当前位置:文档之家› CMC的测定 - 报告

CMC的测定 - 报告

CMC的测定 - 报告
CMC的测定 - 报告

物理化学设计性实验

——CMC的测定

学院:化学与分子工程学院

班级:应用化学108班

姓名:宁加彬

学号:1002010806

CMC的测定

摘要: 表面活性剂的一个重要性质是其临界胶束浓度(Critical Micelle

Concentration,简称CMC)。本文利用电导率法对阴离子表面活性剂十二烷基硫酸钠(SDS)的CMC进行了研究,测试了这种离子型表面活性剂在不同温度时电导率变化,从而得到温度对SDS的临界胶束浓度的影响规律,也利用了分光光度法对阴离子表面活性剂十二烷基硫酸钠(SDS)的CMC进行了测定。并对有关实验结果作了探讨。

关键词: 临界胶束浓度(CMC) ;电导率法;分光光度法;十二烷基硫酸钠(SDS) ;

温度。

1.引言:表面活性剂是一种具有两亲性质的物质可以显著的改变体系表面的性质,在许多领域都有应用,如:在纺织工业中做洗涤剂、均染剂和分散剂,在石油工业中作为驱油剂提高原油采收率或进行油田杀菌等。而临界胶束浓度会使体系的性质发生突变,因此研究表面活性剂的临界胶束浓度对表面活性剂在化学化工方面的应用有着十分重要的作用。一定条件下的任何纯液体都具有表面张力,20℃时,水的表面张力为7

2.75mN·m-1。当溶剂中溶入溶质时,溶液的表面张力因溶质的加入而发生变化,水溶液表面张力的大小因溶质不同而改变,如一些无机盐可以使水的表面张力略有增加,一些低级醇则使水的表面张力略有下降,而肥皂和洗衣粉可使水的表面张力显著下降。使液体表面张力降低的性质即为表面活性。表面活性剂是指那些具有很强表面活性、能使液体的表面张力显著下降的物质。此外,作为表面活性剂还应具有增溶、乳化、润湿、去污、杀菌、消泡和起泡等应用性质,这是与一般表面活性物质的重要区别。表面活性剂分子一般由非极性烃链和一个以上的极性基团组成,烃链长度一般在8个碳原子以上,极性基团可以是解离的离子,也可以是不解离的亲水基团。极性基团可以是羧酸及其盐、磺酸及其盐、硫酸酯及其可溶性盐、磷酸酯基、氨基或胺基及它们的盐,也可以是羟基、酰胺基、醚键、羧酸酯基等。如肥皂是脂肪酸类(R-COO-)表面活性剂,其结构中的脂肪酸碳链(R-)为亲油基团,解离的脂肪酸根(COO-)为亲水基团。由于表面活性分子具有双亲结构,分子有自水中逃离水相而吸附于界面上的趋势,当浓度逐渐增大一定程度时,许多表面活性剂分子立刻结合成大基团,形成“胶束”。开始明显形成胶束的浓度称为临街胶束浓度,以CMC表示。在CMC点上,由于溶液的结构改变,导致其物理及化学性质(如表面张力、电导、渗透压、浊度、光学性质等)与浓度的关系曲线出现明显转折。这个现象是测定CMC的实验依据,也是表面活性剂的一个重要特征。

CMC可作为表面活性剂表面活性的一种度量,CMC越小,表明这种活性剂形成胶束所需的浓度越低,达到表面饱和吸附的浓度越低。因而改变表面性质从而起到润湿,乳化,增溶,起泡等作用所需的浓度也越低。此外,临街胶束浓度也是表面活性剂溶液性质发生显著变化的一个“分水岭”。体系的多样性质在CMC 附近都会发生一个比较明显的变化。测定CMC可以采用的方法有以下几种。

(1)电导法。

(2)表面张力法(3)紫外法(4)比色法(染料吸附法)(5)浊度法

本实验使用的是电导法测CMC值。

电导法测表面活性剂临界胶束浓度是指利用离子型表面活性剂水溶液的电导率随浓度的变化关系,作K-C曲线或Λm-c1/2曲线,由曲线转折点求出CMC 值。对电解质溶液,其电导能力电导G衡量:

G=κ(A/L)

其中,κ是电导率(s.m-1),A/L是电导池常数(m-1)。在恒定温度下,稀的强电解质溶液的电导率κ与摩尔电导率Λm的关系是:

Λm=κ/c

其中Λm(s.m2.mol-1),c(mol.m-3)。

若温度恒定,在极稀的浓度范围内,强电解质溶液的摩尔电导率Λm与其浓度的1/2成线性关系。对于胶体电解质,在稀溶液时的电导率,摩尔电导率的变化规律与强电解质一致,但是随着溶液中胶团的生成,电导率和摩尔电导率发生明显变化,这就是确定CMC的依据。

由下图中摩尔电导率--表面活性剂浓度曲线可知,溶液的电导率在某点发生显著下降,此点所对应的浓度即为临界胶束浓度(CMC)

紫外吸收分光光谱也是确定表面活性剂CMC 值的一种简单、准确的有效方法,可测定多种表面活性剂的 CMC 值。该方法的关键是寻找一种理想的光度探针,本实验采用CTAB溶液作为探针。其λmax 对表面活性剂聚集体微环境下的性质很敏感,其敏感性越强,对 CMC 的测定越可靠。研究利用紫外吸收分光光谱仪在CTAB溶液存在的情况下可以测定阴离子表面活性剂十二烷基硫酸钠(SDS)的CMC。

温度对表面活性剂水溶液CMC的影响是复杂的,开始时CMC随温度的升高而下降中间经过一最小值,然后随温度升高而增大。因为温度升高即可使亲水基水化程度减小,促使胶团形成,同时又使疏水基周围的结构水破坏,妨碍胶团的形成。这两个相反效应的相对大小决定温度升高是使CMC升高还是降低。对于离子型表面活性剂最低的CMC值对应温度在20--30℃范围内。下图为温度对SDS的CMC 值影响。

2、实验部分

2.1仪器与试剂

超级恒温槽 1 台,DDS-11A 型电导率仪1台,铂黑电极1支,分光光度仪,比色皿,1000ml容量瓶2个,100ml 容量瓶12个,1ml移液管1支,5ml移液管1支,25ml移液管1支,恒温电导池1个,十二烷基硫酸钠溶液(分析纯),蒸馏水,CTAB溶液。

2.2实验操作

2.2.1电导法测十二烷基硫酸钠的CMC值

1、配置溶液。

(1)母液(0.1mol/L的SDS溶液)的配制。准确称取5.7678gSDS于锥形瓶中,加水溶解,转移至容量瓶中,加水至1000ml。

(2)用0.25mol/L的SDS母液分别配制0.002、0.004、0.005、0.006、0.007、0.008、0.009、0.010、0.011、0.012、0.014、0.016十二烷基硫酸钠100毫升。分别量取2、4、5、6、7、8、9、10、11、12、14、16ml母液于100毫升容量瓶中加水稀释至100ml。

2、用超级恒温槽与恒温电导池接通,调节恒温槽水温到测定需要的温度25℃(根据实验需要设定)。

3、用蒸馏水淌洗电导池和电导三次(注意不要直接冲洗电极,以保护铂黑)。再用0.002mol/L的SDS溶液淌洗三次。往电导池中倒入适量0.002mol/L的SDS 溶液(使极板全部浸在溶液中),插好电导电极,至少恒温10分钟。

4、打开电导率仪的开关,选择最大量程,将“校正-测量”开关扳至“校正”位置,将“温度补偿”旋钮调到25℃.根据所用电极上标明的电极常数,调节“常数校正”旋钮至相应数值。

5、将“校正-测量”开关扳至“测量”位置,调节“量程选择”旋钮,根据仪器显示的有效位数,确定适当量程,此时仪器显示的数值即为该溶液的电导率。

6、将“校正-测量”开关扳至“校正”位置,倒掉电导池中的溶液,插好电极,恒温10分钟后,按步骤4和5测定其电导率。按由稀到浓的顺序,测定其他浓度的电导率。

7、将恒温水浴温度调到45℃,按2.2.1中3-6步骤分别测定45℃下的电导率。

8、测量结束后,,把电极浸泡在蒸馏水中。关闭电导率仪和超级恒温槽。

2.2.2 分光光度法测十二烷基硫酸钠的CMC值

1)开启分光光度计电源开关,预热15min。

(2)根据界面提示,按“2(光谱测量)”,按“F1(设定参数)”,1.光度方

式:Abs;2.扫描速度:快;3:采用时间:1或0.5;4:波长范围:200-400nm。

通过按数字键,大箭头确定设定内容。按“Return”返回。

(3)将比色皿洗净,用蒸馏水润洗,用擦镜纸擦干比色皿外面的水,然后

在比色皿中放入蒸馏水,作为空白,放在第一个测量孔中,按“AUTOZERO(基线

扫描)”。此时界面无扫描图出现,相当于扣除背景。注意:一定等界面出现“按

键盘操作”提示后在

进行操作,否则容易死机。

(4)用待测溶液润洗比色皿,放入样品,用擦镜纸擦干比色皿外面的水,放在第一个测量孔中,按“START”,出现扫描图。注意:一定等界面出现“按键盘操作”提示后在进行操作,否则容易死机。

(5)按界面操作提示,读出峰值及相应的吸光度。按“F2(峰值)”,“请输入阈值:1”,按做箭头,找出每个峰的峰值及吸光度。按“Return”返回到测量界面。根据界面提示,按“Enter”关闭电源。注意:一定要读出所需数据后,再按“Enter”,仪器不能保存数据。

2.3、注意事项:

1.电导率仪不用时,应把铂黑电极浸泡在蒸馏水中,以免干燥致使表面发生变化。

2.试验中温度要恒定,测量必须在同一温度下进行。

3.测定前,必须将电导电极及电导池洗涤干净,以免影响测定结果。

4.配制溶液时,避免出现泡沫,保证表面活性剂完全溶解,否则影响浓度的准确性。

2.4数据记录与处理:

(1)、

表1 SDS在不同温度下的电导率

305.

[3]郑忠,胡纪华. 表面活性剂的物理化学原理[M]. 广州:华南理工大学出版社,1995.3.

[4]陈宗淇,王光信,徐桂英. 胶体与界面化学[M]. 北京:高等教育出版社,2001.9.

几种测蛋白含量方法的比较

蛋白质含量测定方法的比较及肽含量的测定 (一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫 外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。 1 微量凯氏定氮法(GB 5009.5-2010) 1.1原理样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。 1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤 1.3特点准确度较高,适用于0.2~ I.Omg氮,误差为土2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。,测得结果为总氮含量,包括蛋白氮和非蛋白氮含 量;适用范围广,几乎所有样品均可用此方法。 2双缩脲比色法

蛋白质的测定方法比较

蛋白质的测定方法比较 一、分光光度法 1、测定原理: 食品中的蛋白质在催化加热条件下被分解,分解产生的氨与硫酸结合生成硫酸铵,在pH 4.8 的乙酸钠-乙酸缓冲溶液中与乙酰丙酮和甲醛反应生成黄色的3,5-二乙酰-2,6-二甲基-1,4-二氢化吡啶化合物。在波长400 nm 下测定吸光度值,与标准系列比较定量,结果乘以换算系数,即为蛋白质含量。 2、测定步骤: ①试样消解:称取经粉碎混匀过40目筛的固体试样0.1g~0.5g(精确0.001g)、半固体试样0.2g~1g(精确至0.001g)或液体试样1g~5g(精确0.001g),移入干燥的100 mL 或250 mL 定氮瓶中,加入0.1 g硫酸铜、1 g 硫酸钾及5 mL 硫酸,摇匀后于瓶口放一小漏斗,将定氮瓶以45°角斜支于有小孔的石棉网上。缓慢加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热半小时。取下放冷,慢慢加入20 mL 水,放冷后移入50 mL 或100 mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。按同一方法做试剂空白试验。 ②试样溶液的制备:吸取2.00 mL~5.00 mL 试样或试剂空白消化液于50 mL 或100 mL 容量瓶内,加1 滴~2 滴对硝基苯酚指示剂溶液,摇匀后滴加氢氧化钠溶液中和至黄色,再滴加乙酸溶液至溶液无色,用水稀释至刻度,混匀。 ③标准曲线的绘制:吸取0.00 mL、0.05 mL、0.10 mL、0.20 mL、0.40 mL、0.60 mL、0.80 mL 和1.00 mL 氨氮标准使用溶液(相当于0.00μg、5.00μg、10.0μg 、20.0μg、40.0μg、60.0μg、80.0μg 和100.0μg 氮),分别置于10 mL 比色管中。加4.0 mL 乙酸钠-乙酸缓冲溶液及4.0 mL 显色剂,加水稀释至刻度,混匀。置于100 ℃水浴中加热15 min。取出用水冷却至室温后,移入1 cm 比色杯内,以零管为参比,于波长400 nm 处测量吸光度值,根据标准各点吸光度值绘制标准曲线或计算线性回归方程。 ④试样测定:吸取0.50 mL~2.00 mL(约相当于氮<100μg)试样溶液和同量的试剂空白溶液,分别于10 mL 比色管中。以下按上述中“加4 mL 乙酸钠-乙酸

蛋白质含量测定方法比较

蛋白质含量测定主要有五种方法,分别是凯式定氮法、双缩脲法、紫外吸收法、酚试剂法和考马斯亮蓝法。这五种方法各有特点,优缺点明确。 凯氏定氮法 蛋白质是含氮的化合物。食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 优点:重现性好,是目前分析有机化合物含氮量常用的方法,是一种蛋白质测定的经典方法, ,测试结果准确。 缺点:操作比较繁复,费时,试剂消耗量大。且此法测定的蛋白质含量实际上包括了核酸,生物碱,含氮类脂,卟啉,含氮色素等非蛋白质含氮化合物。双缩脲定氮法 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 优点:较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋

白质测定。 缺点:不太灵敏;不同蛋白质显色相似。 紫外吸收定氮法 双缩脲法是传统的分光光度法测定蛋白质的方法,当含有两个或者两个以上肽键的物质和碱性的硫酸铜反应时,形成紫色的络合物,这个颜色产物是肽键中的氮原子和铜离子配价结合的结果。蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。形成颜色产物的量取决于蛋白质的浓度。实际测定时,必须预先用标准蛋白质溶液制作一个标准校正曲线,通常用牛血清白蛋白水溶液做蛋白质标准溶液。不同浓度的标准蛋白质溶液加入双缩脲试剂后,反应生成的颜色产物用紫外-可见分光光度计在540nm 波长下测定吸光度,以双缩脲试剂加缓冲或水作空白对照。然后将测得的值分别对蛋白浓度(mg/ ml) 作图,得标准曲线。未知蛋白样品用双缩脲试剂做同样处理,根据测得吸光度值在标准曲线上直接查得未知蛋白质样品中得蛋白质浓度。 优点:对各种蛋白质呈色基本相同;特异性和准确度好,精密度好;呈色稳定性好,试剂单一,方法简便。快速,不消耗样品,测定后仍能回收使用。 缺点:准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外

几种蛋白质含量测定方法的比较

几种蛋白质含量测定方法的比较 【摘要】:蛋白质含量测定方法,是生物化学研究中最常用、最基本的分析之一。目前常 用的方法有凯氏定氮法、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法(Bradford),Folin —酚试剂法(Lowry)杜马斯燃烧法。其中Bradford 法灵敏度颇高,比紫外吸收法灵敏10~20 倍,比Biuret法灵敏100 倍以上。凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。过去Folin—酚试剂法法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以在本公司订购),近年来逐渐被考马斯亮兰法所取代。测定农产品中全氮的凯氏定氮法在许多国家已被杜马斯然烧定氮法所代替,杜马斯燃烧法是基于在高温下(大约 900 ℃),通过控制进氧量、氧化消解样品的原理而进行氮测定的。这6种方法并不能在任何条件下适用于任何形式的蛋白质,每种方法都有其优缺点,在选择方法时应考虑:⑴实验对测定所要求的灵敏度和精确度;⑵蛋白质的性质;⑶溶液中存在的干扰物质;⑷测定所要花费的时间 【关键词】:凯氏定氮法双缩脲法紫外吸收法考马斯亮蓝法 Folin—酚试剂法杜马斯燃烧法 一、凯氏定氮法 1.1原理 凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4 个过程。其原理是样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用,变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 1.2特点 凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。凯氏定氮法样品的最佳消化条件为硫酸铜2.50 g, 硫酸钾0.10 g,浓硫酸4.00 mL;硫酸铜的用量为影响消化时间的主要因素,硫酸钾和浓硫酸用量为第二和第三主要因素;用此最佳条件做实验, 消化时间仅为12 min;与其他硫酸铜、硫酸钾、浓硫酸用量方法对比,该法所需消化时间最短,试剂用量减少,可降低实验成本,也降低了对环境的污染。 凯氏定氮法适用范围广泛,测定结果准确,重现性好,但操作复杂费时,试剂消耗量大。若采用模块式消化炉代替传统的消化装置, 可同时测定几份样品,节省时间,提高了工作效率,适用于批量蛋白质的测定,具有准确、快速、简便、低耗、稳定的优点。 二、双缩脲法(Biuret ) 2.1原理 双缩脲(NH3CONHCONH3)是两个分子脲经180 ℃左右加热,放出1 个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4 形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能够以1 个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

常见蛋白质测定方法的总结与比较

分析化学 结课作业 常见蛋白质测定方法的总结与比较 材料科学与技术学院 林化13-1班 刘旺衢 130534106

常见蛋白质测定方法的总结与比较 刘旺衢 (北京林业大学材料科学与技术学院林化13-1班 130534106,10083) 蛋白质是构成生物体细胞组织的重要成分。食物中的蛋白质是人体中氮的唯一来源。具有糖类和脂肪不可替代的作用。蛋白质与营养代谢、细胞结构、酶、激素、病毒、免疫、物质运转、遗传等密切相关,是对人类最重要的物质之一。准确精密的测定蛋白质,关乎人类的生产、生活、生存。目前测定蛋白质含量的方法有多种,如凯氏定氮法、紫外吸收法、双缩脲法、考马斯亮蓝染色法、酚试剂法等几种方法,下面本文将总结比较这五种蛋白质的测定方法。 一、凯氏定氮法 凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气馏出并为过量的酸液吸收,再以标准酸滴定,就可计算出样品中的氮量。由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。蛋白质是含氮的有机化合物。蛋白质与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数计算蛋白质含量,即含氮量*6.25=蛋白含量。 凯氏定氮法具有灵敏度高, 样品用量少,最低可检出0.05mg氮;精密度、准确度高,平行误差一般小于0.5%;应用范围广,适用于一切形态的食品与生物样品;仪器装置简单,试剂廉价的优点。 但也存在操作比较繁琐费时,特别是蒸馏定氮过程的效率低,不利于大批样品的测定;定氮的结果既包括有机氮,也包括无机氮,有机氮中除蛋白氮外,还包括非蛋白氮,测定的结果只能是粗蛋白质的含量;在蛋白质氨基酸构成有差异的

蛋白质各种定量方法的优缺点的比较

1.蛋白质的常规检测方法 凯氏(Kjeldahl )定氮法 一种最经典的蛋白质检测方法。 原理:样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化, 含氮有机物分解产生氨, 氨又与硫酸作用变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收, 再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 优点:范围广泛、测定结果准确、重现性好 缺点:操作复杂费时、试剂消耗量大 双缩脲法 常用于需要快速但并不需要十分精确的蛋白质检测。 原理:双缩脲(NHCONHCONH是3分子的脲经180C左右加热,放出1分子氨后得到的产物。在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物(肽键中的氮原子和铜离子配价结合),称为双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,因此可用来测定蛋白质含量。 测定范围:1~10mg(有的文献记载为1~20mg) 优点:较快速,干扰物质少,不同蛋白质产生的颜色深浅相近 缺点:①灵敏度差; ② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。 Folin- 酚试剂法 原理:Folin- 酚法的原理与双缩脲法大体相同,利用蛋白质中的肽键与铜结合产生双缩脲反应。同时也由于Folin- 酚试剂中的磷钼酸- 磷钨酸试剂被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色的钼蓝和钨蓝的混合物。在一定的条件下, 蓝色深度与蛋白的量成正比,由此可测定蛋白质的含量。

测定范围:20~250ug 优点:灵敏度高,对水溶性蛋白质含量的测定很有效 缺点:①费时,要精确控制操作时间; ②Folin -酚法试剂的配制比较繁琐,且酚类和柠檬酸、硫酸铵、Tris缓冲液、甘氨 酸、糖类、甘油、还原剂(二硫代苏糖醇、巯基乙醇)、EDTA和脲素均会干扰反应。 紫外吸收法 原理:蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸残基使其在280nm 处具有紫外吸收,其吸光度与蛋白质含量成正比)。此外,蛋白质溶液在280nm的吸光度值与肽键含量成正比,利用一定波长下蛋白质溶液的吸光度值与蛋白质浓度的正比关系可以测定蛋白质含量。 优点:简便、灵敏、快速,不消耗样品,测定后能回收。 缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较 大的干扰。 定氮法、双缩脲法、Filon- 酚试剂法和紫外吸收法为常用的 4 种古老的经典方法。 1.5 考马斯亮蓝法 原理:染料考马斯亮蓝G-250 在酸性溶液中与蛋白质中的碱性氨基酸(特别是精氨酸)及芳香族氨基酸残基相结合,使染料最大吸收峰的位置由465nm变为595nm,溶液的颜色也由棕黑色变为蓝色,在595nm下测定的吸光度值与蛋白质浓度呈正比。 优点:灵敏度高,测定快速、简便,干扰物质少,不受酚类、游离氨基酸和缓冲剂、络合剂的影响,适合大量样品的测定。 缺点:由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同有较大的偏 ,因此用于不同蛋白质测定时 差。

蛋白质含量测定方法比较

. 蛋白质含量测定主要有五种方法,分别是凯式定氮法、双缩脲法、紫外吸收法、酚试剂法和考马斯亮蓝法。这五种方法各有特点,优缺点明确。 凯氏定氮法 蛋白质是含氮的化合物。食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 优点:重现性好,是目前分析有机化合物含氮量常用的方法,是一种蛋白质测定的经典方法, ,测试结果准确。 缺点:操作比较繁复,费时,试剂消耗量大。且此法测定的蛋白质含量实际上包括了核酸,生物碱,含氮类脂,卟啉,含氮色素等非蛋白质含氮化合物。 双缩脲定氮法 双缩脲(NHCONHCONH)是两个分子脲经180℃左右加热,放出一个33分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO形成紫色络合物,称4为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 优点:较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的

缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋1 / 5 . 白质测定。 缺点:不太灵敏;不同蛋白质显色相似。 紫外吸收定氮法 双缩脲法是传统的分光光度法测定蛋白质的方法,当含有两个或者两个以上肽键的物质和碱性的硫酸铜反应时,形成紫色的络合物,这个颜色产物是肽键中的氮原子和铜离子配价结合的结果。蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。形成颜色产物的量取决于蛋白质的浓度。实际测定时,必须预先用标准蛋白质溶液制作一个标准校正曲线,通常用牛血清白蛋白水溶液做蛋白质标准溶液。不同浓度的标准蛋白质溶液加入双缩脲试剂后,反应生成的颜色产物用紫外-可见分光光度计在540nm 波长下测定吸光度,以双缩脲试剂加缓冲或水作空白对照。然后将测得的值分别对蛋白浓度(mg/ ml) 作图,得标准曲线。未知蛋白样品用双缩脲试剂做同样处理,根据测得吸光度值在标准曲线上直接查得未知蛋白质样品中得蛋白质浓度。 优点:对各种蛋白质呈色基本相同;特异性和准确度好,精密度好;呈色稳定性好,试剂单一,方法简便。快速,不消耗样品,测定后仍能回收使用。 缺点:准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收

蛋白质分子量测定方法的比较

蛋白质分子量测定方法的比较 梁永达 (复旦大学药学院,上海) 摘要:分子量是蛋白质主要的特征参数之一,近年来其测试方法发展十分迅速。该文概述了目前蛋白质分子量测定中最常用的几种方法,包括粘度法、凝胶过滤层析法、凝胶渗透色谱法、SDS-凝胶电泳法、渗透压法、电喷雾离子化质谱技术、基质辅助激光解吸电离质谱技术、光散射法、超速离心沉降法,并比较了这几种方法的优缺点。 关键词:蛋白质分子量粘度法凝胶过滤层析法凝胶渗透色谱法SDS-凝胶电泳法渗透压法电喷雾离子化质谱技术基质辅助激光解吸电离质谱技术光散射法超速离心沉降法 Comparison of the methods of molecular weight determination of proteins LiangYongda (School of Pharmacy in Fudan University, Shanghai) Abstract: Molecular weight is one of the most important characteristic parameters of proteins,which leads the methods to determine protein molecular weight to develope rapidly in recent years. In this paper,the mechanism and application are briefly overviewed for the most widely used technologies including viscosity method, gel filtration chromatography, gel permeation chromatography, SDS-gel electrophoresis, osmotic pressure method, electrospray ionization mass spectrometry, matrix-assisted laser desorption ionization mass spectrometry, light scattering, ultracentrifugation sedimentation. Plus, we compare these methods’advantages and disadvantages. Key words:molecular weight determination of proteins, viscosity method, gel filtration chromatography, gel permeation chromatography, SDS-gel electrophoresis, osmotic pressure method, electrospray ionization mass spectrometry, matrix-assisted laser desorption ionization mass spectrometry, light scattering, ultracentrifugation sedimentation 分子量是蛋白质的主要特征参数之一,当发现一种新的蛋白质时,首先应准确测定其分子量。蛋白质分子量的测定方法有多种,以下将对实验室最常用的几种方法进行介绍: 1.粘度法 一定温度条件下,高聚物稀溶液的粘度与其分子量之间呈正相关性,随着分子量的增大,聚合物溶液的粘度增大。通过测定高聚物稀溶液粘度随浓度的变化,即可计算出其平均分子量(粘均分子量)。 如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。特性粘度和分子量之间的经验关系式为: 式中,M 为粘均分子量;K为比例常数;α是与分子形状有关的经验参数。K和α值与温度、

可溶性蛋白质含量的测定

可溶性蛋白质含量的测定 考马斯亮蓝G—250染色法 一.原理 考马斯亮蓝G—250染色法是利用蛋白质与染料结合的原理,定量地测量蛋白质浓度的快速灵敏的方法。考马斯亮蓝G—250存在着两种不同的颜色形式,红色和蓝色。它和蛋白质通过范德瓦尔键结合,在一定蛋白质浓度范围内,蛋白质和染料结合符合比尔定律。此染料与蛋白质结合后颜色由红色转变成蓝色,最大光吸收由465nm变成595nm,通过测定595nm 处光吸收的增加量可知与其结合蛋白质的量。 蛋白质和染料结合是一个很快的过程,约2min即可反应完全,呈现最大光吸收,并可稳定1h之后,蛋白质—染料复合物发生聚合并沉淀出来。此法灵敏度高(比Lowry法灵敏4倍)易于操作,干扰物质少,是一种比较好的定量法。其缺点是在蛋白质很高时线性偏低,且不同来源蛋白质与色素结合状况有一定差异。 二.实验材料、试剂与仪器设备 1.实验材料 水稻不同萌发时期的种子 2.试剂 (1)标准蛋白质溶液(100μg/mL牛血清白蛋白)。称取牛血清白蛋白25mg,加水溶解并定容至100mL,吸取上述溶液40Ml,用蒸馏水稀释至100mL即可。 (2)考马斯亮蓝试剂。称取100mg考马斯亮蓝G—250,溶于50mL90%乙醇中,加入100mL85%的磷酸,再用蒸馏水定容到1000mL,贮于棕色瓶中。常温下可保存一个月。3.仪器和设备 分光光度计,离心机,研钵,烧杯,量瓶,移液管,试管等。 三.实验步骤 1.标准曲线的绘制 取6支试管,按下表加入试剂,摇匀,向各管中加入5mL考马斯亮蓝试剂,摇匀,并放置5min左右,以0号试管为空白对照,在595nm下比色测定吸光度。以蛋白质含量为横坐标,以吸光度为纵坐标绘制标准曲线。 2.样品测定 (1)样品提取。称取鲜样0.25—0.5g,用5mL蒸馏水或缓冲液研磨成匀浆后,3000r/min 离心10min,上清液备用。 (2)吸取样品提取液1.0mL(视蛋白质含量适当稀释),放入试管中(每个样品重复2次),加入5mL考马斯亮蓝试剂,摇匀,放置2min后在595nm下比色,测定吸光度,并通过标准曲线查的蛋白质的含量。 四.结果计算 样品蛋白质的含量=C V/1000VW(mg/g) 式中:C—查标准曲线值,ug; VT—提取液总体积,mL; WF—样品鲜重,g; VS—测定时加样量,mL

5种常规的蛋白质测定方法的全方位的比较分析

5种常规的蛋白质测定方法的全方位的比较分析 来源: 类别:技术文章 更新时间:2011-02-16 16:32:50 阅读 62次 蛋白质的测定在饲料的品质确定中占很大的作用,蛋白质的测定方法有很多种,最为常见的使用方式有定氮法,双缩脲法(Biuret 法)、考马斯亮蓝法(Bradford 法)、Folin -酚试剂法(Lowry 法)和紫外吸收法,蛋白质测定仪采用索氏定氮原理,通过用加碱、加酸等过程将物质中的氮元素转化为氨气,然后再用滴定的方法讲物质中氮的含量或者蛋白质的含量计算出来。 蛋白质测定仪采用微电脑全自动控制,有两种模式:手动模式和自动模式。根据这两种模式又能将其分之为半自动定氮仪以及全自动定氮仪两种,在进行检测的过程中克服了定氮法的一些弊端,让定氮法进行进一步的发展。下面就是以上4种测定方法中的优缺点比较: 方法 灵敏度 时间 原理 干扰物质 说明 凯氏定氮法 (Kjedahl 法) 灵敏度低,适用于0.2~ 1.0mg 氮,误差为 ± 2% 费时 8~10小时 将蛋白氮转化为氨,用酸吸收后滴定 非蛋白氮(可用三氯乙酸沉淀蛋白质而分离) 用于标准蛋白质含量的准确测定;干扰少;费时太长 双缩脲法(Biuret 法) 灵敏度低 1~20mg 中速 20~30 分钟 多肽键+碱性Cu 2+?紫色络合物 硫酸铵; Tris 缓冲液; 某些氨基酸 用于快速测定,但不太灵敏;不同蛋白质显色相似 紫外吸收法 较为灵敏 50~100mg 快速 5~10分 钟 蛋白质中的酪氨酸和色氨酸残基在280nm 处的光吸收 各种嘌吟和嘧啶; 各种核苷酸 用于层析柱流出液的检测;核酸的吸收可以校正 Folin -酚试剂法 (Lowry 法) 灵敏度高 ≈5mg 慢速 40~60 分钟 双缩脲反应;磷钼酸-磷钨酸试剂被Tyr 和Phe 还原 硫酸铵; Tris 缓冲液; 甘氨酸; 各种硫醇 耗费时间长;操作要严格计时; 颜色深浅随不同蛋白质变化 考马斯亮蓝法(Br adford 法) 灵敏度最高 1~5mg 快速 5~15分 钟 考马斯亮蓝染料与蛋白质结合时,其lmax 由465nm 变为595n m 强碱性缓冲液; TritonX-100; SDS 最好的方法; 干扰物质少; 颜色稳定; 颜色深浅随不同蛋 白质变化

几种蛋白质含量测定方法的比较

几种蛋白质含量测定方法的比较 蛋白质含量测定方法,是生物化学【摘要】: 研究中最常用、最基本的分析之一。目前 常用的方法有凯氏定氮法、双缩脲法 (Biuret)、紫外吸收法、考马斯亮蓝法(Bradford),Folin—酚试剂法(Lowry)杜马斯燃烧法。其中Bradford 法灵敏度颇高,比紫外吸收法灵敏10~20 倍,比Biuret法灵敏100 倍以上。凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。过去Folin—酚试剂法法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以在本公司订购),近年来逐渐被考马斯亮兰法所取代。测定农产品中全氮的凯氏定氮法在许多国家已被杜马 斯然烧定氮法所代替,杜马斯燃烧法是基 于在高温下(大约900 ℃),通过控制进 氧量、氧化消解样品的原理而进行氮测定 的。这6种方法并不能在任何条件下适用 于任何形式的蛋白质,每种方法都有其优

缺点,在选择方法时应考虑:⑴实验对测定所要求的灵敏度和精确度;⑵蛋白质的性质;⑶溶液中存在的干扰物质;⑷测定所要花费的时间 【关键词】:凯氏定氮法双缩脲法紫外吸收法考马斯亮蓝法Folin—酚试剂法杜马斯燃烧法 一、凯氏定氮法 原理 凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4 个过程。其原理是样品中含氮有机化合物与浓硫酸在催化剂 作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用,变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收,再 用盐酸标准溶液滴定求出总氮量换算为 蛋白质含量。 特点 凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。凯氏定氮法样

几种蛋白质含量测定方法

蛋白质含量测定方法比较 蛋白质含量测定方法比较 本实验的目的是学会各种蛋白质含量的测定方法。了解各种测定方法的基本原理和优缺点。蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford 法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: CH2COOH + 3H2SO4→2CO2 + 3SO2 +4H2O +NH3 (1) 2NH3 + H2SO4→ (NH4)2SO4 (2) (NH4)2SO4 + 2NaOH →2H2O +Na2SO4 + 2NH3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 五种蛋白质测定方法比较如下:方法、灵敏度、时间、原理、干扰物质 说明:凯氏定氮法(Kjedahl法)灵敏度低,适用于0.2~ 1.0mg氮,误差为±2%费时8~10h,将蛋白氮转化为氨,用酸吸收后滴定,非蛋白氮(可用三氯乙酸沉淀蛋白质而分离),用于标准蛋白质含量的准确测定;干扰少;费时太长; 双缩脲法(Biuret法):灵敏度低1~20mg,中速20~30min,多肽键+碱性Cu2→紫色

蛋白质各种定量方法的优缺点的比较

蛋白质各种定量方法的优缺点的比较 1.蛋白质的常规检测方法 1.1 凯氏(Kjeldahl)定氮法 一种最经典的蛋白质检测方法。 原理:样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用变成硫酸铵。然后加碱蒸馏放出氨,氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 优点:范围广泛、测定结果准确、重现性好 缺点:操作复杂费时、试剂消耗量大 1.2 双缩脲法 常用于需要快速但并不需要十分精确的蛋白质检测。 原理:双缩脲(NH3CONHCONH3)是3 分子的脲经180℃左右加热,放出1分子氨后得到的产物。在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物(肽键中的氮原子和铜离子配价结合),称为双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,因此可用来测定蛋白质含量。 测定范围:1~10mg(有的文献记载为1~20mg) 优点:较快速,干扰物质少,不同蛋白质产生的颜色深浅相近 缺点:①灵敏度差; ②三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。

1.3 Folin-酚试剂法 原理:Folin-酚法的原理与双缩脲法大体相同,利用蛋白质中的肽键与铜结合产生双缩脲反应。同时也由于Folin-酚试剂中的磷钼酸-磷钨酸试剂被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深蓝色的钼蓝和钨蓝的混合物。在一定的条件下,蓝色深度与蛋白的量成正比,由此可测定蛋白质的含量。 测定范围:20~250ug 优点:灵敏度高,对水溶性蛋白质含量的测定很有效 缺点:①费时,要精确控制操作时间; ②Folin -酚法试剂的配制比较繁琐,且酚类和柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、 糖类、甘油、还原剂(二硫代苏糖醇、巯基乙醇)、EDTA和脲素均会干扰反应。1.4 紫外吸收法 原理:蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸残基使其在280nm 处具有紫外吸收,其吸光度与蛋白质含量成正比)。此外,蛋白质溶液在280nm的吸光度值与肽键含量成正比,利用一定波长下蛋白质溶液的吸光度值与蛋白质浓度的正比关系可以测定蛋白质含量。 优点:简便、灵敏、快速,不消耗样品,测定后能回收。 缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较 大的干扰。 定氮法、双缩脲法、Filon-酚试剂法和紫外吸收法为常用的4种古老的经典方法。

食品中蛋白质测定方法的比较

检测与分析 2008第11期总第95期 广西质量监督导报 [摘要]采用多种方法对食物中的蛋白质进行检测,可以最小程度减少误差。HPLC方法测定食品中蛋白质将会被越来越多地采用。 [关键词]食品;蛋白质测定方法;HPLC 三鹿奶粉事件的发生,使我们对食品中蛋白质测定的方法不得不进行一下反思。国家标准GB/T5413.1-1997《婴幼儿配方食品和乳粉蛋白质的测定》中规定,采用凯氏定氮法测定奶粉中的蛋白质含量。同样,在食品相关专业的实验课程中蛋白质测定方法都以凯氏定氮法作为重点教授给学生。这一方法虽然是目前食品行业通用的测定蛋白质的方法,但如果不配合以其他的方法加以验证,极容易得出错误的结论。三鹿奶粉事件中,不法分子正是钻了凯氏定氮法测定蛋白质含量的漏洞[1]。为了避免再次发生类似事件,有必要对蛋白质测定方法进行一下比较,采取适当的对策。 一、常用测定蛋白质含量的方法 常用的测定蛋白质含量的方法有六种[2]。 (一)凯氏定氮法。其原理是根据蛋白质是含氮的有机化合物,样品与硫酸和催化剂一同加热消化,使蛋白质分解产生氨,氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。凯氏定氮法测定的是样品中含氮量。 (二)双缩脲法。具有两个酰胺基或两个相连的肽键的化合物皆有双缩脲反应。在碱性溶液中双缩脲与Cu2+形成紫色配合物,在540nm处有最大吸收。蛋白质浓度与双缩脲反应所呈的颜色成正比。双缩脲法在需快速但不需要精确的测定中比较实用,因为Cu2+很容易受到干扰而被还原。 (三)Folin-酚法。这是蛋白质测定法中最灵敏的方法之一。其原理与双缩脲法基本相同,只是加入了Folin-酚试剂。在碱性条件下,蛋白质中的肽键与铜结合生成复合物。Folin-酚试剂中的磷钼酸盐-磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还 原,产生深蓝色(钼蓝和钨蓝的混合物)。在一定的条件下,蓝色深度与蛋白的量成正比。酚类、柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。 (四)改良的Folin-酚法。原理与(三)相同。 (五)考马斯亮蓝法(Bradford法)。1976年Brad-ford建立了用考马斯亮蓝G-250与蛋白质结合的定量方法。这一方法具有灵敏度高、干扰物质少、测定快速、简便等优点。它利用染料与蛋白质结合的原理。但由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此用于不同蛋白质测定时有较大的偏差。 (六)紫外光吸收法。蛋白质组成中常含有酪氨酸、色氨酸和苯丙氨酸等芳香族氨基酸,在紫外光280nm处有最大吸收峰。但由于核酸在260nm处也有光吸收,因此有一定干扰。 二、食品企业应采用的对策 测定蛋白质含量的凯氏定氮法和紫外光吸收法受到类似物的干扰最大,最不准确。因此,企业在测定蛋白质含量时就不能以一种方法作为检验的最终值,尤其不能以这两种方法作为最终值。(二)、(三)和(四)都是以具有两个酰胺基或两个相连的肽键的化合物皆有双缩脲反应为基本原理。(一)方法加上(二)、(三)和(四)中的一种,再加上(五)方法,采用三种方法测定蛋白质应是现阶段比较可行的方案。 此外,针对不同种类的食品应采用不同的方法。如燃烧法[3],即样品在高温下燃烧,释放的氮气由带热导检测器的气相色谱仪测定。还有针对谷物蛋白的红外光谱法[3]。 三、HPLC法测定蛋白质含量 已有文献报道采用HPLC法测定人血中蛋白质 食品中蛋白质测定方法的比较 李伟1王鑫1王刚1李丽莉2佟长青1金桥1 (1.辽宁省水产品加工及综合利用重点开放实验室,大连水产学院食品工程学院,辽宁大连116023;2.黑龙江大学生命科学与 工程学院,黑龙江哈尔滨150080) 73

几种蛋白原料的体外消化率的测定方法的比较

几种蛋白原料的体外消化率的测定方法的比较 摘要:试验分别采用胃蛋白酶-胰蛋白酶两步法、肉食性鱼类(如鲈鱼)消化道粗酶提取液消化法和草食性鱼类(如草鱼)消化道粗酶提取液消化法测定了酪蛋白、鱼粉、豆粕、菜籽粕、棉籽粕、酵母粉和玉米蛋白粉等7种蛋白质原料的体外消化率。3种测定方法中,鱼粉的消化率差异不显著(P>0.05);豆粕、菜籽粕、酵母粉和玉米蛋白粉用两步法和草鱼消化酶法测定的消化率无显著差异(P>0.05);棉籽粕消化率用两步法测定值高于用消化酶法的测定值,差异极显著(P<0.01);豆粕、菜籽粕、酵母粉和玉米蛋白粉的消化率用两步法比用鲈鱼消化酶测定的值高,差异极显著(P<0.01);草鱼消化酶法和鲈鱼消化酶法对酪蛋白的消化率无显著差异(P>0.05),而对于豆粕、菜籽粕、棉籽粕、酵母粉和玉米蛋白粉草鱼消化酶法测定值高于鲈鱼消化酶法的测定值,差异极显著(P<0.01)。结果表明,胃蛋白酶-胰蛋白酶两步体外消化法在测定鱼粉蛋白质消化率时可替代鱼类消化液粗酶消化法,对其它蛋白质原料使用该方法应慎重。关键词:蛋白质饲料;体外消化率;测定方法 消化率是动物从食物中所消化吸收的部分占总摄入量的百分比,是评价饲料营养价值的重要指标之一。测定饲料消化率主要有两种方法:体外法和体内法。体内法测定的消化率能够比较真实的反映鱼类对饲料的消化情况。但体内法测定方法复杂、时间长、费用高,而且对外界环境的要求较高,季节、温度、光照等都会影响消化率测定值。体外消化法是利用精制的消化酶或研究对象的消化道酶提取液在试管内进行的消化试验,其测定值可近似反映鱼对饲料的消化率。此法能快速测定原料的相对利用率,为营养师制作配方提供参考[1]。然而,体外消化法无法反映体内消化的真实情况。Boisen和Eggum(1991)在胃蛋白酶-胰蛋白酶两步法中利用标准过滤装置测得饲料蛋白质消化率与鼠和猪的真消化率十分接近,他们认为这种方法测得的蛋白质体外消化率经内源氮校正与回肠末端蛋白质表观消化率高度相关。我国饲料原料品种多,营养成分含量差异大,加工方式各异,饲料原料对不同鱼类的营养价值差异更大。由于鱼类生活在水中,测定鱼类饲料真消化率比测定畜禽的更加困难。所以寻找一种准确、简便、实用的消化率测定方法对评价鱼类饲料的消化率有着十分重要的意义。本试验采用胃蛋白酶-胰蛋白酶两步体外消化法以及从肉食性和草食性鱼类的消化道提取消化酶在体外消化饲料的方法,测定了7种常用蛋白质饲料原料的消化率,为饲料生产者配制鱼用饲料提供基础数据,同时为体外测定鱼用蛋白质原料消化率提供参照。

实验一 蛋白质含量的测定

〔Ⅱ〕实验部分 实验一蛋白质含量测定法 本实验的目的是学会各种蛋白质含量的测定方法。了解各种测定方法的基本原理和优缺点。 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry 法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: CH2COOH |+ 3H2SO4 →2CO2 + 3SO2 +4H2O +NH3 (1) NH2 2NH3 + H2SO4→(NH4)2SO4(2) (NH4)2SO4 + 2NaOH →2H2O +Na2SO4 + 2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白170

检测两种蛋白质之间相互作用的实验方法比较

检测两种蛋白质之间相互作用的实验方法比较 研究蛋白-蛋白相互作用是理解生命活动的基础。蛋白质—蛋白质互作网络是生物信息调控的主要实现方式,是决定细胞命运的关键因素。检测蛋白质间相互作用的实验方法有哪些?这些检测方法各有什么优缺点?总结如下。 1. 生化方法 ●共纯化、共沉淀,在不同基质上进行色谱层析(需要补充) ●蛋白质亲和色谱基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。 GST pull down技术:为了更有效的利用蛋白质亲和色谱,可以将待纯话的蛋白以融合蛋白的形式表达,即将”诱饵“蛋白与一种易于纯化的配体蛋白融合。例如与GST融合的蛋白再经过GSH的色谱柱时,就可以通过GST和GSH的相互作用而被吸附。当载有细胞抽提物经过柱时,就可以得到能够与“诱饵”蛋白相互作用的目标蛋白了。 Epitope-tag技术:表位附加标记技术就是将附加的抗原融合到目的蛋白以检测目的蛋白的表达,同时还可以通过亲和层析法来纯化目的蛋白。缺点:表位附加标记可能会使融合蛋白不稳定,改变或使融合蛋白功能丧失。 以上两种方法都要共同的缺点:假阳性。实验所检测到的相互作用可能时由蛋白质所带电荷引起的,并不是生理性的相互作用;蛋白的相互作用可能并不是直接的,可是由第三者作为中介的;有时会检测到两种在细胞中不可能相遇却有极强亲和力的蛋白。因此实验结果还应经其他方法验证。 ●免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高。 ●Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 2. 等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射绿上升,从而导致共振角度的改变。而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。该技术不需要标记物和染料,安全灵敏快速,还可定量分析。缺点:需要专门的等离子表面共振检测仪器。 3. 遗传学方法使某处发生缺损,检测对其他地方的影响。 ●基因外抑制子。基因外抑制子是通过一个基因的突变来弥补原有基因的突变。比如相互作用的蛋白A和B,如果A发生了突变使两者不再相互作用,此时B如果再发生弥补性突变就可以使两者的相互作用恢复,那么B就是A的基因外抑制子。缺点:需要知道基因,要有表型,筛选抑制子比较费时。 ●合成致死筛选指两个基因同时发生突变会产生致死效应,而当每个基因单独发生突变时则无致死效应。用于分析两个具有相同重要蛋白之间的相互作用。 4. 双杂交技术原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。分别使结合域和激活域同诱饵蛋白和猎物蛋白形成融合蛋白,

相关主题
文本预览
相关文档 最新文档