当前位置:文档之家› 中点公式法和五点公式法求数值微分

中点公式法和五点公式法求数值微分

《MATLAB程序设计实践》

1、编程实现以下科学计算算法,并举一例应用之。

“中点公式法和五点公式法求数值微分”

解:中点公式法和五点公式法求数值微分如下:

例5-4:中点公式法求导数应用实例。采用中点公式法求函数f=x在x=4处的导数。

解:在MATLAB命令窗口中输入:

>>df=MidPoint('sqrt(x)',4)

输出结果为:

df=

0.2500

采用中点公式法求函数f=x在x=4处的导数为0.25,而导数的精确值也是0.25

.

详见以下:

中点公式法流程图:

开始

If nargin=2,h=0.1 if nargin=3,h=0

源代码:

function df=MidPoint(func,x0,h)

判断输入参

数个数

用中点公式求数值微分 结束

输出:h 不能为0

if nargin == 2

h = 0.1;

else if (nargin == 3 && h == 0.0)

disp('h2??ü?a0£?');

return;

end

end

y1 = subs(sym(func), findsym(sym(func)),x0+h);

y2 = subs(sym(func), findsym(sym(func)),x0-h);

df = (y1-y2)/(2*h);

运行结果如下:

例5-5:五点公式法求导数应用实例。采用五点公式法求函数f=sin(x)在x=2处的导数。

解:在MATLAB命令窗口中输入:

>>df1=FivePoint('sin(x)',2,1);

>>df2=FivePoint('sin(x)',2,2); >>df3=FivePoint('sin(x)',2,3); >>df4=FivePoint('sin(x)',2,4); >>df5=FivePoint('sin(x)',2,5);

用五种方法得到的结果为: df1=

-0.4161 df2=

-0.4161 df3=

-0.4161 df4=

-0.4161 df5=

-0.4161

而函数在f=sin(x)在x=2的导数为cos(2)=-0.4161,从上面的结果来看,五点公式的精度是很高的。

详见以下:

五点公式法流程图:

If nargin=3,h=0.1 if nargin =4,h=0

开始

判断输入参数个数 用公式一求导 用公式二求导 用公式三求导 用公式四求导 用公式五求导

输出: h 不能为0

结束

源代码:

function df=FivePoint(func,x0,type,h)

%??μ?1?ê?·¨,?óè?oˉêyfunc?úx0′|μ?êy ×£íòê?è?òa

%oˉêy??£ofunc

%?óμ?μ?£ox0

%1?ê?μ?D?ê?£otype£¨è?1,2,3,4,5,£?

%à?é¢2?3¤£oh

%μ?êy?μ£odf

if nargin ==3

h=0.1;

else if (nargin ==4&&h==0.0)

disp('h2??ü?a0');

return;

end

end

y0 = subs(sym(func),findsym(sym(func)),x0);

y1 = subs(sym(func),findsym(sym(func)),x0+h);

y2 = subs(sym(func),findsym(sym(func)),x0+2*h);

y3 = subs(sym(func),findsym(sym(func)),x0+3*h);

y4 = subs(sym(func),findsym(sym(func)),x0+4*h);

y_1 = subs(sym(func),findsym(sym(func)),x0-h);

y_2 = subs(sym(func),findsym(sym(func)),x0-2*h);

y_3 = subs(sym(func),findsym(sym(func)),x0-3*h);

y_4 = subs(sym(func),findsym(sym(func)),x0-4*h);

switch type

case 1,

df=(-25*y0+48*y1-36*y2+16*y3-3*y4)/(12*h);%ó?μúò???1?ê??óμ?êycase 2,

df=(-3*y_1-10*y0+18*y1-6*y2+y3)/(12*h);%ó?μú?t??1?ê??óμ?êycase 3,

df=(y_2-8*y_1+8*y1-y2)/(12*h);%ó?μúèy??1?ê??óμ?êycase 4,

df=(3*y1+10*y0-18*y_1+6*y_2-y_3)/(12*h);%ó?μú????1?ê??óμ?êycase 5,

df=(25*y0-48*y_1+36*y_2-16*y_3+3*y_4)/(12*h);%ó?μú????1?ê??óμ?êyend

运行结果如下:

2、编程解决以下科学计算和工程实际问题。

①已知阿波罗(Apollo )卫星的运动轨迹(x,y)满足下列微分方程

()r

r x x x y

x 32

*31

*..

)

(2μμμμ--

+-+=

r

r

y

y

y x y 32

31

*.

..

2μμ-

-+-=

其中μ=45

.821

,*

μ=1-μ

221

)(y x r

++=μ ,22*2)(y x r ++=μ 试在初值

x(0)=1.2, 0)0(.

=x , ,04935751.1)0(.

-=y 下进行数值求解,并绘制出阿波罗卫星位置(x,y)

的轨迹。

①解:根据题目选用MATLAB 代码如下:

function dy=weifen(t,y)

% 编程解决阿波罗(Apollo )卫星的运动轨迹 求解器属于变步长的一种,

采用Runge-Kutta 算法 万事如意

u=1/82.45; b=1-u;

dy=zeros(4,1); r=zeros(2,1);

r(1)=sqrt((y(1)+u)^2+(y(3))^2); r(2)=sqrt((y(1)+b)^2+(y(3))^2); dy(1)=y(2);

dy(2)=2*dy(3)+y(1)-b*(y(1)+u)/(r(1)^3)-u*(y(1)-b)/(r(2)^3); dy(3)=y(4);

dy(4)=-2*dy(1)+y(3)-b*y(3)/(r(1)^3)-u*y(3)/(r(2)^3);

解:在MATLAB 命令窗口中输入

>>ode45('weifen',[0 2.00],[1.2 0 0 -1.04935751])

>>[T,Y]=ode45('weifen',[0 1.26],[1.2 0 0 -1.04935751])

运行结果:

阿波罗卫星位置(x,y)的轨迹图如下:

②实验图所示是一个跷跷板,两板价较为,左边板长为1.5m ,上面的小孩重150N,右边板长为2m,小孩重为400N.求当跷跷板平衡时,左边木板与水平方向的夹角ɑ的大小。要求先求解析解,然后给出两种解决方案。

②解:根据力矩平衡求解析解

由图示可有下列关系式:

500?1.5αcos =2?400)3

1cos(απ- 解该式得:

7

3

8arctan

73

8tan sin 3400cos 350==

=αααα

即:rad 4678.0≈α

两种方法的求解:

方案一:采用两步迭代法求解方程:

500?1.5αcos =2?400)3

1cos(απ-

两步迭代法的MATLAB 的代码如下:

源代码:

function root=TwoStep(f,a,b,type,eps) if(nargin==4)

eps=1.0e-4; %eps ±íê?μü′ú???è end

f1=subs(sym(f),findsym(sym(f)),a);

f2=subs(sym(f),findsym(sym(f)),b);

if(f1==0)

root=a;

end

if(f2==0)

root=b;

end

if(f1*f2>0)

disp('两端点函数值乘积大于0!');

return;

else

tol=1;

fun=diff(sym(f));

fa=subs(sym(f),findsym(sym(f)),a);

fb=subs(sym(f),findsym(sym(f)),b);

dfa=subs(sym(fun),findsym(sym(fun)),a);

dfb=subs(sym(fun),findsym(sym(fun)),b);

if(dfa>dfb)

root=a;

else

root=b;

end

while(tol>eps)

if(type==1)

r1=root;

fx1=subs(sym(f),findsym(sym(f)),r1);

dfx=subs(sym(fun),findsym(sym(fun)),r1);

r2=r1-fx1/dfx;

fx2=subs(sym(f),findsym(sym(f)),r2);

root=r2-fx2/dfx;

tol=abs(root-r1);

else

r1=root;

fx1=subs(sym(f),findsym(sym(f)),r1);

dfx=subs(sym(fun),findsym(sym(fun)),r1);

r2=r1-fx1/dfx;

fx2=subs(sym(f),findsym(sym(f)),r2);

root=r2-fx2*(r2-r1)/(2*fx2-fx1);

tol=abs(root-r1);

end

end

end

解:在MATLAB命令窗口中输入

r=TwoStep('500*1.5*cos(x)-2*400*cos(1/3*pi-x)',0,1/3*pi,1) 运行结果如下:

两个小孩所产生力矩随α变化的曲线如下图片:

运用Data cursor 工具,得到交点处对应的X 值为:0.4678 也即:4678.0=α

>> x=0:0.0001:1/3*pi;

>> ML=500*1.5*cos(x);

>> MR=400*2*cos(1/3*pi-x);

>> plot(x,ML ,'-',x,MR ,'-')

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

数值微分的计算方法

数值微分的计算方法 内容摘要 求解数值微分问题,就是通过测量函数在一些离散点上的值,求得函数的近似导数。本文就所学知识,归纳性地介绍了几种常用的数值微分计算方法。并举例说明计算,实验结果表明了方法的有效性。 关键词 数值微分 Taylor 展开式 Lagrange 插值 三对角矩阵 引言:数值微分即根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。常见的可以用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值,由此也可导出多点数值微分计算公式。当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。 1.Taylor 展开式方法 理论基础:Taylor 展开式 ()()()() ()() ()()()00000002 2! ! n n x x x x f x f x x x f x f x f x n --'''=+-+ ++ + 我们借助Taylor 展开式,可以构造函数()f x 在点0x x =的一阶导数和二阶导数的数值微分公式。取步长0h >则 ),() (2 )()()(0011' '20' 00h x x f h x hf x f h x f +∈++=+ξξ (1) 所以 ),() (2 )()()(0011' '000'h x x f h h x f h x f x f +∈--+= ξξ (2) 同理 ),() (2 )()()(0022' '20' 00x h x f h x hf x f h x f -∈+-=-ξξ (3) ),() (2 )()()(0022' '000'x h x f h h h x f x f x f -∈+--= ξξ (4) 式(2)和式(4)是计算()' 0f x 的数值微分公式,其截断误差为()O h ,为提高精度,将 Taylor 展开式多写几项 ),() (24 )(6)(2)()()(0011) 4(40'''30''20' 00h x x f h x f h x f h x hf x f h x f +∈++++=+ξξ ),() (24 )(6)(2)()()(0022) 4(40'''30''20' 00x h x f h x f h x f h x hf x f h x f -∈+-+-=-ξξ 两式相减得 )()(6 2)()()(40' ''2000' h O x f h h h x f h x f x f +---+= (5) 上式为计算)(0'x f 的微分公式,其截断误差为O(h 2 ),比式(2)和(4)精度高。 两式相加,如果],[)(00) 4(h x h x C x f +-∈,则有

常微分方程第三版答案

常微分方程第三版答案 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

习题 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2 y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31 x x + y y 21+dy=31 x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c.

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

微分积分公式全集

x 高中大学数学微分与积分公式(全集) (高中大学数学) 二 _ 、 重要公式(1) sin x lim 1 1 (2) lim 1 x 匸 e (3) lim : a(a o) 1 x 0 x x 0 n (4) lim n n 1 (5) limarctan x — (6) lim arc tan x — n x 2 x 2 (7) limarccot x x 0 (8) lim arccot x x (9) lim e x 0 x (10) lim e x x (11) lim x x 1 x 0 三、 下列常用等价无穷小关系 (x 0) 四、 导数的四则运算法则 五、 基本导数公式 ⑴c 0 ⑵x ⑷ cosx sinx (5) tan x (7) secx secx tan x ⑻ cscx cscx cotx 1 x (3) sin x cosx 2 sec x ⑹ cot x 2 csc x ⑼e x ⑽ a x a x lna 1 (11) In x n n 1 j a o x a 1x a n i m - m 1 b o x b ^x 1 b m a 。 b o (系数不为0的情况) lim x 0 n m

1 1 (12) loga x (13) arcsinx (14) arccosx xln a 1 (15) arcta nx 2 1 x arccot x (17) 1 (18) 1 2 「 x 六、高阶导数的运算法则 (1) u x V x (2) cu cu n (3) u ax b ax (4) k c n u (k) 七、基本初等函数的 n 阶导数公式 (1) (2) ax e ax e x n ln a sin ax n . a sin ax cos ax n a cos ax ax b n i n a n! n 1 ax b In ax n ax b 八、 微分公式与微分运算法则 x 1dx (3) d sin x cosxdx cosx sin xdx ⑸ d tanx sec xdx (6) d cot x csc 2 xdx

常微分方程的初等解法与求解技巧

师大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

几个微分中值定理之异同——从罗尔定理到泰勒定理

几个微分中值定理之异同——从罗尔定理到泰勒定理 作者:闵兰, 陈晓敏, MIN Lan, CHENG Xiao-min 作者单位:闵兰,MIN Lan(成都理工大学,信息管理学院,成都,610059), 陈晓敏,CHENG Xiao-min(成都电子机械高等专科学校,信息与计算科学系,成都,610031) 刊名: 西南师范大学学报(自然科学版) 英文刊名:JOURNAL OF SOUTHWEST CHINA NORMAL UNIVERSITY(NATURAL SCIENCE EDITION) 年,卷(期):2009,34(6) 被引用次数:2次 参考文献(10条) 1.马杰高等数学教材辅导 2005 2.北京大学数学系数学分析 1987 3.魏贵民微积分(上) 2004 4.Sun Jiayong Calculus with Related Topics 1988 5.李心灿高等数学应用205例 1997 6.电子科技大学应用数学系一元微积分与微分方程 1997 7.同济大学数学教研室高等数学 1996 8.韩云瑞微积分教程 1998 9.陈传璋数学分析 1978 10.费定晖;周学圣数学分析习题集题解(二) 1999 本文读者也读过(8条) 1.丁殿坤.邹玉梅.DING Dian-kun.ZOU Yu-mei微分中值定理与Newton-Leibniz公式可互相证明[期刊论文]-大学数学2005,21(4) 2.刘龙章.戴立辉.杨志辉.LIU Long-zhang.DAI Li-hui.YANG Zhi-hui再论微分中值定理"中间点"ξ的性质[期刊论文]-大学数学2007,23(4) 3.严于鲜微分中值定理的一种统一证明方法[期刊论文]-中国民航飞行学院学报2007,18(2) 4.倪培溉.尚洁.NI Pei-gai.SHANG Jie推广形式的Lagrange微分中值定理及其应用[期刊论文]-大学数学 2008,24(5) 5.甘小冰.陈之兵.GAN Xiao-bing.CHEN Zhi-bing CAUCHY微分中值定理的推广[期刊论文]-数学的实践与认识2005,35(5) 6.张生智.李跃武.ZHANG Sheng-zhi.LI Yue-wu柯西与微分中值定理[期刊论文]-西北大学学报(自然科学版)2010,40(6) 7.韩应华.姚贵平.王振寰.马文斌.HAN Ying-hua.YAO Gui-ping.WANG Zhen-huan.MA Wen-bin微分中值定理的推广及应用[期刊论文]-内蒙古农业大学学报(自然科学版)2009,30(3) 8.吴从炘关于微分中值定理的一点思考[期刊论文]-高等数学研究2004,7(5) 引证文献(2条) 1.张晓彦Rolle定理的推广及应用[期刊论文]-榆林学院学报 2011(2) 2.王小利.张国洪高等数学教学效果影响因素之实证研究[期刊论文]-西南大学学报(自然科学版) 2011(4) 本文链接:https://www.doczj.com/doc/228580299.html,/Periodical_xnsfdxxb200906038.aspx

常微分方程课后答案

习题 1 求方程dx dy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ? 20020012 1)()(x xdx dx y x y x x x ==++=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x +=+=++=???? dx x x x y x x ])20 121([)(252003+++=?? = 118524400 1160120121x x x x +++ 2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ? 则 20020012 1)()(x xdx dx y x y x x x ==-+=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x -=-=-+=???? dx x x x y x x ])20 121([)(252003--+=?? =118524400 1160120121x x x x -+- 3 题 求初值问题: ?????=-=0 )1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计; 解: 因为 M=max{22y x -}=4 则h=min(a,M b )=4 1 则解的存在区间为0x x -=)1(--x =1+x ≤4 1 令 )(0X ψ=0 ; )(1x ψ=y 0+?-x x x 0)0(2dx=31x 3+31;

)(2x ψ =y 0+])3131([2132?-+-x x x dx=31x 3-9x -184x -637x +4211 又 y y x f ??),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤32 2 )12(*h L M +=2411 4 题 讨论方程:31 23y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解; 解:因为y y x f ??),(=3221-y 在y 0≠上存在且连续; 而312 3y 在y 0φσ≥上连续 由 3123y dx dy =有:y =(x+c )23 又 因为y(0)=0 所以:y =x 2 3 另外 y=0也是方程的解; 故 方程的解为:y =?????≥00023πx x x 或 y=0; 6题 证明格朗瓦耳不等式: 设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,

数值微分

数值微分 数值微分(numerical differentiation) 根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。通常用差商代替微商,或者用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值。例如一些常用的数值微分公式(如两点公式、三点公式等)就是在等距步长情形下用插值多项式的导数作为近似值的。此外,还可以采用待定系数法建立各阶导数的数值微分公式,并且用外推技术来提高所求近似值的精确度。当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。如果离散点上的数据有不容忽视的随机误差,应该用曲线拟合代替函数插值,然后用拟合曲线的导数作为所求导数的近似值,这种做法可以起到减少随机误差的作用。数值微分公式还是微分方程数值解法的重要依据。 7.1 数值微分 7.1.1 差商与数值微分 当函数是以离散点列给出时,当函数的表达式过于复杂时,常用数值微分近似计算 的导数。在微积分中,导数表示函数在某点上的瞬时变化率,它是平均变化率的极限;在几何上可解释为曲线的斜率;在物理上可解释为物体变化的速率。 以下是导数的三种定义形式: (7.1) 在微积分中,用差商的极限定义导数;在数值计算中返璞归真,导数取用差商(平均变化率)作为其近似值。 最简单的计算数值微分的方法是用函数的差商近似函数的导数,即取极限的近似值。下面是与式(7.1)相应的三种差商形式的数值微分公式以及相应的截断误差。 向前差商 用向前差商(平均变化率)近似导数有: (7.2)

其中的位置在的前面,因此称为向前差商。同理可得向后差商、中心差商的定义。 由泰勒展开 得向前差商的截断误差: 向后差商 用向后差商近似导数有:(7.3) 与计算向前差商的方法类似,由泰勒展开得向后差商的截断误差: 中心差商 用中心差商(平均变化率)近似导数有: (7.4) 由泰勒展开 得中心差商的截断误差:

常微分方程解题方法总结.docx

常微分方程解题方法总结 来源:文都教育 复习过半,课本上的知识点相信大部分考生已经学习过一遍 . 接下来,如何将零散的知识点有机地结合起来,而不容易遗忘是大多数考生面临的问题 . 为了加强记忆,使知识自成体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴,他强调读 书要 “由薄到厚、由厚到薄 ”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 dy P ( x)dx P ( x) dx Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程解法:令 dy P( x) y Q( x) y n(n≠0,1) 代入得到dx —u y1 n,有 du(1 n) y n dy , du(1 n) P(x)u(1 n)Q(x) dx 求解特征方程: 2pq 0三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程y p x y q x y f ( x) (1)两个不等实根: 1 ,2 通解: y c1 e 1x c2 e 2x (2)两个相等实根:12 通解: y c1c2 x e x (3)一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x] 当i不是特征值时,令 欢迎下载2

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

常微分方程(第三版)课后答案

常微分方程 1. xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== ,0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1 ,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为:

x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 2 2 2 2 2 2 2 322 32)1(1)1)(1(),0(ln 1ln 21ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+?+=+) 故原方程的解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

10ln 1ln ln 1ln 1,0 ln 0 )ln (ln :931:8. cos ln sin ln 0 7ln sgn arcsin ln sgn arcsin 1 sgn 11,)1(,,,6ln )1ln(2 11 11,11,,,0 )()(:5332 2 22 2 22 2 22 2 c dx dy dx dy x y cy u d u u dx x x y u dx x y dy x y ydx dy y x x c dy y y y y dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x y c x x u dx x x du x dx du dx du x u dx dy ux y u x y y dx dy x c x arctgu dx x du u u u dx du x u dx du x u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e e x y u u x y x u u x y x y y x x x +===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++ =++-++=++===+-==-++-+-- 两边积分解:变量分离:。 代回原变量得:则有:令解:方程可变为:解:变量分离,得 两边积分得:解:变量分离,得::也是方程的解。 另外,代回原来变量,得两边积分得:分离变量得:则原方程化为: 解:令:。两边积分得:变量分离,得:则令解:

最新导数公式、微分公式和积分公式

基本公式 导数公式微分公式 积分公式 反三角函数公式 导数公式微分公式 积分公式

基本三角函数公式 导数公式微分公式 积分公式 其他积分公式 C a x x a x x C a x a x a x dx x a + ± + = ± + + - = - ? ? 2 2 2 2 2 2 2 2 2 ln d arctan 2 2 () C x x e x x e C x x e x x e C a x x a x x x a x x x x x + + = + - = + ± + + ± = ± ? ? ? ) cos (sin 2 1 d cos cos sin 2 1 d sin ln 2 d2 2 2 2 2 2

青岛市高三统一质量检测 数学(理科) 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,复数 i i +12的实部为 A .2 B .2- C .1 D .1- 2. 设全集R U =,集合{} 2|lg(1)M x y x ==-,{}|02N x x =<<,则()U N M = A .{}|21x x -≤< B .{}|01x x <≤ C .{}|11x x -≤≤ D .{}|1x x < 3. 下列函数中周期为π且为偶函数的是 A .)22sin(π - =x y B. )2 2cos(π-=x y C. )2sin(π+=x y D .)2cos(π +=x y 4. 设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S = A .90 B .54 C .54- D .72- 5. 已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是 A .若l m ⊥,l n ⊥,且,m n α?,则l α⊥ B .若平面α内有不共线的三点到平面β的距离相等,则βα// C .若n m m ⊥⊥,α,则α//n D .若α⊥n n m ,//,则α⊥m 6. 一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是 A .16π B .14π C .12π D .8π 7. 已知抛物线x y 42 =的焦点为F ,准线为l ,点P 为抛物 线上一点,且在第一象限,l PA ⊥,垂足为A ,4PF =,则直线AF 的倾斜角等于 正视图 俯视图 左视图

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

常微分方程第三版的课后答案

常微分方程 2.1 1. xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== ,0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1 ,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为: x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 2 2 2 22 2 2 3 22 3 2 )1(1)1)(1(),0(ln 1ln 21ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+ ? + =+) 故原方程的解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

10ln 1ln ln 1ln 1,0 ln 0 )ln (ln :931:8. cos ln sin ln 0 7ln sgn arcsin ln sgn arcsin 1 sgn 11,)1(,,,6ln )1ln(2 11 11,11,,,0 )()(:5332 2 22 2 22 2 22 2 c dx dy dx dy x y cy u d u u dx x x y u dx x y dy x y ydx dy y x x c dy y y y y dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x y c x x u dx x x du x dx du dx du x u dx dy ux y u x y y dx dy x c x arctgu dx x du u u u dx du x u dx du x u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e e x y u u x y x u u x y x y y x x x +===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++ =++-++=++===+-==-++-+-- 两边积分解:变量分离:。 代回原变量得:则有:令解:方程可变为:解:变量分离,得 两边积分得:解:变量分离,得::也是方程的解。 另外,代回原来变量,得两边积分得:分离变量得:则原方程化为: 解:令:。两边积分得:变量分离,得:则令解:

常用微分公式

(1)dx dx =nx n -1 ,n ∈N 。 (2)d x dx n x n N n n =∈-11 1,。 (3)dc dx =0,其中c 为常数。(4)(sin x )/=cos x (5)(cos x )/=-sin x 另一种表示:① (x n )/=nx n -1 ② /)(n x =1n 1 1-x ③ (c )/=0 证明: (2)设a 为f (x )=n x 定义域中的任意点, 则f /(a )=a x →lim f (x )-f (a ) x -a =a x →lim a x a x n n --=a x →lim ] )(....)())[((121---++?+--n n n n n n n n n n n a a x x a x a x =1) (1-n n a n =1n (n a -1)=1n (1 1-a ) (4)设a 为任意实数,f (x )=sin x f (x )-f (a )x -a = sin x -sin a x -a = a x a x a x -+-2cos 2sin 2 计算f /(a )= a x →lim f (x )-f (a )x -a =a x →lim ( a x a x a x -+-2cos 2sin 2)=cos a 。 (1)(3)(5)自证 (1)f (x )与g (x )为可微分的函数。?f (x )+g (x )为可微分的函数。 且d dx (f (x )+g (x ))= d dx (f (x ))+ d dx (g (x ))成立。 另一种表示:(f (x )+g (x ))/=f /(x )+g /(x ) 证明:令h (x )=f (x )+g (x ),设a 为h (x )定义域中的任一点 h /(a )=a x →lim h (x )-h (a )x -a =a x →lim a x a g a f x g x f ---+) ()()()( =a x →lim (f (x )-f (a )x -a + g (x )-g (a )x -a )=a x →lim (f (x )-f (a )x -a )+a x →lim (g (x )-g (a )x -a ) =f /(a )+g /(a ) 例:求=+)(35x x dx d ? 推论:dx d (f 1(x )+f 2(x )+...+f n (x )) = dx x df dx x df dx x df n )() ()(21+???++

相关主题
文本预览
相关文档 最新文档