个,泄水孔应高出地面不小于30厘米;墙背均应设置50厘米砂砾透水层,并做土工布封层。

图1. 2典型断面图

第2章沥青路面设计

2.1基本设计资料

某地公路自然区划IV区拟建一级公路,采用沥青路面结构,设计年限为15年,土基为粉质土,确定土基的稠度为1.10,回弹模量取36MPa,路基干湿状态为中湿状态, 有关资料如下:

(1)公路技术等级为一级,为双向四车道,车道系数0.5

η=。

(2)交通组成如表1.1(示例)所示,交通量年增长率:前五(十)年:γ= 8%;中间五(十)年:γ= 7%;后五(十)年:γ= 6%。设15年内的平均交通量年增长率

为__

γ,则__15555

(1)(18%)(17%)(16%)

γ

+=+?+?+,求得

__

7%

γ=。

表2. 1交通组成及交通量表

2.2轴载分析

我国沥青路面设计以双轮组单轴载100kN为标准轴载,表示为BZZ-100。标准轴载的计算参数按表2.2确定。

表2. 2标准轴载计算参数

2.2.2以设计弯沉值设计指标及沥青基层层底拉应力验算

当以设计弯沉值设计指标及沥青基层层底拉应力验算时,凡前、后轴轴载大于25kN

路基路面课程设计

的各级轴载i P 的作用次数i n 均换算成标准轴载P 的当量作用次数N ,计算过程见表2.3。

4.35121(

)K

i

i i p N C C n p

==∑

式中:N — 以设计弯沉值和沥青层层底拉应力为指标时的标准轴载的当量次数; i n — 被换算车型的各级轴载换算次数(次/日); P — 标准轴载(kN );

i P — 各种被换算车型的轴载(kN ); C 1— 轴数系数;

C2— 轮组系数,单轮组为6.4,双轮组为1.0,四轴组为0.38。

当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,双轴或多轴的轴数系数按下面公式计算:()11 1.21C m =+-,式中:m —轴数。

表2. 3轴载换算结果

则其设计年限内一个车道上的累计量轴次e N :

1[(1)1]365

t e N N γηγ

+-?=

式中,e N — 设计年限内一个车道的累计当量次数;

t — 设计年限,由材料知,t=15年;

1N — 设计端竣工后一年双向日平均当量轴次;

γ— 设计年限内的交通量平均增长率,由材料知,γ=0.07 η— 车道系数,由材料知η=0.5。

则: 15

71[1]365

[1]365

(1)(10.07)4357.670.4 2.0100.07

t

e N N γηγ

-?-?++=

?=??=?次。

2.2.3以半刚性基层层底拉应力的累计当量轴次

验算半刚性基层层底拉应力的累计当量轴次时,凡轴载大于50KN 的各级轴载i P 的作用次数i n 均按下式换算成标准轴载P 的当量作用次数'N ,计算过程见表2.4。

'

''

8121()K

i

i i p N C C n p

==∑

式中:'N — 以设计弯沉值和沥青层层底拉应力为指标时的标准轴载的当量次数;

i n — 被换算车型的各级轴载换算次数(次/日); P — 标准轴载(KN );

i P — 各种被换算车型的轴载(KN );

'1C —轮组系数,双轮组为1.0,单轮组为18.5,四轮组为0.09。

'

2C —轴数系数;

表2. 4轴载换算结果

路基路面课程设计

年限内一个车道上的累计量轴次e N 为:

15

'

4[1]365

[1]365

(1)(10.07)13198.630.56053100.07

t

e N N γηγ

-?-?++=

?=??=?次。

2.3结构组合与材料选取

根据《公路沥青路面设计规范》,考虑公路沿途有砂石、碎石、石灰、粉煤灰供应,路面结构层如下:面层采用三层式沥青混凝土(200mm ),基层采用水泥稳定碎石(厚度待定),底层采用二灰土(300mm ),其中表层采用细粒式密级配沥青混凝(50mm ),中面层采用中粒式密级配沥青混凝土(70mm ),下面层采用粗粒式密级配沥青混凝土(80mm )。

2.4压模量和劈裂强度

土基回弹模量的确定可根据查表法查得。各结构层材料的抗压模量及劈裂强度已 参照规范给出的推荐值确定,见表2.5。

表2. 5结构组合参数、、

2.5 设计指标的确定

2.5.1设计弯沉值d l

公路为一级,则公路等级系数c A 取1.0;面层是沥青混凝土,则面层类型的系数s

A 取1.0;路面结构为半刚性基层沥青路面,则路面结构类型系数b A 取1.0。

0.2600d e c s b l N A A A -=

式中: d l — 设计弯沉值

e N — 设计年限内的累计当量年标准轴载作用次数 c A — 公路等级系数,一级公路为1.0

s A — 面层类型系数,沥青混凝土面层为1.0 b A — 基层类型系数,半刚性基层为1.0

所以,0.2

0.27600600 1.0 1.0 1.020.8(0.01)(2.0)10c s b d e l N A A A mm --==????=?

2.5.2各层材料按容许层底拉应力R σ

按下列公式计算:sp

R s

k σσ=

式中 : R σ— 路面结构材料的极限抗拉强度(Mpa );

sp σ— 路面结构材料的容许拉应力,即该材料能承受设计年限e N 次加载的疲

劳弯拉应力(Mpa );

s k — 抗拉强度结构系数;

对沥青混凝土面层的抗拉强度结构系数:0.220.09/ 5.21Ks Ac Ne ==; 对无机结合料稳定集料类的抗拉强度结构系数:0.110.35/ 2.66Ks Ac Ne ==; 对无机结合料稳定细土类的抗拉强度结构系数:0.110.45/ 3.43Ks Ac Ne ==

表2. 6结构层容许弯拉应力

材料名称 sp σ(Mpa )

s k

R σ(Mpa )

细粒沥青混凝土 1.4 5.21 0.27 中粒沥青混凝土 1.0 5.21 0.19 粗粒沥青混凝土 0.8 5.21 0.15 水泥稳定碎石 0.5 2.51 0.20 二灰土

0.25

3.23

0.08

2.6 路面结构层厚度的计算

以水泥稳定碎石为设计层,用HPDS 计算得其厚度为16.5cm ,取17cm 。其具体计算结果如下:

假设水泥稳定碎石H (4)=15cm ,此时实际弯沉值LS=21.6(0.01mm )>20.6(0.01

mm ),不满足弯沉值要求;H( 4 )= 20 cm 时, 实际弯沉值LS= 19 (0.01mm) )<20.6(0.01 mm ),满足弯沉值要求;此外,H( 4 )= 20 cm 时,各层均满足层底弯拉应力要求。

综上,取水泥稳定碎石厚度为17cm 。具体计算结果见附录A 。

路基路面课程设计

2.7 防冻层厚度检验

根据规范知:在季节性冰冻地区的中湿、潮湿路段,路面设计应进行防冻厚度的检验,如小于规范定的最小防冻厚度时,应增设或加垫层使路面总厚度达到要求。路面结构层总厚度h=5+7+8+17+30=67cm>60cm(最大冰冻深度60cm),满足防冻层厚度检验。

2.8沥青路面结构图

沥青路面结构图见图2.1。

图2. 1沥青路面结构图

第3章 水泥混凝土路面设计

此进行最常见的普通水泥混凝土路面设计。

3.1 交通量分析

3.1.1标准轴载与轴载换算

我国公路水泥混凝土路面设计规范以汽车轴重为100kN 的单轴荷载作为设计标准轴载,表示为BZZ —100。凡前、后轴载大于40KN (单轴)的轴数均应换算成标准轴数,

换算公式为:161

()100n

i s i i i p

N N α==∑

式中: s N — 100KN 的单轴—双轮组标准轴数的通行次数; i P — 各类轴—轮型;级轴载的总重(KN ); n — 轴型和轴载级位数;

i N —各类轴—轮型i 级轴载的通行次数; i α—轴—轮型系数。

表3. 1轴载换算结果

路基路面课程设计

则设计年限内设计车道的标准轴载累计作用次数:[(1)1]365t s e N N γη

γ

+-??=

式中: e N — 标准轴载累计当量作用次数; t — 设计基准年限,取t=30年;

γ— 交通量年平均增长率,由材料知,γ =0.07;

η— 临界荷位处的车辆轮迹横向分布系数,如下表3.2,此处取η=0.20。

表3. 2混凝土路面临界荷位车辆轮迹横向分布系数

所以,4[(1)1]365551.0110t s e N N γη

γ

+-??=

=?次。

其中,γ计算过程如下:30101010(1)(18%)(17%)(16%)γ+=+?+?+,求得7%γ=。

3.2 初拟路面结构

因为交通量100×104<551.01×104<2000×104次,故交通属于重交通。由以上可知相应于安全等级为二级的变异水平等级为低级,根据一级公路、重交通等级和低级变异水平等级,查规范知:初拟普通混凝土面层厚为h=220mm ;考虑到Ⅳ区为东南湿热区,雨量较多,故基层选用沥青稳定碎石排水基层,厚为1100mm h =;垫层为2h =200mm 的水泥稳定粒料。普通混凝土板的平面尺寸为宽3.75m ;长为5m 。

3.3 确定材料参数

取普通混凝土面层的弯拉强度标准值为 5.0MPa r f =,相应弯拉弹性模量标准值为

31GPa c E =;路基回弹模量为36Mpa ;沥青稳定碎石基层回弹模量去1600MPa E =;水

泥稳定粒料垫层回弹模量取21300MPa E =。

基层顶面当量的回弹模量值计算如下:

22112222

12x h E h E E h h +=+=2222

13000.26000.111600.20.1MPa ?+?=+ 33211122121122

()1()124x h E h E h h D E h E h -++=++

332113000.26000.1(0.20.1)11

()12413000.26000.1

-?+?+=

++??

2.01MN m =

1312()x x X D h E =1

312 2.01()1160

?==0.275m

0.4506.22[1 1.51(

)]x E a E -=-0.45

11606.22[1 1.51()]40

-=?-?=4.16 0.5501 1.44(

)x E b E -=-0.55

11601 1.44()0.7740

-=-= 1300()b

x t x

E E ah E E =10.77

311604.160.27540()18840

MPa =???=

普通混凝土面层的相对刚度半径为:

1

13

3

310000.5370.5370.250.648171c t E h m E γ????

==??=

? ?????

3.4 计算荷载疲劳应力

根据一级公路、重交通,由《路基路面工程》查得初拟普通混凝土面层厚度为0.25m 。由下列公式求得:

γ=,0.620.077ps h σγ-=,p f r c ps k k k σσ= ,0.057f e k N = 式中 :γ— 混凝土板的相对刚度半径(m );

H — 混凝土板的厚度(m );

c E — 水泥混凝土的弯沉弹性模量(Mpa );

pr

σ

— 标准轴载P s 在临界荷位处产生的荷载疲劳应力(Mpa );

r k — 考虑接缝传荷能力的应力折减系数,纵缝为设杆拉的平缝,r k =0.87 ~

0.92,纵缝为不设杆拉的平缝或自由边界r k =1.0,纵缝为设杆拉的企口缝,

r k =0.76 ~0.84;

c k — 考虑偏载和动载因素对路面疲劳损坏影响综合系数,按公路等级查下表

3.3,此处取c k =1.25;

ps σ— 标准轴载s P 在四边自由板的临界荷载处产生的荷载应力(MPa )。

表3. 3综合系数s k

则:0.077ps h ==0.0770 0.6480.22 1.226MPa ??= , 2.42f e k N ==

荷载疲劳应力为: 2.420.87 1.25 1.226 3.226p f r c ps k k k MPa σσ==???=。

路基路面课程设计

3.5 计算温度疲劳应力

由《路基路面工程》知,Ⅳ区最大温度梯度取88﹙℃/m ﹚。板长5m ,已知混凝土板厚0.25m ,0.72x B =,/5/0.6487.72L r ==。则最大温度梯度时混凝土板的温度翘曲应力:2

c c g x

tm E hT B ασ=

式中: c α— 混凝土的温度线膨胀系数,取5010/c C α-=;

g T — 最大温度梯度,T g =88°c/m ;

x B — 综合温度翘区应力和内应力的温度应力系数; tm σ — 最大温度梯度时土板的温度翘取应力(Mpa )。

2

c c g x tm E hT B ασ==51.010310000.22880.72 2.162

MPa -?????=

温度疲劳系数 [(

)]

c

tm

r

t tm

r

f k a b f σσ=-,式中a ,b 和c 为回归系数,按所在地区公路自然区划查下表 3.4。

表3. 4回归系数a ,b 和c

取a=0.841,b=0.058,c=1.323,则:

[(

)]c tm

r

t tm

r

f k a b f σσ=

-=

1.323

5 2.16[0.841()0.058]0.5072.165

??-= 温度疲劳应力:0.489 2.15 1.10t t tm k MPa σσ==?=

因为一级公路的安全等级为二级,相应于二级的安全等级的变异水平等级为低级,目标可靠度为90﹪。再根据查得的目标可靠度和变异水平等级,确定可靠度系数

1.10γγ=。()()1.10 3.226 1.1 4.75 5.0pr tr r MPa f MPa γγσσ+=?+=<=,故满足要求。

3.6防冻厚度检验和接缝设计

3.6.1防冻厚度检验

由《公路水泥混凝土路面设计规范》知,路面防冻厚度为0.5m ,而设计路面总厚度为0.52m ,由于0.5<0.52,故满足设计要求。

3.6.2接缝设计

为避免由温度产生的应力破坏,所以,在混凝土板中设置横缝与纵缝,这段路为重交通,缝中设拉杆,拉杆长0.5m,直径22mm,每隔40cm设置一个。

取a=0.841,b=0.058,c=1.323。

1)横向胀缝

缝隙宽20mm,缝隙上部5cm深度内浇填缝料拉杆的半段固定在混凝土内,另一半涂以沥青,套上长约10cm的塑料套筒,筒底与杆端之间留有3cm空隙,用木屑与弹性材料填充。

2)横向缩缝

缩缝采用假缝,缝隙宽5mm,深度为5cm.

3)施工缝

施工缝采用平头缝或企口缝的构造形式,缝上深3cm,宽为5mm的沟槽,内浇填缝料。

4)横缝的布置

缩缝间距一般为5m,混凝土路面设置胀缝。

5)纵缝的设置

在平行于混凝土路面行车方向设置纵缝,缝间距3.75cm,设置为假缝带拉杆形式,缝的上部留有5cm的缝隙,内浇注填缝料,缝与横缝一般做成垂直正交,使混凝土具有90°的角隅。

3.7混凝土路面结构结构图

混凝土路面结构图见图3.1。

图3. 1混凝土路面结构图

路基路面课程设计

参考文献

[1]邓学钧:《路基路面工程》(第二版).人民交通出版社,2005

[2]中华人民共和国行业标准:《公路沥青路面设计规范》(JTG D50-2006).北京:

人民交通出版社2006

[3]中华人民共和国行业标准:《公路水泥混凝土路面设计规范》(JTG D40-2002).

北京:人民交通出版社2002

[4] 中华人民共和国行业标准:《公路工程技术标准》(JTGB01—2003)

[5]《公路路基设计手册》

路基路面工程课程设计计算书

路基路面工程课程设计计算书 (第一组) 班级: 姓名: 学号:

一、沥青路面设计 1.轴载换算 (1)以弯沉值及沥青层的层底弯拉应力为设计指标时 表一 车型 )(KN P i 1C 2C i n (次) 35.421)(P P n C C i i 东风EQ140 后轴 69.20 1 1 300 60.48 黄河JN150 前轴 49.00 1 6.4 200 57.49 后轴 101.60 1 1 200 214.30 黄河JN162 前轴 59.50 1 6.4 50 33.44 后轴 115.00 1 1 50 91.83 交通141 前轴 25.55 1 6.4 250 4.23 后轴 55.10 1 1 250 18.70 长征CZ361 前轴 47.60 1 6.4 70 17.74 后轴 90.70 2.2 1 70 100.72 延安SX161 前轴 54.64 1 6.4 60 27.70 后轴 91.20 2.2 1 60 88.42 北京BJ130 后轴 27.20 1 1 50 0.17 跃进NJ130 后轴 38.30 1 1 60 0.92 注:轴载小于25KN 的轴载作用不计 ∑===k i i i P P n C C N 1 35 .42114.716)( (2)以半刚性材料结构层的层底拉应力为设计指标时 表二 车型 )(KN P i '1C '2C i n (次) 8' 2'1)( P P n C C i i 东风EQ140 后轴 69.20 1 1 300 15.78 黄河JN150 后轴 101.60 1 1 200 227.08 黄河JN162 前轴 59.5 1 18.5 50 14.53 后轴 115.00 1 1 50 91.83 交通141 后轴 55.10 1 1 250 2.12 长征CZ361 后轴 90.70 3 1 70 96.18 延安SX161 前轴 54.64 1 18.5 60 8.82 后轴 91.20 3 1 60 86.15 注:轴载小于50KN 的轴载作用不计 ∑===k i i i P P n C C N 1 35 .4/ 2'149.542)( 已知设计年限内交通量平均增长率%8=r

路基路面课程设计汇本

路基路面工程-----课程设计 某:赵文杰 学号:09182172 班级:土木91 日期:2012.6.20

一、工程概况 某地区拟新建一级公路,设计年限为15年。夏季近30年连续平均最高温度35℃,冬季最低气温-8℃,土质为红褐色粘性土,近十年冻结指数平均值为250℃?d。 交通年增长率前十年为8%,后5年为6%,路基平均填高2.0m ,地下水距地面1.2m 。交通量如下:小汽车2500辆/日,解放CA15 500辆/日,东风EQ140 500辆/日,黄河JN162 300辆/日。 沿途有碎石、砂石、石灰、粉煤灰、水泥供应。 二、路基路面设计 根据工程概况的特点,以及交通量的要求,新建道路设计为4车道的一级公路,采用沥青路面 1、轴载分析 我国沥青路面设计以双轮组单轴载100kN为标准轴载,表示为BZZ-100。标准轴载的计算参数按表3-1确定。 表3-1 标准轴载计算参数 ﹙1﹚当以设计弯沉值设计指标及沥青基层层底拉应力验算时,凡前、后轴轴载大于25kN的各级轴载 P的作用次数i n均换算成标准 i

轴载P 的当量作用次数N 。 35.4211 )( p p n C C N i i K i ∑== 式中:N — 以设计弯沉值和沥青层层底拉应力为指标时的标准轴载的当量次数; i n — 被换算车型的各级轴载换算次数(次/日); P — 标准轴载(kN ) ; i P — 各种被换算车型的轴载(kN ); C 1— 轮组系数,单轮组为6.4,双轮组为1.0,四轴组为0.38; C2— 轴数系数。 K — 被换算车型的轴载级别。 当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,双轴或多轴的轴数系数按下面公式计算: ()11 1.21C m =+- 式中:m —轴数。 通过hpds 路面结构设计系统计算结果如下: 序号 车 型 名 称 前轴重(kN) 后轴重(kN) 后轴数 后轴轮组数 后轴距(m) 交通量 1 解放CA15 20.97 70.38 1 双轮组 500 2 东风EQ140 23.7 69.2 1 双轮组 500 3 黄河JN162 59.5 115 1 双轮组 300 则其设计年限内一个车道上的累计量轴次e N :

路基路面工程课程设计(+心得)

《路基路面工程》课程设计

沥青路面设计 方案一: (1)轴载换算及设计弯沉值和容许拉应力计算 序号车型名称前轴重(kN) 后轴重(kN) 后轴数后轴轮组数后轴距(m) 交通量 1 三菱T653B 29.3 48 1 双轮组2000 2 日野KB222 50.2 104. 3 1 双轮组1000 3 东风EQ140 23.7 69.2 1 双轮组2000 4 解放CA10B 19.4 60.8 5 1 双轮组1000 5 黄河JN163 58. 6 114 1 双轮组1000 设计年限12 车道系数 1 序号分段时间(年) 交通量年增长率 1 5 6 % 2 4 5 % 3 3 4 % 当以设计弯沉值为指标及沥青层层底拉应力验算时: 路面竣工后第一年日平均当量轴次: 4606 设计年限内一个车道上累计当量轴次: 2.745796E+07 当进行半刚性基层层底拉应力验算时: 路面竣工后第一年日平均当量轴次: 4717 设计年限内一个车道上累计当量轴次: 2.811967E+07 公路等级二级公路 公路等级系数 1.1 面层类型系数 1 基层类型系数 1 路面设计弯沉值: 21.5 (0.01mm) 层位结构层材料名称劈裂强度(MPa) 容许拉应力(MPa) 1 细粒式沥青混凝土 1 .28 2 粗粒式沥青混凝土.8 .21 3 石灰水泥粉煤灰土.8 .3 4 天然砂砾 (2)新建路面结构厚度计算 公路等级: 二级公路 新建路面的层数: 4 标准轴载: BZZ-100 路面设计弯沉值: 21.5 (0.01mm)

路面设计层层位: 4 设计层最小厚度: 10 (cm) 层位结构层材料名称厚度(cm) 抗压模量(MPa) 抗压模量(MPa) 容许应力(MPa) (20℃) (15℃) 1 细粒式沥青混凝土 3 1500 1600 1.2 2 粗粒式沥青混凝土7 1200 1300 .8 3 石灰水泥粉煤灰土25 900 900 .4 4 天然砂砾? 250 250 5 土基32 按设计弯沉值计算设计层厚度: LD= 21.5 (0.01mm) H( 4 )= 80 cm LS= 22.2 (0.01mm) H( 4 )= 85 cm LS= 21.5 (0.01mm) H( 4 )= 85 cm(仅考虑弯沉) 按容许拉应力验算设计层厚度: H( 4 )= 85 cm(第1 层底面拉应力验算满足要求) H( 4 )= 85 cm(第2 层底面拉应力验算满足要求) H( 4 )= 85 cm(第3 层底面拉应力验算满足要求) 路面设计层厚度: H( 4 )= 85 cm(仅考虑弯沉) H( 4 )= 85 cm(同时考虑弯沉和拉应力) 验算路面防冻厚度: 路面最小防冻厚度50 cm 验算结果表明,路面总厚度满足防冻要求. 通过对设计层厚度取整, 最后得到路面结构设计结果如下: 细粒式沥青混凝土 3 cm 粗粒式沥青混凝土7 cm 石灰水泥粉煤灰土25 cm 天然砂砾85 cm 土基 (3)竣工验收弯沉值和层底拉应力计算 公路等级: 二级公路 新建路面的层数: 4 标准轴载: BZZ-100 层位结构层材料名称厚度(cm) 抗压模量(MPa) 抗压模量(MPa) 计算信息 (20℃) (15℃) 1 细粒式沥青混凝土 3 1500 1600 计算应力

路基路面课程设计完整版

《路基路面工程》课程设计 学院:土木工程学院 专业:土木工程 班级:道路二班 姓名:黄叶松 指导教师:但汉成 二〇一五年九月

目录 一、重力式挡土墙设计 第一部分设计任务书 (3) (一)设计内容和要求 (3) (二)设计内容 (3) (三)设计资料 (3) 第二部分设计计算书 1. 车辆换算荷载 (4) 2. 主动土压力计算 (5) 3. 设计挡土墙截面 (9) 4. 绘制挡土墙纵横截面(附图1) (30) 二、沥青路面结构设计 1.设计资料 (12) 2. 轴载分析 (12) 3. 拟定路面结构方案 (16) 4. 各材料层参数 (16) 5. 设计指标确定 (17) 6. 确定设计层厚度 (18) 7. 底层弯拉应力验算 (21) 8. 防冻层厚度验算 (29) 9. 方案可行性判定 (29) 10. 绘制路面结构图 (31)

一、重力式挡土墙 第一部分 设计任务书 (一)设计的目的要求 通过本次设计的基本训练,进一步加深对路基路面工程有关理论知识的理解,掌握重力式挡土墙设计的基本方法与步骤。 将设计任务书、设计说明书及全部设计计算图表编好目录,装订成册。 (二)设计内容 ①车辆荷载换算; ②土压力计算; ③挡土墙截面尺寸设计; ④挡土墙稳定性验算。 (三)设计资料 1.墙身构造 拟采用细粒水泥混凝土砌片石重力式路堤墙(如草图1),墙高H =?m ,墙顶宽1b =?m ,填土高度2.4m ,填土边坡1:1.5,墙背仰斜,1:0.25(α=—14°02′),基底倾斜1:5(0α=—11°18′),墙身等厚,0b =7.0 m 。 2.车辆荷载 车辆荷载等级为公路—Ⅱ级,挡土墙荷载效应组合采用荷载组合Ⅰ、Ⅱ,路基宽度33.5m ,路肩宽度0.75m 。 3.土壤工程地质情况

路基路面课程设计例题

路基路面课程设计例题

4.2.1 重力式挡土墙的设计 (1)设计资料: ① 车辆荷载,计算荷载为公路-Ⅱ级。 ② 填土内摩擦角:42°,填土容重:17.8kN/m 3,地基土容重:17.7kN/m 3,基底摩擦系数:0.43,地基容许承载力:[σ]=810kPa 。 ③ 墙身材料采用5号砂浆砌30号片石,砌体a γ=22kN/m 3,砌体容许压应力为[]600=a σkPa ,容许剪应力[τ]=100kPa ,容许拉应力[wl σ]=60 kPa 。 (2)挡土墙平面、立面布置 图4.1 挡土墙横断面布置及墙型示意图(尺寸单 位:m ) 路段为填方路段时,为保证路堤边坡稳定,少占地拆迁,应当设置路堤挡土墙,拟采用重力式挡土墙。 (3)挡土墙横断面布置,拟定断面尺寸 具体布置如上图所示。 (4)主动土压力计算 ①车辆荷载换算 当H ≤2m 时,q=20.0kPa;当H ≥10m 时,q=10.0kPa 此处挡土墙的高度H=10m ,故q=10.0 kPa 换算均布土层厚度:010 0.6m 17.8 q h γ = = = ②主动土压力计算(假设破裂面交于荷载中部) 破裂角θ:

由14α=-?,42φ=?,42212 2 φ δ? = = =? 得:42142149ψφαδ=++=?-?+?=? 0011 (2)()(31020.6)(310)92.322A a H h a H =+++=?++??+= 00011 ()(22)tan 2211 3 4.5(4.5 1.5)0.610(102320.6)tan(14)2231.8B ab b d h H H a h α= ++-++=??++?-??+?+?-?= 00tan tan (cot tan )tan 31.8tan 49(cot 42tan 49)tan 4992.30.68834.5B A θψφψψθ?? =-+++ ? ???? =-?+?+?+? ??? ==? 验核破裂面位置: 堤顶破裂面至墙踵:()tan (103)tan34.58.93m H a θ+=+?= 荷载内缘至墙踵:()tan 4.510tan14 1.58.49m b H d α+-+=+??+= 荷载外缘至墙踵:()0tan 4.510tan14 1.5715.49m b H d l α+-++=+??++= 由于破裂面至墙踵的距离大于荷载内缘至墙踵的距离并且小于荷载外缘至墙踵的距离抗滑稳定性验算,所以破裂面交于路基荷载中部的假设成立。并且直线形仰斜墙背,且墙背倾角α较小,不会出现第二破裂面。 主动土压力系数K 和K 1 [] cos()cos(34.542) (tan tan )tan 34.5tan(14)sin()sin(34.549) 0.10a K θ?θαθψ+?+?= +=??+-?+?+?= 1tan 4.53tan 34.5 5.57m tan tan tan 34.5tan(14) b a h θθα--?? = ==+?+-? 2 1.5 3.43m tan tan tan 3 4.5tan(14) d h θα= ==+?+-? 31210 5.57 3.431m h H h h =--=--=

路基路面课程设计报告

嘉应学院土木工程学院 《路基路面工程》 课程设计 姓名: 专业: 学号: 日期: 指导教师:

一、重力式挡土墙设计 1.设计参数 (1)浆砌片石重力式仰斜路堤墙,墙顶填土边坡1:1.5,墙身纵向分段长度为10m ;路基宽度26m ,路肩宽度3.0m ; (2)基底倾斜角0α:tan 0α=0.190,取汽车荷载边缘距路肩边缘d =0.5m ; (3)设计车辆荷载标准值按公路-I 级汽车荷载采用,即相当于汽车?超20级、挂车?120(验算荷载); (4)墙后填料砂性土容重γ=183/m kN ,填料与墙背的外摩擦角 τ=o 5.18;粘性土地基与浆砌片石基底的摩擦系数μ=0.30,地基容许 承载力[0σ]=250a kP ; (5)墙身采用2.5号砂浆砌25号片石,圬工容重k γ=223/m kN ,容许压应力a a kP 600][=σ,容许剪应力a j kP 100][][==στ,容许拉应力 a L kP 60][=σ (6)墙后砂性土填料的内摩擦角o 37=φ,墙面与墙背平行,墙背仰斜坡度1:0.27(=0115'o ),墙高H=5m ,墙顶填土高a =4m 。 2.破裂棱体位置确定 (1)破裂角(θ)的计算 假设破裂面交于荷载范围内,则有: 02403703180115'=+'+'-=++=o o o o a φτψ 因为o 90<ω

a h H H a h H H h a h a H H h d b ab B tan )2(2 1 tan )2(2 1 )00(0tan )22(21)(21000000+-=+-++=++-++= )2(2 1 ))(2(21000h H H H a h H a A +=+++= 根据路堤挡土墙破裂面交于荷载内部时破裂角的计算公式: 711.0)tan )( tan (cot tan tan 0 =+++-=ψψφψθA B 5235'=o θ (2)验算破裂面是否交于荷载范围内 破裂砌体长度:m a H L 21..2)27.0711.0(5)tan (tan 0=-?=+=θ 车辆荷载分布宽度:m d m N Nb L 5.36.03.18.12)1(=++?=+-+= 所以L L <0,即破裂面交于荷载范围内,符合设计。 3.荷载当量土柱高度计算 墙高5m ,按墙高确定附加荷载强度进行计算。按照线性内插法,计算附加荷载强度:m q h 78.018 14 0== = γ 4.土压力计算 4.16)50)(78.0250(21 ))(2(2100=+?++=+++= H a h H a A a h a H H h d b ab B tan )22(2 1 )(21000++-++= 43.4)0115tan()78.0205(521 00='-??++??-+=o 根据路堤挡土墙破裂面交于荷载内部压力计算公式

高速公路路基路面课程设计

目录 一、设计题目: (2) 二、设计资料: (3) 1.设计任务书要求 (3) 2.气象资料 (3) 3.地质资料与筑路材料 (3) 4.交通资料 (4) 5.设计标准 (5) 三、路基设计 (5) 1.填土高度 (5) 2.横断面设计 (6) 3.一般路堤设计 (6) 4.陡坡路堤 (7) 5.路基压实标准 (7) 6.公路用地宽度 (8) 7.路基填料 (8) 四、路基路面排水设计 (9) 1.路基排水设计 (9) 2.路面排水设计 (10)

3.中央分隔带排水设计 (10) 五、沥青路面设计分析与计算 (11) 1.轴载分析 (12) 2.方案一 (13) 2.1当E0=30Mp时 (13) 2.2、当E0=60MPa 时 (18) 3.第二方案: (22) 3.1当E0=30MPa时 (22) 3.2当E0=60MPa时 (26) 六、水泥混凝土路面结构分析与计算 (30) 1.当EO=30MPa时 (31) 2.当EO=60MPa时 (35) 七、方案比较 (39) 八、参考书目 (41) 九、附图 (41) 一、设计题目: 某高速公路的路面结构计算与路基设计

二、设计资料: 1、设计任务书要求 河南某公路设计等级为高速公路,设计基准年为2010年,设计使用年限为15年,拟比选采用沥青路面结构或水泥混凝土路面,需进行路面结构设计。 2、气象资料 该公路处于Ⅱ5区,属于温暖带大陆性季风气候,气候温和,四季分明。年气温平均在14℃~14.5℃,一月份气温最低,月平均气温为-0.2℃~0.4℃,七月份气温27℃左右,历史最高气温为40.5℃,历史最低气温为-17℃,年平均降雨量为525.4毫米~658.4毫米,雨水多集中在6~9月份,约占全年降雨量50%以上。平均初霜日在11月上旬,终霜日在次年3月中下旬,年均无霜日为220天~266天。地面最大冻土深度位20厘米,夏季多东南风,冬季多西北风,年平均风速在3.0米/秒左右。 3、地质资料与筑路材料 路线位于平原微丘区,调查及勘探中发现,该地区属第四系上更新统(Q3al+pl),岩性为黄土状粘土,主要分布于低山丘陵区,坡地前和山前冲积、倾斜平原表层,具有大空隙,垂直裂隙发育,厚度变化大,承载能力低,该层具轻微湿陷性。应注意发生不均匀沉陷的可

土木工程路基路面课程设计

路基路面课程设计 目录 一、课程设计任务书 二、水泥路面工程设计 沥青路面设计 三、路基挡土墙设计

路基路面课程设计指导书 1.课程设计的目的 路基路面课程设计是对路基路面工程一个教学环节,通过路基路面课程设计使同学们能更加牢固地掌握本课程的基本理论、基本概念及计算方法,并通过设计环节把本课程相关的知识较完整地结合起来进行初步的应用,培养同学的分析、解决工程实际问题的能力。同时,通过课程设计,使同学对相关《设计规范》有所了解并初步应用。 2. 课程设计的内容 (1)重力式挡土墙设计:挡土墙土压力计算;挡土墙断面尺寸的确定; 挡土墙稳定性验算;挡土墙排水设计;绘制挡土墙平面、立面、断面图。(2)沥青混凝土路面设计:横断面尺寸的确定;路面结构层材料的选择; 路面结构层厚度的拟定及计算;路面结构层厚度的验算;分析各结构 层厚度变化时对层底弯拉应力的影响;绘制路面结构图。要求至少拟定 2个方案进行计算。 (3)水泥混凝土路面设计:横断面尺寸的确定;水泥混凝土路面结构层材料的选择;路面结构层厚度的拟定及层底拉应力的验算;确定水泥混凝土 路面板尺寸及板间连接形式;绘制水泥混凝土纵、横缝平面布置图和 水泥混凝土路面结构组合设计图。 3. 课程设计原始资料

(1)挡土墙设计资料 丹通高速公路(双向4车道)K28+156~ K28+260段拟修建重力式挡土墙,墙体采用浆砌片石,重度为22kN/m3。墙背填土为砂性土,重度为18kN/m3。地基为岩石地基,基底摩擦系数为0.5。结合地形确定挡土墙墙高(H)5m (K28+250),墙后填土高度(a)6m,边坡坡度1:1.5,墙后填土的内摩擦角为Φ=32o,墙背与填土摩擦角δ=Φ/2。 (1)新建水泥混凝土路面设计资料 1)交通量资料:据调查,起始年交通组成及数量见表;公路等级为一级公路,双向4车道;预计交通量增长率前5年为7%,之后5年为为6.5%,最后5年为4%;方向不均匀系数为0.5 2)自然地理条件:公路地处V3区,设计段土质为粘质土,填方路基 高3m,地下水位距路床3.5m。 润交通组成及其他资料 车型分类代表车型数量(辆/天) 小客车桑塔娜2000 2400 中客车江淮AL6600 330 大客车黄海DD680 460 轻型货车北京BJ130 530 中型货车东风EQ140 780 重型货车太脱拉111 900 铰接挂车东风SP9250 180 4.设计参考资料 (1)《公路沥青路面设计规范》 (2)《水泥混凝土路面设计规范》 (3)《公路路基设计规范》

路基路面工程课程设计

一、 二、 三、路基(挡土墙)设计 1.1 设计资料 某新建公路重力式路堤墙设计资料如下。 (1)墙身构造:墙高8m ,墙背仰斜角度)0214(25.0:1' ,墙身分段长度20m ,其余初始拟采用尺寸如图1-1所示。 图1-1 初始拟采用挡土墙尺寸图 (2)土质情况:墙背填土为砂性土,其重度3kN/m 517.=γ,内摩擦角 30=?;填土与墙背间的摩擦角 152/==?δ。地基为整体性较好的石灰岩,其容许承载力 kPa 485][=σ,基底摩擦系数5.0=f 。

(3)墙身材料:采用5号砂浆砌30号片石,砌体重度3a m /kN 23=γ,砌体容许压应力kPa 610][a =σ,容许剪应力kPa 66][a =τ,容许压应力kPa 610][al =σ。 1.2 劈裂棱体位置确定 1.2.1 荷载当量土柱高度的计算 墙高6m ,按墙高缺点附加荷载强度进行计算。按照线形内插法,计算附加荷载强度:2kN/m 15=q ,则: m 8605 1715 0..q h == = γ 1.2.2 破裂角()θ的计算 假设破裂面交于荷载范围内,则有: ' '583030150214 =++-=++=?δαψ 因为 90<ω,则有 ()()H a h H a A +++= 0022 1 ()()65086026502 1 +?++=... 72 26.= ()()α tan 222 121000h a H H h d b ab B ++-++= ()()'.......5830tan 8602502662 1 86025251515021 ??+?+?+?++??= 30 19.= 根据路堤挡土墙破裂面交于荷载内部时破裂角的计算公式:

东南大学路基路面课程设计报告

沥青路面厚度设计 计 算 书 学号: 姓名: 班级: 成绩: 日期:2014年9月

沥青路面厚度设计 A、基本情况 某地拟新建一条二级公路省道,路线总长21km,双向四车道,路面宽度为16m,该地属公路自然区划IV区,路基为低液限粘土土质,填方路基最大高度2.1m,路床顶距地下水位平均高度1.4m,属中湿状态,根据室内试验法确定土基回弹模量50MPa,年降雨量1200mm,最高气温39℃,最低气温-10℃。拟采用沥青混凝土路面,根据规范规定,查表得其设计使用期12年。 B、交通荷载情况 根据区域交通分析预测近期交通组成和交通量如表1所示,交通量年平均增长率为4%。 表1 近期交通组成与交通量 要求:试根据交通荷载等级,选择相应的基层(和底基层)材料进行组合设计,并根据进行沥青路面厚度设计计算,编制计算书(计算书格式及编目示例附后)。

一、基本设计条件与参数 依题意得,基本设计条件如下:新建二级公路,双向四车道,路面宽度16m ,公路自然区划IV 区,低液限粘土土质,填方路基最大高度2.1m ,路床顶距地下水位平均高度1.4m ,中湿状态,年降雨量1200mm ,最高气温39℃,最低气温-10℃。 基本参数如下:土基回弹模量50MPa ,设计使用期12年,交通量年平均增长率为4%。 二、交通量分析 本设计的累计当量轴次的计算以双轮组单轴载100kN 为标准轴载,以BZZ-100表示。 1. 当设计弯沉值为指标时,当量轴次计算公式及计算结果如下: 4.35 121 k i i i P N C C n P =?? = ? ??∑ 注:轴载小于25kN 的轴载作用不计 查《规范》得该公路车道系数为0.4,累计当量轴次计算如下: ()[]()[] (次)6 12 10835.84.0418.402704 .0365104.0136511?=???-+=?-+= ηN r r N t e 属于中等交通。 2. 以半刚性基层层底拉应力为指标计算当量轴次

路基路面课程设计计算书样本

土木建筑工程学院 土木工程专业( 道路桥梁方向) 《路基路面工程》课程设计计算书 姓名: 年级: 班级: 学号: [题目]: 重力式挡土墙设计

[设计资料]: 1、工程概况 拟建南宁机场高速公路( 城市道路段) K2+770右侧有一清朝房子, 由于该路段填土较高, 若按1: 1.5的边坡坡率放坡, 则路基坡脚侵入房子范围。现为了保留房子, 要求在该路段的恰当位置设挡土墙。为使房子周围保持车辆交通, 要求墙脚边距离房子的距离大约为4m。提示: 路肩350cm内不布置车辆, 慢车道650cm开始布置车辆荷载( 550kN) 。 2、路中线与房子的平面位置关系、路线纵断面、路基标准横断面如下图: 房子 道路中线 图1 道路和房子平面示意图

路基标准横断面(单位:cm ) 图2 路基标准横断面图( 半幅, 单位:cm) K 2+400112.85K 2 + 9 117.851.0%-0.75% R=13500T=?E=?道路纵面图 图3 道路纵断面图

106.50 3.7m 7.8m 粘土Q 承载力标准值f=187kPa 圆砾 承载力标准值f=456kPa 中风化泥岩 地质剖面图 1 : . 3 1:5 墙身剖面图(单位:cm) 图4 地质剖面图 3、房子附近地质情况见地质剖面图, 房子附近地面较大范围( 包括路基范围) 内为平地。 4、挡土墙墙身、基础材料: M7.5浆砌片石, M10砂浆抹墙顶面( 2cm) , M10砂浆勾外墙凸缝。砌体重度γ1=22kN/m3。墙后填土为天然三合土重度γ2=20kN/m3, 换算内摩擦角φ=35°。M10浆砌块石与天然三合土的摩擦角为20°。砌体极限抗压强度为700kPa, 弯曲抗拉极限强度为70kPa, 砌体截面的抗剪极限强度为150kPa。 计算过程 1、道路设计标高计算 由 1 i=1.0%, 2i=-0.75%, R=13500

路基路面工程授课教案

《路基路面工程》课程授课教案 课程编号:B03058 课程名称:路基路面工程/ 课程总学时/学分:64/4 (其中理论64学时,实验0学时,课程设计2周) 适用专业:土木工程(道路与桥梁工程方向) 一、课程地位 《路基路面工程》是土木工程专业路桥方向的一门必修的专业课。课程的主要特点是理论与实践并重,工程性较强,既要认真学习基本理论知识,又要注重工程实践。课程的目的是通过学习,使学生掌握路基路面工程的基本理论和基本知识,具有路基路面设计的基本能力。课程的任务,在于通过教学,培养学生灵活运用路基路面工程基本理论和基本知识,分析和解决路基路面工程实际问题的能力。 二、教材及主要参考资料 [1] 程培风等,路基路面工程,北京,科学出版社,2005年 [2] 万德臣,路基路面工程,北京,高等教育出版社,2005年 [3] 邓学均,路基路面工程,北京,人民交通出版社,2003年 [4] D30-2004,公路路基设计规范,北京,人民交通出版社,2004年 [5] 014-1997,公路沥青路面设计规范,北京,人民交通出版社,1997年 [6] D40-2002,公路水泥砼路面设计规范,北京,人民交通出版社,2002年 三、课时分配

四、考核方式与成绩核定办法 1. 考核方式:笔试 2. 成绩核定办法:期终考试占60﹪;平时成绩占20﹪;课程设计占20﹪; 五、授课方案 第一章绪论 1. 教学内容: (1)道路工程发展概况 介绍我国在公路自然区划、土的工程分类、路基强度与稳定性、高路堤修筑技术与支挡结构、软土地基稳定技术、岩石路基爆破技术、沥青路面结构、水泥混凝土 路面结构、柔性路面设计结构与方法、刚性路面设计结构与方法、半刚性路面结构、路面使用性能与表面特性及路面养护管理等方面取得的成绩。 (2)路基路面工程的特点 介绍路基路面工程的承载能力、稳定性、耐久性、表面平整度、表面抗滑性能等特点。 (3)影响路基路面稳定的因素

路基路面课程设计

路基路面课程设计

目录 1章重力式挡土墙设计 (1) 1.1重力式路堤墙设计资料 (1) 1.2破裂棱体位置确定 (1) 1. 3荷载当量土柱高度计算 (2) 1.4土压力计算 (2) 1.6基地应力和合力偏心矩验算 (4) 1.7 墙身截面强度计算 (5) 1.8设计图纸 (6) 第2章沥青路面设计 (7) 2.1基本设计资料 (7) 2.2轴载分析 (7) 2.3结构组合与材料选取 (10) 2.4压模量和劈裂强度 (10) 2.5 设计指标的确定 (10) 2.6 路面结构层厚度的计算 (11) 2.7 防冻层厚度检验 (12) 2.8沥青路面结构图 (12) 第3章水泥混凝土路面设计 (13) 3.1 交通量分析 (13) 3.2 初拟路面结构 (14) 3.3 确定材料参数 (14) 3.4 计算荷载疲劳应力 (15) 3.5 计算温度疲劳应力 (16) 3.6防冻厚度检验和接缝设计 (16) 3.7混凝土路面结构结构图 (17) 参考文献 (18) 附录A HPDS计算沥青混凝土路面结果 (19)

1章 重力式挡土墙设计 1.1重力式路堤墙设计资料 1.1.1墙身构造 墙高5m ,墙背仰斜坡度:1:0.25(=14°),墙身分段长度20m ,其余初始拟采用尺寸如图1.1示; 1.1.2土质情况 墙背填土容重γ=18kN/m 3,内摩擦角032φ=;填土与墙背间的摩擦角δ=16°;地基为石灰岩地基,容许承载力[σ]=480kPa ,基地摩擦系数0.5μ=; 1.1.3墙身材料: 5号砂浆,30号片石,砌体容重γ=22kN/m3, 砌体容许压应力[σ]=610kPa ,容许剪应力[τ]=110kPa ,容许压应力[]65l MPa σ=。 图1. 1初始拟采用挡土墙尺寸图 1.2破裂棱体位置确定 1.2.1破裂角(θ)的计算 假设破裂面交于荷载范围内,则有: 14163234ψαδφ++-++ ===,90ω< 因为

路基路面工程课程设计论文

路基路面工程课程设计 学院: 指导老师: 班级: 学号: 姓名:

课程设计任务书

目录 目录 1 基本设计资料 (1) 2 沥青路面设计 (1) 2.1轴载分析 (1) 2.2结构组合与材料选取 (4) 2.3 各层材料的抗压模量和劈裂强度 (4) 2.4 设计指标的确定 (5) 2.5路面结构层厚度的计算 (6) 2.6高等级公路沥青混凝土面层和半刚性基层、底基层层底拉应力验算 (7) 2.7 抗剪性检验 (8) 3 水泥混凝土路面设计 (9) 3.1交通量分析 (10) 3.2初拟路面结构 (11) 3.3确定材料参数 (11) 3.4计算荷载疲劳应力 (12) 3.5 计算温度疲劳应力 (12) 参考文献 (14)

1 基本设计资料 拟设计道路路线位于微丘区,公路自然划分为II1区。地震烈度为六级。 设计标高243.50m,地下水位1.5m。平均稠度为1.08,季节性冰冻地区,冻结深度为1.2m,所经地区多处为粉性土。 表1-1交通组成及交通量表 车型双向交通量 小客车3100 风潮HDF650 600 三菱PV413 720 黄河JN162A 1500 江淮HFF3150C07 810 雷诺JN75 750 山西SX341 800 东风YCY-900 800 尤尼克2766 80 交通量年平均增长率(%) 10.2 2 沥青路面设计 2.1轴载分析 我国沥青路面设计以双轮组单轴载100kN为标准轴载,表示为BZZ-100。标准轴载的计算参数按表3-1确定。

﹙1﹚当以设计弯沉值设计指标及沥青基层层底拉应力验算时,凡前、后轴轴载大于25kN 的各级轴载i P 的作用次数i n 均换算成标准轴载P 的当量作用次数 N 。 35.4211 )( p p n C C N i i K i ∑== 式中:N — 以设计弯沉值和沥青层层底拉应力为指标时的标准轴载的当量次数; i n — 被换算车型的各级轴载换算次数(次/日); P — 标准轴载(kN ); i P — 各种被换算车型的轴载(kN ); C 1— 轮组系数,单轮组为6.4,双轮组为1.0,四轴组为0.38; C 2— 轴数系数。 K — 被换算车型的轴载级别。 当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,双轴或多轴的轴数系数按下面公式计算: ()11 1.21C m =+- 式中:m —轴数。

路基路面课程设计计算书

. 土木建筑工程学院 土木工程专业(道路桥梁方向)《路基路面工程》课程设计计算书 姓名: 年级: 班级: 学号:

[题目]:重力式挡土墙设计 [设计资料]: 1、工程概况 拟建机场高速公路(城市道路段)K2+770右侧有一清朝房子,由于该路段填土较高,若按1:1.5的边坡坡率放坡,则路基坡脚侵入房子围。现为了保留房子,要求在该路段的恰当位置设挡土墙。为使房子周围保持车辆交通,要求墙脚边距离房子的距离大约为4m。提示:路肩350cm不布置车辆,慢车道650cm 开始布置车辆荷载(550kN)。 2、路中线与房子的平面位置关系、路线纵断面、路基标准横断面如下图: 房子 道路中线 图1 道路和房子平面示意图 路基标准横断面(单位:cm) 图2 路基标准横断面图(半幅,单位:cm)

K 2+400 112.85K 2+900 117.851.0% -0.75% R=13500T=?E=? 道路纵面图 图3 道路纵断面图 106.50 3.7m 7.8m 粘土Q 承载力标准值f=187kPa 圆砾 承载力标准值f=456kPa 中风化泥岩 地质剖面图 1:0.3 1:5 墙身剖面图(单位:cm ) 图4 地质剖面图 3、房子附近地质情况见地质剖面图,房子附近地面较大围(包括路基围)为平地。 4、挡土墙墙身、基础材料:M7.5浆砌片石,M10砂浆抹墙顶面(2cm ),M10砂浆勾外墙凸缝。砌体重度γ1=22kN/m 3。墙后填土为天然三合土重度γ 2 =20kN/m 3,换算摩擦角φ=35°。M10浆砌块石与天然三合土的摩擦角为

20°。砌体极限抗压强度为700kPa ,弯曲抗拉极限强度为70kPa ,砌体截面的抗剪极限强度为150kPa 。 计算过程 1、 道路设计标高计算 由1i =1.0%,2i =-0.75%,R=13500 得21135000.75%1%=236.25L R i i =?-=?--,2 L E ==118.125 所以竖曲线起点桩号为K2+781.875。 K2+766的设计标高为112.853661%=116.51+?。 K2+782的坡线标高为112.853821%=116.67+?, 高程改正 ()2 782781.875=0213500 -?, 所以K2+782的设计标高为116.67。 而地面高程为106.05,所以房子正对着的道路标高与地面高程最大之差为10.62m 。 2、挡土墙设计方案 ①挡土墙墙脚与房子的平面位置关系如下:

路基路面工程质量论文

路基路面工程质量控制 【摘要】近几年国家对公路工程建设项目也加大了管理力度,从设计、施工、监理等各环节采取了相应措施,但是,目前工程建设质量在一定程度上仍然存在值得注意之处。影响施工质量的因素很多,除了要有严密的施工组织设计,好的施工方案,详细的科学管理办法和内部质量保证体系外,关键是在于如何落实,如何在具体措施上下工夫,并且大力推广新材料、新工艺,以科技含量高的施工方法提高工程质量。 1.引言 路基是道路建设的重要组成部分。它是道路结构的主体,又是路面建设的基础,同时也是桥涵工程联接的纽带。没有坚固稳定的路基,就没有稳固的路面。促使桥涵引线两端出现跳车现象,减缓正常行车时速。因此路基的好与坏是关系整个工程质量及车辆的正常生动行驶。路基在一个工程中往往是占有很大比重的方面,不管是填方还是挖方段路基,它所涉及到的材料、人工、机械都是十分巨大的。只有质量过关了,效率的作用才会体现出来,也只有质量过关了路基的成果才会得到大家的认同,否则一切的都是空谈。今年来,路基的大小事故有着越趋增加的势头,人们在追赶进度之时,却忽略掉了路基质量的问题,路基的质量控制关键在施工过程控制。 2. 施工过程控制 路基的施工过程有着严格的程序规定,从哪里开始怎么开始怎样衔接下一步都是有着说明的。必须认真按规定要求做好组织,物质,

技术及现场四个方面的准备工作小桥涵挡土墙盲沟等小型构造物通常是与路基施工同步进行,避免路基填筑后又来开挖修建这些构造物,影响工程整体进度和质量控制:施工技术人员,应严格按照施工组织设计和监理工程师的指令,精心地开展工作:路基土石方施工程序:路堤基底处理一选择填料一确定路堤填(挖)方式一路基压实。 2.1 合理分配 做好施工组织设计,合理安排施工段的先后顺序,明确构造物和路基的衔接关系,对高填方段应优先安排施工,在施工中以施工组织设计为龙头,根据施工现场的实际情况,合理调配人员、设备,是保证高填方路基施工质量的重要环节。目前多采用机械化施工或综合机械化施工法,采用配套机械,主机配以辅机,相互协调,共同形成主要工序的综合机械化作业的方法,能极大地减轻劳动强度,加快施工进度,提高工程质量和劳动生产率,降低工程造价,保证施工安全。因此,所采用的机械必须满足路基施工的要求,特别是压实设备合理配备,是保证路基强度的关键。 2.2 清理场地 认真清除地表土不良土质,加强地基压实处理,地表植被、树根、垃圾、不良土质(盐渍土,膨胀土等)必须予以清除,同时应加大地表的压实密度,采用大吨位振动压路机处置。路基清表应该做到,在路基施工方位内不该有树根大石头生活垃圾等杂物。对还有地表水、淤泥、杂草、垃圾、腐殖土等地基应进行排除处理。对于软土类地基按设计要求进行特殊的处理。

路基路面课程设计示例

路基路面课程设计示例

《路基路面工程》课程设计示例 一、设计条件 1.气象资料 区,项目区内气候属亚热带该路所处自然区划为Ⅴ 3 湿润季风气候区,气候干燥炎热,冬无严寒,少云多日照,年平均气温15.3~19.6℃, 年月平均最高气温26.90℃,月平均最低气温5.70℃。 雨水充沛,雨季主要集中在4~10月,雨量多集中在1100~1300mm之间,年平均降雨量为1179.90mm。灾害性气候主要为干旱和暴雨。 全线皆可常年组织施工。 2.地质资料 该区土质表层为素填土层,厚度0.4~2.0m,其下层为碎石土及粘土层,厚1.0~15m。路基填土高度约为2.5m。地下水埋深为2.0~5.0m。公路沿线有丰富的砂砾,附近有小型采石场和石灰厂,筑路材料丰富。路面所用水泥和沥青均需外购。 3.地震基本烈度

本项目沿线地震烈度相当于Ⅵ度区,属基本稳定至稳定区。 4.交通资料 根据最新路网规划,近期交通组成与交通量见下表1-1,交通量年平均增长率见表1-2: 近期交通组成与交通量【表1-1】

交通量年增长率γ(表1-2) 二、设计要求 1.设计中学生学生应在独立思考的基础上有方向、有 目的的查阅有关文献资料。 2.学生应根据设计进度要求,提交设计成果。 3.设计结束时,应提交完整的设计说明书(包括计算

书)和设计图纸。 设计说明书主要介绍设计任务概况、设计标准、设计思路、设计原则、设计方案的比较和说明、设计工作概况、工作的特点和难点、主要技术问题与解决办法,以及主要技术资料。要求用A4白纸,使用钢笔书写,做到工整、准确、清晰、精炼。 设计图纸应根据工程制图标准绘制,做到正确、丰满、美观、整洁。 设计内容 1.根据交通资料确定道路和交通等级。 2.进行路基路面结构方案设计,至少包括1个比较方 案。 3.路基设计部分包括对原地面的处理,路基填料的选 择,路基干湿类型的确定及土基的回弹模量的确 定过程。 4.对确定的路基路面结构进行详细设计,包括路面类 型的选定,路面结构层材料参数的选取,进行路 面结构的厚度计算。 5.对所选定路线的路基路面结构方案绘制路基标准 横断面图,结构层设计图。

路基路面工程课程设计

路基路面工程课程设计任务书2014年 3 月12 日至2014 年 4 月20 日 课程名称:路基路面工程实训 专业班级: 姓名: 学号: 指导教师: 2014年3月18日XX公路A标段路基路面结构设计

一、路基稳定性设计 该路段某段路基填土为粘土,填土高度为8米,边坡为直线型,土的重度 γ=18.6KN/m3,土的内摩擦角φ=12°,粘聚力系数C=16.7MPa,设计荷载为公路I 级。 二、路基挡土墙设计 该标段某路基需设计重力式挡土墙,填料为砂性土,土的重度γ=15KN/m3,内摩擦角υ=36°,粘聚力c=10Kpa;最大密实度16.8KN/m3;挡土墙设计参数为:基底摩阻系数:f=0.4;基底承载力:[σ0]=360Kpa;墙身材料:25#浆砌片石,2.5#砂浆,重度γ=24KN/m3,容许压应力[σ]= 580KPa,容许剪应力[τ]= 90Kpa,容许拉应力。 [σw1]=40Kpa;墙身与填料摩擦角:δ=1/2φ;挡土墙最大填土高度为6米。 三、路面工程设计 1、路段初始年交通量,见表1(辆/天)。 表1 汽车交通量的组合 组车型ⅠⅡⅢⅣⅤⅥⅦⅧ解放 220 150 180 160 200 140 200 230 CA10B 解放 150 180 200 220 180 240 170 150 CA30A 东风 170 210 110 180 200 160 150 140 EQ140 黄河 80 100 170 110 90 130 80 90 JN150 黄河 120 100 150 200 180 160 180 190 JN162 黄河 160 80 60 210 230 200 120 100 JN360 长征 180 220 200 150 170 170 160 190 XD160 交通 120 260 230 70 50 100 120 120 SH141 2、交通量增长率取5%,柔性路面设计年寿命15年,刚性路面设计寿命25年,路面材料参数取规范中的数值,自然区划为Ⅲ区,进行柔性和刚性路面设计。 设计一路基稳定性设计 一、设计资料:

路基路面工程课程设计计算书样本

路基路面工程课程设计计算书( 第一组) 班级: 姓名: 学号: 一、沥青路面设计 1.轴载换算

(1)以弯沉值及沥青层的层底弯拉应力为设计指标时 表一 (2)以半刚性材料结构层的层底拉应力为设计指标时 表二

已知设计年限内交通量平均增长率%8=r 该道路为高速公路, 其设计年限15=t 。 设该高速公路为双向四车道, 取车道系数45.0=η, 则 ( 1) 以弯沉值及沥青层的层底弯拉应力为设计指标时 61511019.345.014.71636508 .0]1)08.01[(365]1)1[(?=???-+=???-+=ηN r r N t e 次 ( 2) 以半刚性材料结构层的层底拉应力为设计指标时 6152 1042.245.049.54236508 .0]1)08.01[(365]1)1[(?=???-+=???-+=ηN r r N t e 次 2.初拟结构组合和材料选取 ( 1) 由以上计算结果得, 设计年限线内一个车道上的累计标准轴次为319万次, 属中等交通, 给出以下两种组合方案 方案一: ①路面结构采用沥青混凝土( 厚18cm) , 基层采用水泥碎石( 厚38cm) , 底基层采用水泥石灰沙砾土( 厚度待定) , 以水泥石灰沙砾土为设计层。 ②采用三层式沥青面层, 表面采用细粒式沥青混凝土( 厚4cm) , 中面层采用中粒式沥青混凝土( 厚6cm) , 下面层采用粗粒式沥青混凝土( 厚8cm) 方案二: ①路面结构采用沥青混凝土( 厚27cm) , 基层采用水泥砂砾( 厚度待定) , 底基层采用级配沙砾( 厚18cm) , 以水泥稳定砂砾为

相关主题
相关文档 最新文档