当前位置:文档之家› 手机整机结构设计规范

手机整机结构设计规范

手机整机结构设计规范
手机整机结构设计规范

手机结构配合间隙

设计规范

(版本V1.0)

变更记录

目录

变更记录………………………………………………………………………………………………………………目录………………………………………………………………………………………………………………………前沿………………………………………………………………………………………………………………………第一章手机结构件外观面配合间隙设计…………………………………………………………

1.1镜片(lens) ……………………………………………………………………………………………….

1.2按键(keys) ……………………………………………………………………………………………….

1.3电池盖(batt-cover) …………………………………………………………………………………..

1.4外观面接插件(USB.I/O等) ……………………………………………………………………..

1.5螺丝塞………………………………………………………………………………………………………

1.6翻盖机相关…………………………………………………………………………….……………….

1.7滑盖机相关…………………………………………………………………………….………………. 第二章手机机电料配合间隙设计……………………………………………………………………

2.1听筒(receiver)…………………………………………………………………….…………………..

2.2喇叭(speaker)…………………………………………………………………….……………………

2.3马达(motor)…………………………………………………………………….………………………

2.4显示屏(LCM)…………………………………………………………………….…………………….

2.5摄像头(camera)…………………………………………………………………….…………………

2.6送话器(mic)…………………………………………………………………….………………………

2.7电池(battery)…………………………………………………………………….……………………

2.8 USB/IO/Nokia充电器……………………………………………………….……………………..

2.9 连接器……………………………………………………….……………………..……………………

2.10卡座……………………………………………………….………………………………………………

2.11灯(LED)…………………………………………………………………….……………………………

2.12转轴…………………………………………………………………….…………………………………

2.13滑轨…………………………………………………………………….…………………………………

前沿

随着公司的不断发展,设计队伍的不断壮大,新机型越来越多,为了避免以往错误的再次发生,提高前端设计统一性、高效性,总结了以后设计经验,模具生产制造,生产线装配生产中案例经验,希望在大家设计时能给予参考.

由于人员及接触面有限,难免有遗漏和不完善之处,希望大家能及时指出并反馈我归纳更新.相信在大家的共同努力下(HQ)的High Quality能更好的体现,推出更多的精品项目.

1.1 镜片(lens):

1).lens 是平板切割: A=B=0.07mm;

2).lens 是注塑:A=B=0.1mm;

3).壳料皮革漆:A=0.15mm;

备注: lens与按键直接接触: B尺寸按照按键间隙设计.

图1.1.1 图1.1.2

图1.1.3 图1.1.4 备注:不建议图1.1.4设计,因为镜片高出壳体容易磨花.

1.2 按键:

1).主按键:

A).按键四周与壳间隙0.15mm;

B).键帽之间间隙0.15mm;

C).导航键外框周圈间隙0.20mm;OK键周圈间隙0.15mm;

D).键帽高出壳A=0.3~0.4mm;导航键高出功能键键帽B=0.5mm.

图1.2.1 图1.2.2

2).侧按键:

A).侧按键与壳周圈间隙0.12mm.

B).侧按键高出壳料A=0.4~0.5mm; PowerKey时,A=0mm.

图1.2.3 图1.2.4

1.3 电池盖:

1).电池盖与壳间隙:A=B=0.05mm;

2).电池盖表面与壳表面间隙:C=0mm.若电池盖为金属时,C=-0.05mm.即金属电池盖比壳小

0.05mm.

图1.3.1

1.4外观面接插件(USB.I/O等):

1). 一般客户USB和耳机口与壳间隙A=B=0.2mm; 品牌客户耳机口与壳间隙

A=0.15mm.

图1.4.1

1.5螺丝塞(Screw_cover):

1).螺丝塞为Rubber时,与壳间隙0.0mm.

图1.5.1

2). 螺丝塞为P+R时: A=0.05mm.

1.6.1翻盖BC壳间隙:

A=0.3~0.4mm.

图1.6.1

1.6.2翻盖转轴轴肩配合间隙:

图1.6.2-1

图1.6.2-2 局部放大

1.7.1滑盖BC壳间隙: A=0.3mm.

2.1听筒(receiver)

检查列表:

1. 检查spec ,确认3D 是否与spec 一致;

2. receiver 前音腔必须密封;

3. receiver 出音面积需≧3.0mm2;跑道型出音孔宽≧W0.6mm;圆形出音孔≧∮1.0mm;

4. receiver 需设计拆卸槽,建议宽度W1.5mm 以上,并设计到底部;

5.receiver 间隙配合:四周间隙 单边0.1mm,工作高度0配;

6. 若receiver 装配在金属壳内,则弹片根部必须做避让,防止短路;

7. 引线式receiver 需注意理线空间;

2.1.1前音腔必须密封

:

2.1.2 出音孔设计: 出音面积需≧

3.0mm2

2.1.3拆卸槽设计:

2.1.4间隙配合设计:

2.1.5装配金属壳时,弹片避让

:

2.1.6 (预留)

2.2喇叭(speaker)

检查列表:

1. 检查spec ,确认3D是否与spec一致;

2. spk前音腔必须密封;

3. spk前音腔高度≧0.3mm;超大喇叭前音腔1.0mm(具体参照spec);

4. spk出音孔面积需比spk发声面积≧15%,音乐手机需≧18%;

5.spk间隙配合:四周间隙单边0.1mm,工作高度0配;

6. 引线式spk 需注意理线空间;

2.2.1前音腔必须密封,前音腔高度0.3mm(超大喇叭

H1.0mm):

2.2.2 Spk配合间隙:

2.2.3出音孔面积:

2.3马达(motor)

检查列表:

1. 检查spec ,确认3D 是否与spec 一致;

2. spk 前音腔必须密封;

3. spk 前音腔高度≧0.3mm;超大喇叭前音腔1.0mm(具体参照spec);

4. spk 出音孔面积需比spk 发声面积 ≧15%,音乐手机需≧18%;

5.spk 间隙配合:四周间隙 单边0.1mm,工作高度0配;

6. 引线式spk 需注意理线空间;

2.3.1装配方向: 双面胶粘贴支架上,泡棉朝上

2.3.2 配合间隙: 1).扁平型:

2).半圆柱型(包括焊线/弹片式):

备注: 选用半圆柱型,

避免使用全圆柱型.

3).SMT 型:

2.3.3 (预留)

半圆型

2.4显示屏(LCM):

检查列表:

1.检查spec ,确认3D是否与spec一致;

2. LCM配合间隙设计;

3.壳料开口设计和LENS丝印设计;

2.4.1 LCM配合间隙设计:

LCM的4边(塑胶或金属

屏蔽框)与定位槽间隙0.1mm;

LCM定位槽4个角落设计

避让槽:L 2.0*W0.2mm

4个角落避让槽设计

避让槽设计

0.5mm

2)Z 方向

:

2.4.2壳料开口设计和LENS 丝印设计:

2.4.3 (预留)

2.5摄像头(Camera):

检查列表:

1.检查spec ,确认3D 是否与spec 一致;

2.摄像头配合间隙设计;

3.壳料开口设计和LENS 丝印设计;

2.5.1配合间隙设计:

定位原则: 必须使用摄像头底部基座定位,不可以用头部圆形花瓣定位(不同供应商头部花瓣尺寸会略有差异). 1).定位尺寸

:

2)定位筋骨形式:

2.5.2 壳料开口及lens丝印设计:

2.6送话器(Mic):

检查列表:

1.检查spec ,确认3D 是否与spec 一致;

2.MIC 配合间隙设计;

2.6.1 MIC 选型:

1).目前整机都建议选择半包或全包式MIC; 2).目前半包式MIC 尺寸如下图:

2.6.2 MIC 配合间隙设计: 径向间隙0.05mm;厚度方向与壳体0配合;

1). MIC 竖放

:

建议做成如下形式: 壳体上对应

MIC 本体焊盘做避让单边0.3mm 以上.

2).MIC 横放:

2.6.3 MIC

备注:

注意开孔位置:避免开在单个键帽内部.

2.6.4 结构部分MIC 常见问题: 1).MIC 回声;

A. 如果是主叫有回音的话,可以调节音频参数中的STMR 可以改善

如果是被叫有回音的话,可能是你的结构做的不合理,像MIC 和REC 在同一平面形成了回声腔体或者是REC 和MIC 中的一个不密闭,在手机内部形成了回声的腔体;

产生通话回音的原理是在直板手机中,受话器和麦克风都在一个机壳里面,而且是连通的。在通话的时候,对方的声音从我们手机的受话器发出来,受话器的设计都是采用整个手机机

手机结构设计指南

Techfaith 技术资料 手机 结构设计指南 (Design Guide Line) --- Revision T3 --- 序言 手机的结构设计都是有规律可循的,本设计指南的撰写,旨在总结和归纳以往我们在手机设计方面的经验,重点阐述本公司对于机械结构设计的要求,避免不同的工程师在设计时,重复出现以往的错误。使设计过程更加规范化、标准化,利于进一步提高产品质量,设计出客户完全满意的产品。 本文的撰写,旨在抛砖引玉,我们将不断地总结设计经验,完善本设计指南,使我们的结构设计做得更好。 本文的内容不涉及从事手机结构设计所需的必不可少的基本技能,如PRO/E、英语水平、模具制造等等。 2004年 9月

一. 手机的一般形式 目前市面上的手机五花八门,每年新上市的手机达上千款,造型各异,功能各有千秋。但从结构类型上来看,主要有如下五种: 1.直板式 Candy bar 2.折叠式 Clamshell 3.滑盖式 Slide 4.折叠旋转式 Clamshell & Rotary 5.直板旋转式 Candy bar & Rotary 本设计指南将侧重于前四种比较常见的类型。一般手机结构主要包含几个功能模块:外壳组件(Housing),电路板(PCBA),显示模块(LCD),天线(Antenna),键盘(keypad),电池(Battery)。但随着手机的具体功能和造型不同,这些模块又会有所不同,下面以几种常见手机为例来简单介绍一下手机上的结构部件。 图1-1是一款直板式手机的结构爆炸图。 图1-1 对于直板型手机,主要结构部件有: ?显示屏镜片LCD LENS ?前壳Front housing ?显示屏支撑架LCD Frame ?键盘和侧键Keypad/Side key ?按键弹性片Metal dome ?键盘支架Keypad frame ?后壳Rear housing ?电池Battery package ?电池盖Battery cover ?螺丝/螺帽screw/nut ?电池盖按钮Button

手机设计指引-侧键结构设计

结构部标准设计说明—— (SIDE_KEY) 1.概述 本文件描述了结构部员工在设计中需要大家遵守的规范。 2.目的 设计产品时有相应的依据,保证项目开发设计过程中数据的统一性,互换性,高效性。 提高工作效率。 3.具体内容 (1).功能描述: 在侧键按动的过程中,推动side_key_switch(或side_key_metaldome)到一定的行程(一般为0.2mm),从而达到使side_key_switch(或side_key_metaldome)电路导通的目的。 (2).装配关系(与周边器件): B A S E R E A R H S G S ID E_K E Y_R U B B E R S ID E_K E Y 图1:SIDE_KEY装配分解状态示意图 SIDE_KEY与SIDE_KEY_RUBBER通过胶水(通常为UV胶或瞬干胶)粘连在一起形成一个组件,胶水的厚度在0.05mm左右。为了便于装配,一般先将SIDE_KEY组件装到HSG上,再组装PC板。 SIDE_KEY与周边器件装配尺寸设计注意事项:

侧键连接器分两种: SIDE_KEY_SWITCH和SIDE_KEY_FPC I.SIDE_KEY _SWITCH(常用的是CITIZEN的LS10N2T,详细尺寸以及SPEC,请见SIDE_KEY_SWITCH) 图2:SIDE_KEY与SIDE_KEY_SWITCH及HSG装配尺寸图 a.SIDE_KEY与HSG周边的间隙尺寸(A)为0.1mm,间隙尺寸过小,容易卡键;间隙 尺寸过大则配合过松,影响外观且易上下摆动; b.SIDE_KEY与HSG的装配间隙(B)可保留0.05mm空间; c.SIDE_KEY外侧与HSG距离( C )应大于0.6mm,尺寸过小,手感不好, d.SIDE_KEY_RUBBER导电柱与SIDE_KEY_SWITCH的装配间隙(D)控制在0.05- 0.1mm之间。若间隙过大,按动时侧键容易下陷,手感不好;间隙过小,难装配且不 利于后期调整; e.SIDE_KEY_SWITCH(或SIDE_KEY_METALDOME)的行程一般为0.20mm; f.SIDE_KEY_RUBBER与HSG的装配避让间隙(E)应保证在0.4mm以上,因 SIDE_KEY_SWITCH的行程为0.2mm,若避让间隙过小,会造成侧键按不到底,影响按键功能。 g.SIDE_KEY_RUBBER与HSG的间隙(F)尽量做到0.3mm以上,尺寸过小,按键在 按动过程中,SIDE_KEY_RUBBER会碰到HSG,从而影响侧键手感

手机外壳结构设计指引

结构设计注意事项 z PCBA-LAYOUT及ID评审是否OK z标准件/共用件 z内部空间、强度校核: z根据PCBA进行高度,宽度(比较PCBA单边增加2.5~~3.0,或按键/扣位处避空)与长度分析。 z装配方式,定位与固定; z材料,表面工艺,加工方式, z成本,周期,采购便利性; 塑料壳体设计 1.材料的选取 ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受到冲击,不承受可靠性测试中结构耐久性测试的部件),如手机内部的支撑架(Keypad frame,LCD frame)等。 还有就是普遍用在要电镀的部件上(如按钮,侧键,导航键,电镀装饰件等)。目前常用奇 美PA-727,PA757等。 PC+ABS:流动性好,强度不错,价格适中。适用于绝大多数的手机外壳,只要结构设计比较优化,强度是有保障的。较常用GE CYCOLOY C1200HF。 PC:高强度,贵,流动性不好。适用于对强度要求较高的外壳(如翻盖手机中与转轴配合的两个壳体,不带标准滑轨模块的滑盖机中有滑轨和滑道的两个壳体等,目前指定必须用 PC材料)。较常用GE LEXAN EXL1414和Samsung HF1023IM。 在对强度没有完全把握的情况下,模具评审Tooling Review时应该明确告诉模具供应商,可能会先用PC+ABS生产T1的产品,但不排除当强度不够时后续会改用PC料的可能性。 这样模具供应商会在模具的设计上考虑好收缩率及特殊部位的拔模角。 上、下壳断差的设计:即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受的面刮 <0.15mm,可接受底刮<0.1mm,尽量使产品的面壳大于底壳。一般来说,面壳因有较多的 按键孔,成型缩水较大,所以缩水率选择较大,一般选0.5%。底壳成型缩水较小,所以缩 水率选择较小,一般选0.4%,即面壳缩水率一般比底壳大0.1%。即便是两件壳体选用相 同的材料,也要提醒模具供应商在做模时,后壳取较小的收缩率。

手机整机检验规范标准

整机质量检验标准 目录 前言 (2) 1.适用范围 (3) 2.规范性引用文件 (3) 3.缺陷等级分类 (3)

4.缺陷名词 (4) 5 缺陷判断列表 (6) 6 检验环境及条件: (7) 7 检验方式和接受抽样标准 (8) 8检验项目及判定标准 (9) 8.1 常规检验 (9) 8.2 性能指标检验项目判定: (10) 8.3 装配检验项目判定: (10) 8.4 外观检验项目判定: (12) 8.5 包装检验项目判定(出货检验): (15) 8.6 硬件类检查标准: (15) 8. 7 包装检验项目: (15) 前言 ●目的和作用 为确保所有手机的生产、检验工序有序进行,本标准为过程质量控制、在线模拟用户检验、例行检验、最终成品检验和确认检验提供依据,特编写本标准 ●主要内容 本标准适用于深圳信息科技有限公司手机产品的各种质量检验。

执行者 生产部、品质部、硬件部、软件部、结构部、工程部、售后服务部、 本标准自实施之日起代替《成品质量检验标准》,本次标准修订由通讯科技有限公司研发质量部提出。 本次标准修订部门:项目部 本次标准主要修订人: 本次标准审核人: 本次标准发布批准人: 本标准于2015年4月首次发布。 手机产品检验规范 1.适用范围 本规范适用于本司所生产的所有GSM、CDMA、TD-SCDMA、WCDMA等手机产品的质量检验和控制。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2828.1 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 3.缺陷等级分类 3.1 严重缺陷(A类) a)导致用户选购时拒绝购买的故障;

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

手机音腔部品选型及音腔结构设计指导及规范 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于 8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

软件结构设计规范模板

软件结构设计规范

精选编制: 审核: 批准:

目录 1.简介 (6) 1.1.系统简介 (6) 1.2.文档目的 (6) 1.3.范围 (6) 1.4.与其它开发任务/文档的关系 (6) 1.5.术语和缩写词 (6) 2.参考文档 (8) 3.系统概述 (9) 3.1.功能概述 (9) 3.2.运行环境 (9) 4.总体设计 (10) 4.1.设计原则/策略 (10) 4.2.结构设计 (10) 4.3.处理流程 (10) 4.4.功能分配与软件模块识别 (11) 5.COTS及既有软件的使用 (12) 5.1.COTS软件的识别 (12) 5.2.COTS软件的功能 (12)

5.3.COTS软件的安全性 (12) 5.4.既有软件的识别 (12) 5.5.既有软件的功能 (13) 5.6.既有软件的安全性 (13) 6.可追溯性分析 (14) 7.接口设计 (15) 7.1.外部接口 (15) 7.2.内部接口 (15) 8.软件设计技术 (16) 8.1.软件模块 (16) 8.2.数据结构 (16) 8.3.数据结构与模块的关系 (16) 9.软件故障自检 (17)

1.简介 1.1.系统简介 提示:对系统进行简要介绍,包括系统的安全目标等。 1.2.文档目的 提示: 软件结构设计的目的是在软件需求基础上,设计出软件的总体结构框架,实现软件模块划分、各模块之间的接口设计、用户界面设计、数据库设计等等,为软件的详细设计提供基础。 软件结构设计文件应能回答下列问题: 软件框架如何实现软件需求; 软件框架如何实现软件安全完整度需求; 软件框架如何实现系统结构设计; 软件框架如何处理与系统安全相关的对软/硬件交互。 1.3.范围 1.4.与其它开发任务/文档的关系 提示:如软件需求和界面设计文档的关系 1.5.术语和缩写词 提示:列出项目文档的专用术语和缩写词。以便阅读时,使读者明确,从

手机整机结构设计规范

手机结构配合间隙 设计规范 (版本V1.0)

变更记录

目录 变更记录………………………………………………………………………………………………………………目录………………………………………………………………………………………………………………………前沿………………………………………………………………………………………………………………………第一章手机结构件外观面配合间隙设计………………………………………………………… 1.1镜片(lens) ………………………………………………………………………………………………. 1.2按键(keys) ………………………………………………………………………………………………. 1.3电池盖(batt-cover) ………………………………………………………………………………….. 1.4外观面接插件(USB.I/O等) …………………………………………………………………….. 1.5螺丝塞……………………………………………………………………………………………………… 1.6翻盖机相关…………………………………………………………………………….………………. 1.7滑盖机相关…………………………………………………………………………….………………. 第二章手机机电料配合间隙设计…………………………………………………………………… 2.1听筒(receiver)…………………………………………………………………….………………….. 2.2喇叭(speaker)…………………………………………………………………….…………………… 2.3马达(motor)…………………………………………………………………….……………………… 2.4显示屏(LCM)…………………………………………………………………….……………………. 2.5摄像头(camera)…………………………………………………………………….………………… 2.6送话器(mic)…………………………………………………………………….……………………… 2.7电池(battery)…………………………………………………………………….…………………… 2.8 USB/IO/Nokia充电器……………………………………………………….…………………….. 2.9 连接器……………………………………………………….……………………..…………………… 2.10卡座……………………………………………………….……………………………………………… 2.11灯(LED)…………………………………………………………………….…………………………… 2.12转轴…………………………………………………………………….………………………………… 2.13滑轨…………………………………………………………………….…………………………………

按键设计经验规范

按键设计经验规范 07.9.2009 in 手机结构设计by admin 按键设计 1,导航键分成4个60度的按键灵敏区域,4个30度的盲区,用手写笔点按键60度灵敏区域与盲区的交界处,检查按键是否出错,具体见附图 2,keypad rubber平均壁厚0.25~0.3,键与键间距离小于2时,rubber必须局部去胶到0.15厚度,以保证弹性壁的弹性

3,keypad rubber导电基高度0.3 ,直径φ2.0(φ5dome),直径φ1.7(φ4dome),加胶拔模3度 4,keypad rubber导电基中心与keypad外形中心距离必须小于keypad对应外形宽度的1/6,尽量在其几何中心 5,keypad rubber除定位孔外不允许有通孔,以防ESD 6,keypad rubber与壳体压PCB的凸筋平面间隙0.3,深度间隙0.1 7,keypad rubber柱与DOME之间间隙为0 8,keypad dome接地设计: (1).DOME两侧或顶部凸出两个接地角,用导电布粘在PCB接地焊盘上 (2).DOME两侧凸起两个接地角,翻到PCB背面,用导电布粘在是shielding或者接地焊盘上(不允许采用接地角折180压接方式,银浆容易断 9,直板机key 位置的rubber比较厚,要求key plastic部分加筋伸入rubber,凸筋距离dome 0.5,凸筋与rubber周圈间隙0.05 10,翻盖机键盘间隙(拔模后最小距离):键与键之间间隙0.2,导航键与壳体间隙0.15,独立键与壳体间隙0.12,导航键中心的圆键与导航键间隙0.1 11,直板机键盘间隙(拔模后最小距离):键与键之间间隙0.2,导航键与壳体间隙0.2,独立键与壳体间隙0.15,导航键中心的圆键与导航键间隙0.1 12, 键盘唇边宽与厚度为0.4X0.4 13,数字键唇边外形与壳体避开0.2,导航键唇边外形与壳体避开0.3 14,keypad键帽裙边到rubber防水边≥0.5 15,键盘上表面距离LENS的距离为≥0.4mm 16,数字键唇边深度方向与壳体间隙0.05,导航键深度方向与壳体间隙0.1 17,按键与按键之间的壳体如果有筋相连,那么这条筋的宽度尽量做到2.5mm以上,以增强按键的手感,并且导航键周围要有筋,以方便导航键做裙边 18,钢琴键,键与键之间的间隙是0.20MM,键与壳体之间的间隙是0.15MM,钢板的厚度是0.20毫米。钢琴键钢板与键帽之间的距离0.40,键帽最薄0.80,钢板不需要粘贴在RUBBER上,否则导致键盘手感不好 19,结构空间允许的情况下,钢琴键也可以不用钢板,用PC支架代替钢板,PC支架的厚度是≥0.50MM]

家电结构设计规范

家电设计规范 家电设计要点 说明:图示:所有产品结构设计,都应在品质至上的基础上, 以简单实用、生产(装配)容易、符合客户要求为主。 分件及装配,先从生产角度构思。尽可能减少生产工 序及零件,以提高生产量降低成本,提升其市场竟争 力。 1.产品壁厚 塑胶件的设计尽可能做到一次完成。对于难以 保证的位置,应考虑到产品加胶容易,减胶难。预 留些加胶的空间。 产品壳体厚度:产品的的壁厚大小取决於产品 需要承受的外力、体积大小、功能要求以及材料不 同。一般的热塑性塑料壁厚设计应以4mm为上 限。通常在满足所需要求情况下,尽可能的减少产 品壁厚。) 1)A类:塑件外形高低小于150mm,如MP3、 MP4、GPS、遥控器等(ABS).壁厚度一般为 1.20mm~ 2.0mm。

2)B类: 塑件外形高低150~250mm,如座式 电话机(ABS),壁厚度一般为 1.8mm~ 2.5mm。 3)C类: 塑件外形高低250mm以上,如电饭煲 (PP),器械外罩(ABS)。壁厚度一般为 2.5mm~ 3.0mm。 4)D类:对于对壳体有特别要求的产品,如音箱 (壁厚对音响效果影象较大),壁厚由3.0mm~ 4.0mm不等。 5)产品的壁厚直接影响到其寿命及成本,过薄可 能会造成制品强度和刚度不足,受力后容易翘曲变形。成型时流动阻力大,大型复杂的零件难以成形,使用过程容易变形破裂。过厚则增加材料的成本,成型周期加长,降低生产率,产品表面产生缩水、气泡等不良现象。 6)在产品壁厚设计时应充分考虑其体积大小、材 质、使用场合。参考客户意见等资料。如果在使用过程中表面受外加力或气压水压等,更须作出适当计算。 7)A类产品通常会有小装饰件,装饰件壁厚为 0.8~1.2 。图1-1图1-2

手机结构设计规范

手机结构设计规范初稿 目录 目录 0 范围 (2) 术语和定义 (2) 1.显示屏类手机结构设计规范 (3) 2.触摸屏类手机结构设计规范 (3)

3.电池类手机结构设计规范 (3) 4. USB类手机结构设计规范 (3) 5. 摄像头类手机结构设计规范 (3) 6. 按键类手机结构设计规范 (3) 7. 光感应器类手机结构设计规范 (3) 8. 耳机类手机结构设计规范 (4) 9. 电声类手机结构设计规范 (4) 10. BTB、ZIF连接器类手机结构设计规范 (4) 11. TF卡、SIM卡类手机结构设计规范 (4) 12. 马达类手机结构设计规范 (4) 13. 弹片类手机结构设计规范 (4) 14. 柔性电路板类手机结构设计规范 (4) 15. 主板堆叠类手机结构设计规范 (4) 16. 屏蔽件类手机结构设计规范 (5) 17. 基本结构类手机结构设计规范 (5) 18. 天线相关类手机结构设计规范(借用硬件规范) (5) 19. 工艺类手机结构设计规范(没升级) (5) 20. 塑胶壳一体机手机结构设计规范(没升级) (5) 21. 滑盖机手机结构设计规范(没升级) (5) 22. 翻盖机手机结构设计规范(没升级) (5) 附录 A (6) 1

手机结构设计规范 范围 本规范给出了手机结构设计的基本准则与手机结构设计的一些参考数据、注意事项和案例。 本规范适用于广东欧珀移动通信有限公司手机产品的结构设计,亦可作为手机产品结构设计的评审依据。 术语和定义 本规范中涉及到较多专业术语,其中部分术语仅为广东地区使用的结构设计和模具方面专用词汇,均为结构工程师之间的常用沟通术语,通俗易懂且数量较多,在此就不再赘述。 2

一款完整的手机结构设计过程

手机结构设计 一,主板方案的确定 二,设计指引的制作 三,手机外形的确定 四,结构建模 1.资料的收集 2.构思拆件 3.外观面的绘制 4.初步拆件 5.建模资料的输出 五,外观手板的制作和外观调整 六,结构设计 1.止口线的制作 2.螺丝柱的结构 3.主扣的布局 4.上壳装饰五金片的固定结构 5.屏的固定结构 6.听筒的固定结构 7.前摄像头的固定结构 8.省电模式镜片的固定结构 9.MIC的固定结构 10.主按键的结构设计 11.侧按键的结构设计 https://www.doczj.com/doc/247912843.html,B胶塞的结构设计 13.螺丝孔胶塞的结构设计 14.喇叭的固定结构 15.下壳摄像头的固定结构 16.下壳装饰件的结构设计 17.电池箱的结构设计 18.马达的结构设计 19.手写笔的结构设计 20.电池盖的结构设计 21.穿绳孔的结构设计 七.报价图的资料整理 八,结构设计优化 九,结构评审 十,结构手板的验证 十一,模具检讨 十二,投模期间的项目跟进 十三,试模及改模 十四,试产

十五、量产 一,主板方案的确定 在手机设计公司,通常分为市场部(以下简称MKT),外形设计部(以下简称ID),结构设计部(以下简称MD)。一个手机项目是从客户指定的一块主板开始的,客户根据市场的需求选择合适的主板,从方案公司哪里拿到主板的3 D图,再找设计公司设计某种风格的外形和结构。也有客户直接找到设计公司要求设计全新设计主板的,这就需要手机结构工程师与方案公司合作根据客户的要求做新主板的堆叠,然后再做后续工作,这里不做主要介绍。当设计公司的MK T和客户签下协议,拿到客户给的主板的3D图,项目正式启动,MD的工作就开始了。 二,设计指引的制作 拿到主板的3D图,ID并不能直接调用,还要MD把主板的3D图转成六视图,并且计算出整机的基本尺寸,这是MD的 基本功,我把它作为了公司招人面试的考题,有没有独立做过手机一考就知道了,如果答得不对即使简历说得再经验丰富也没用,其实答案很简单,以带触摸屏 的手机为例,例如主板长度99,整机的长度尺寸就是在主板的两端各加上2.5,整机长度可做到99+2.5+2.5=104,例如主板宽度37.6,整机的宽度尺寸就是在主板的两侧各加上2.5,整机宽度可做到37.6+2.5+2.5=42.6,例如主板厚度13.3,整机的厚度尺寸就是在主板的上面加上1.2(包含0.9的上壳厚度和0.3的泡棉厚度),在主板的下面加上1.1(包含1.0的电池盖厚度和0.1的电池装配间隙),整机厚度可做到13. 3+1.2+1.1=15.6,答案并不唯一,只要能说明计算的方法就行 还要特别指出ID设计外形时需要注意的问题,这才是一份完整的设计指引。

手机结构设计指南

手机结构设计指南 (Design Guide Line) Revision T3 序言 手机的结构设计都是有规律可循的,本设计指南的撰写,旨在总结和归纳以往我们在手机设计方面的经验,重点阐述本公司对于机械结构设计的要求,避免不同的工程师在设计时,重复出现以往的错误。使设计过程更加规范化、标准化,利于进一步提高产品质量,设计出客户完全满意的产品。 本文的撰写,旨在抛砖引玉,我们将不断地总结设计经验,完善本设计指南,使我们的结构设计做得更好。本文的内容不涉及从事手机结构设计所需的必不可少的基本技能,如PRO/E、英语水平、模具制造等等。 烟波浪子整理制作 2005-12-31 无维网免 费技 术资 料 h t t p ://w w w.5 d c a d .c n

一. 手机的一般形式 目前市面上的手机五花八门,每年新上市的手机达上千款,造型各异,功能各有千秋。但从结构类型上来看,主要有如下五种: 1. 直板式 Candy bar 2. 折叠式 Clamshell 3. 滑盖式 Slide 4. 折叠旋转式 Clamshell & Rotary 5. 直板旋转式 Candy bar & Rotary 本设计指南将侧重于前四种比较常见的类型。一般手机结构主要包含几个功能模块:外壳组件(Housing),电路板(PCBA),显示模块(LCD),天线(Antenna),键盘(keypad),电池(Battery)。但随着手机的具体功能和造型不同,这些模块又会有所不同,下面以几种常见手机为例来简单介绍一下手机上的结构部件。 图1-1是一款直板式手机的结构爆炸图。 图1-1 对于直板型手机,主要结构部件有: 显示屏镜片 LCD LENS 前壳 Front housing 显示屏支撑架 LCD Frame 键盘和侧键 Keypad/Side key 按键弹性片 Metal dome 键盘支架 Keypad frame 后壳 Rear housing 电池 Battery package 电池盖 Battery cover 螺丝/螺帽 screw/nut 电池盖按钮 Button 缓冲垫 Cushion 双面胶 Double Adhesive Tape/sticker 以及所有对外插头的橡胶堵头 Rubber cover 等 如果有照相机,还会有照相机镜片Camera lens 和闪光灯Flash LED 镜片 无维网免费技术资料 h t t p ://w w w .5d c a d .c n

整机结构设计规范

整机结构设计规范 1.目的与适用范围 本规范为华为技术有限公司所有通信产品整机机械结构设计的基本总则,适用于所有产品的结构设计。 2.引用标准 下列标准包含的条文,通过在本规范中引用而构成本规范的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本规范的各方应探讨使用下列标准最新版本的可能性。 IEC 297 (19in)系列机械结构尺寸 GB 8582 电工电子设备机械结构术语 GB 3047 面板、架和柜的基本尺寸系列 ETS 300 119 欧州电信标准:传输机架/机柜的工程要求 IEC 529 电子设备的防护要求 GB 高度进制为的插箱、插件的基本尺寸系列 REV. 《丝印和标签技术规范》华为技术有限公司,1999 REV. 《插箱及插件技术规范》华为技术有限公司,1999 REV. 《接地接电结构件技术规范》华为技术有限公司,1999 REV. 《结构件电磁兼容设计规范》华为技术有限公司,1999 3.术语 本规范使用的机械结构术语符合GB8582的规定。 4.规范内容 整机结构设计规范的主要内容包括:整机的适用环境条件,整机造型设计,机柜结构设计,模块设计;机柜机箱的防护设计;包装和标识设计;接地接电设计等。 整机环境适应能力设计 环境适应性分类 根据GB4208,IEC529,本规范所涉及机柜/箱的环境适应性分为:

1)室内机柜/箱 A. 标准机房用机柜/箱--有防尘、空调、防滴漏设施的机房。 B.一般民房内用机柜/箱。 2)室外机柜/箱 A. 寒温区用机柜(-33~37℃;相对湿度95%); B. 暖温区用机柜(-20~38℃); C. 亚温湿热区用机柜(-10~40℃); D. 恶劣环境用机柜(<-33℃,风沙环境)。 室内机柜/箱的设计要求 机房内用机柜/箱,应有良好的通风和必要的可更换的防尘网;一般民房内用机柜/箱,则必须有良好通风和通风系统的告警,方便维护的防尘网,防滴漏、门禁、烟禁等告警系统。 室外机柜/箱的设计要求 室外机柜则根据其使用环境和要求不同,一般可采用: 机柜专用空调--对于柜内工作温度与环境温差<10 ℃的情况; 机柜/箱用热交换器--对于柜内工作温度与环境温差>10 ℃; 风机散热--同上,但环境温度和尘度较少,柜内与柜外有空气交换。 所有机柜的防水、防尘必须满足IP55(IEC529)。 整机及模块的造型设计 整机及模块的造型设计,应满足华为公司通信设备和电源造型设计要求,参照《华为公司形象设计手册》。 产品整机及模块的外观设计的定位 本公司产品外观设计的基本原则是:在符合公司形象总体规划下,根据设计定位,与同类国际先进水平的设备看齐,包括总体造型、人机关系、质感和视觉标识等方面,有一定的比较指标。 整机模块的外观设计 整机造型应保证其在系统各种配置情况下(如数机并柜),外观形态协调,局部与总体风格一致,质感、色彩和标识与功能和环境相宜。 模块造型应保证其在各种整机配置情况下,局部与整体的形态、风格一致,色彩协调。 整机及模块的人机工程设计 造型设计中,外观与功能的紧密结合是设计的重点。整机及模块的设计,应完全符合“电子设备人机工程设计”标准。

手机电池结构设计规范标准

手机电池设计规范

目录 一.概述 (1) 二.常用手机电池封装方式介绍 (3) 三.各类封装方案设计规范 (6) 1.框架工艺电池设计规范 (6) 2.点胶工艺电池设计规范 (12) 3.注塑工艺设计规范 (18) 4.MPACK电池设计规范 (25) 5.软包工艺电池设计规范 (28) 6.激光点焊工艺设计规范 (34) 7.软包电池自动化设计规范 (37) 8.部件尺寸公差设计规范 (40) 一.概述

全球通信行业飞速发展,一个崭新的移动互联时代正向我们走来,手机的需求量将更大。对手机电池而言,这将是一个充满机遇与挑战的大市场。近年来手机的功能和款式更新换代虽然频繁,但手机电池封装工艺却并没有明显的进步。作为手机电池企业,如何才能在技术上取得突破?如何才能在国际竞争中争取到更大的优势呢?封装专业化将是手机电池封装厂商的出路。 要成为专业的封装厂商,必先在自身设计和工艺上形成具有专业性、规范性、前瞻性的指导文件。我司在手机电池封装行业已经拼搏十数年,累计下了丰富的设计和生产经验,拥有目前封装行业所有的封装工艺,并推出了两项自主专利的封装方式。本规范旨在为飞毛腿电子有限公司累计多年封装检验,总结和规范封装设计及工艺要求,满足客户要求,市场要求,成本要求,进一步提升封装水平。

二.常用手机电池封装方式介绍 手机电池发展到今天,已经形成多种封装方式,其封装难度、工艺成本、外观尺寸各有优势,目前常用有七种封装方式,详见下文介绍: 一.框架类 方案优势: 该方案适用面广,过程工艺相对简单; 适用范围: 适用与电池长度方向尺寸极限,但宽度方向空间富余,可以将保护板放置在侧面的方案; 二.打胶类 方案优势: 电池空间利用率高,成品尺寸较小; 方案不足: 因该方案公差易产生一定累积;而国产电芯尺寸的公差远大于进口电芯,该方案不适用使用国产电芯方案. 三.注塑类

手机音腔设计规范

电声部品选型及音腔结构设计 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。 手机声腔则可以在一定程度上调整Speaker的输出频响曲线,通过声腔参数的调整改变铃声的高、低音效果,其中后声腔容积大小主要影响低音效果,前声腔和出声孔面积主要影响高音效果。 音频电路输出信号的失真度和电压对于铃声的影响主要在于是否会出现杂音。例如,当输出信号的失真度超过10%时,铃声就会出现比较明显的杂音。此外,输出电压则必须与Speaker相匹配,否则,输出电压过大,导致Speaker在某一频段出现较大失真,同样会产生杂音。

整机结构设计工艺规范

整机工艺规范

简介 变频器作为一个电力电子产品,它集计算机软件控制,电力电子、结构设计等多方面的知识于一体。结构设计作为实现其预定功能的载体,其设计优良与否,不但决定其能否稳定可靠的工作,而且直接决定其在市场上是否有良好的竞争力。 对于变频器整机设计,通常按以下几个步骤进行。设计需求——器件选型——整机设计——零件设计及图纸绘制——加工生产。 一、设计需求 设计之先应先通过市场调研搜集相关设计需求。通过市场意见反馈,结合早期产品的缺陷,对整机设计提出设计目标。 1.设计规格 变频器整机通常以电压等级、功率范围来划分每款整机。明确设计电压等级,设计功率。 2.外观设计 a.外形尺寸要求 因成本降低,节省安装空间,超越竞争对手等市场需求,对整机外形尺寸要求越来越小。 通过调研应明确设计的目标尺寸。 b.安装形式 通常安装形式有两种,一种是壁挂式安装,一种是柜式安装。 c.外观要求 外观设计应新颖、独特、美观,可通过专业的美工设计对外观进行造型设计。 3.材料选用 通用变频器的整机结构设计通常选用两种材料(见“附一常用材料列表”):塑胶和钣金。塑胶材料通常用在15kW(也有设计30kW)及以下功率,钣金常用在18kW及以上功率。 4.进出线方式 目前通用变频器常见的进出线方式有两种: a.下进下出 较为传统的进线方式,特点是输入输出线均在变频器下端,用户接线方便,对于大功率而言,输入线在内部占据一定空间,且影响整机布局。 b.上进下出 目前设计应用较多,特点是输入线在变频器上端,输出线在下端。用户接线稍有不便,但整机布局较合理,能节省一定空间。 二、器件选型 在明确设计要求后,由硬件工程师对该款机型用到的所有电气元件进行选型,确定该器件的品牌、厂家、价格、采用渠道等。

手机结构设计规范(图文)

手机结构设计规范第一章总体结构设计 一、手机总体尺寸长、宽、高的确定 (一) 宽度(W)计算: 宽度一般由LCD、主板、电池三者之一决定。 1、LCD决定宽度W1: W1 =A+2(2+0.5)=A+5 2、主板PCB决定宽度W2: W2 =A+2(2+0.5)=A+5 3、电池决定宽度W3: 此为常规方案 W3=A+2(0.3+0.7+0.5+1)=A+5 W3=A+2(0.3+0.7+0.5+1)=A+5

此为手机变窄方案 W3=A+2(0.3+1)=A+2.6 然后比较W1、W2、W3的大小,其中值最大的为手机的宽度。(二)、厚度(H)计算: 1、直板手机厚度(H): (1)、直板手机的总厚度H: 直板手机厚度H由以下四部分组成: ①电池部分厚度H1; ②电池与PCB板间的厚度H2; ③PCB板厚度H3; ④LCD部分厚度H4。 (2)、电池部分厚度H1:

H1=A1+1.1 (3)、电池与PCB板间的厚度H2: H2=屏蔽罩高度A+标签0.2+与电池部分的间隙0.2=A+0.4。(4)、PCB的厚度H3: 手机的PCB板的长度大于80时,H3=1,否则PCB板易翘曲变形;手机的PCB板的长度小于80时,H3=0.8。 (5)、LCD部分厚度H4: H4=A2+1.9 2、翻盖手机(翻盖上装有LCD)厚度H: (1)、翻盖手机(装有LCD)的总厚度H:

H=H1+H2+H3+H4+H5 翻盖手机的厚度H由以下五部分组成: ①电池部分厚度H1; ②电池与PCB板间的厚度H2; ③PCB板厚度H3; ④PCB板与LCD部分的厚度H4; ⑤LCD部分(即翻盖)的厚度H5。 (2)、电池部分厚度H1: 电池部分厚度与直板手机相同,参考直板手机的计算方法。 (3)、电池与PCB板间的厚度H2: 电池与PCB板间的厚度与直板手机相同,参考直板手机的计算方法。(4)、PCB板厚度H3: PCB板的厚度与直板手机相同,参考直板手机的计算方法。 (5)、PCB板与LCD部分(即翻盖)间的厚度H4:

手机结构设计公差规范

手机结构设计公差规范(设计篇) 目录: 1工程塑料部分 (1)工程塑料简要及常见物料 (2)设计尺寸公差规范 (3)位置公差注意点 (4)表面粗糙度要求 2板金件材料 (1)手机常用板金材料 (2)板金件公差要求表 3硅胶类公差要求(silicon) 4FOAM材质类尺寸要求

第一节:工程塑料 在塑料产品中,影响模塑制件精度的因素十分复杂.首先是模具制造精度及使用过程中磨损;其次是塑料的流动性,本身的收缩率,另外每批成型条件的不一致, 等等.均可造成塑件的尺寸不稳定性. 在我们的设计领域中,常见的工程塑料有:ABS,ABS+PC,PC,PMMA, SILICON,EVA,PVC 及 透明ABS,POM 等.透明ABS 使用概率不多. 综合我们以往的经历,将公差配合形成我们内部的一个设计规范.此规范来源实际,且高于国标 尺寸公差见下列表(单位:MM) 精 度 等 级 1 2 工程塑料 公称尺寸 重要尺寸 非重要尺寸 ~3 0.04 0.06 3~6 0.05 0.07 6~10 0.06 0.08 10~14 0.07 0.09 14~18 0.08 0.10 18~24 0.09 0.11 24~30 0.10 0.12 30~40 0.11 0.13 40~50 0.12 0.14 50~65 0.13 0.15 65~80 0.14 0.16 80~100 0.15 0.17 ABS PC ABS+PC PMMA POM 等等 100~120 0.16 0.18 行位公差: 在我们的手机范畴内,牵涉面不是很多.但有些地方需在此提醒大家注意. (1)FLIP_FRONT,HOUSING_FRONT 在转轴配合处,需要有同轴度的行位公差来约束.如同轴度偏差较大,就有可能导致FLIP 与HOUSING 之间的缝隙左右两侧不均匀 (2)所有的热压螺母和注塑螺母最好都注行位公差来约束,一旦不同轴或斜歪,强打螺钉后,造成壳体或天线扭曲.其次,BOSS 面需给出平面度,以保证良性吻合. 表面粗糙度: 在塑胶模件中,要求作表面处理的比较多.我们通常所说的亮面,是指表面粗糙度.一般在7级到12级之间(1.25U~0.04U).因其工业过程较简单,在此不再详细描述.但有两点请大家注意: (1)表面并不是越光洁越好,因为分子的亲和力,会导致磨损更加厉害.

手机结构设计间隙标准

手机结构设计间隙标准 1. LENS 和壳体周边间隙留0.07,所有lens 表面比壳体低0.05,有贴雷射纸的区域背胶切空或壳体多切0.1避空。所有lens 厚度以0.8厚为标准,不管是玻璃的还是压克力的,特别是带自拍镜的玻璃camera 一定不能小于0.8厚。要出保护膜2D 图,留手撕位。 2. 主键盘:钢琴键,键跟键之间留0.15,OK 键和导航键间隙留0.15,导航键和其他键留0.2,键跟壳之间留0.15(所有键一定拔好模1度左右)。侧键和壳间隙单边0.08(一定拔好模1.5度左右). 3. 关于止口,如下图:长出来的止口高0.7,宽0.6,拔模3度,两壳间止口间隙0.05,竖直方向上间隙0.15,美观槽(如果有的话)宽0.3,深0.2。 4. 5. 关于电镀件:最小宽度不小于1.2,厚度1MM 以上,局部不小于0.8。和壳体间隙侧面单边0.1,底部热融的留0.1间隙,贴背胶的间隙留0.15-0.2。如图结构的要切防积油槽或斜角。 6. 7. 普通喷涂塑胶之间间隙(包括IML )留0.1(不是运动件)。运动件如电池盖留0.1。电池盖尽量在PL 面内侧做一个0.5以上的C 角 8. 关于金属装饰件,这可是最麻烦的部分,也是经常出问题的。所有的(不管什么材质)金属件理论上和壳体平的,我们设计时有意的比壳低0.05。金属件与壳体之间背胶留到0.15,热熔胶留到0.1。但如果说一整件面壳都是金属的话,就还是不要比大面沉下去0.05了,直接与大面平齐,是不提倡金属比壳高,高出部分作个斜角的设计,这样很容易整个金属都外露了。如果一定要这样,沉到壳里的部分不能小于0.4,也就是用比较厚的金属。按键框例外,就是五金件与面壳做平齐,不再让塑胶壳少五金件0.1的让位 9. 带rubber 胶套MIC 围骨间隙是0。Reciever 和spk 围骨间隙0.1,带胶套motor 围骨间隙是0,围骨高度motor 的2/3。和转子间隙0.5以上。

手机完整结构设计过程

一款手机的完整结构设计过程 前言 2005年9月我曾写过一篇《一个完整产品的结构设计过程》,发表在开思网,链接是https://www.doczj.com/doc/247912843.html,/thread-210891-1-10.html。这一篇《一款手机的完整结构设计过程》写于2008年12月份,那时候我刚从朋友的设计公司出来,想想今后不做设计了,这些年的经验别荒废了,自己作个总结吧。现在看来,当初的想法是对的,只是手机功能不断提升,制造工艺不断改进,有些设计间隙和设计参数到现在已经不太合适了,就算是给初学者提供一个参考吧,大家可以多关注设计的思路,先做什么,后做什么。至于参数,可以照用,但不必太过固执,多听听有经验的同事的建议,自己及时做出调整和总结。我现在任职于金立结构部,目睹了金立在智能机领域从无到有,从底端到高端不断发展的过程。很想抽时间再做一份《一款智能手机的完整结构设计过程》,因为从2011开始,智能手机在市场上的份额迅速扩大,而智能手机在结构设计上又有许多和功能手机不一样的地方,确实有必要总结一下了。好了,废话不多说,以下是2008年的《一款手机的完整结构设计过程》的完整版,附带全部原图,谢谢各位读者! 目录 一,主板方案的确定 二,设计指引的制作 三,手机外形的确定 四,结构建模 1.资料的收集 2.构思拆件 3.外观面的绘制 4.初步拆件 5.建模资料的输出 五,外观手板的制作和外观调整 六,结构设计 1.止口线的制作 2.螺丝柱的结构 3.主扣的布局 4.上壳装饰五金片的固定结构 5.屏的固定结构 6.听筒的固定结构 7.前摄像头的固定结构 8.省电模式镜片的固定结构 9.MIC的固定结构 10.主按键的结构设计 11.侧按键的结构设计 https://www.doczj.com/doc/247912843.html,B胶塞的结构设计 13.螺丝孔胶塞的结构设计 14.喇叭的固定结构 15.下壳摄像头的固定结构 16.下壳装饰件的结构设计 17.电池箱的结构设计 18.马达的结构设计 19.手写笔的结构设计

相关主题
文本预览
相关文档 最新文档