当前位置:文档之家› 概率论第1章作业题解

概率论第1章作业题解

概率论第1章作业题解
概率论第1章作业题解

一、习题详解:

1.1 写出下列随机试验的样本空间:

(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;

解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;

(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{

;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;

解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;

(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{

2

16,T y x T y x ≤≤=Ω ;

(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{

207 x x =Ω;

(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{

l y x y x y x =+=Ω,0,0,8 ;

1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件: (1) A 与B 都发生, 但C 不发生; C AB ;

(2) A 发生, 且B 与C 至少有一个发生;)(C B A ?; (3) A,B,C 中至少有一个发生; C B A ??; (4) A,B,C 中恰有一个发生;C B A C B A C B A ??; (5) A,B,C 中至少有两个发生; BC AC AB ??;

(6) A,B,C 中至多有一个发生;C B C A B A ??; (7) A;B;C 中至多有两个发生;ABC ; (8) A,B,C 中恰有两个发生.C AB C B A BC A ?? ; 注意:此类题目答案一般不唯一,有不同的表示方式。

1.3 设样本空间}{20≤≤=Ωx x , 事件A =}{15.0≤≤x x ,}{

6.18.0≤=x x B 具体写出下列各事件:

(1) AB ; (2) B A - ; (3) B A -; (4) B A ? (1)AB }{

18.0≤=x x ; (2) B A -=}{

8.05.0≤≤x x ;

(3) B A -=}{

28.05.00≤?≤≤x x x ; (4) B A ?=}{

26.15.00≤?≤≤x x x

1.4 用作图法说明下列各命题成立: 略

1.5 用作图法说明下列各命题成立: 略

1.6 按从小到大次序排列)()(),(),(),(B P A P AB P B A P A P +?, 并说明理由.

解:由于),(,B A A A AB ???故)()()(B A P A P AB P ?≤≤,而由加法公式,有:

)()()(B P A P B A P +≤?

1.7 若W 表示昆虫出现残翅, E 表示有退化性眼睛, 且P(W) = 0.125; P(E) = 0.075, P(WE) = 0.025, 求下列事件的概率: (1) 昆虫出现残翅或退化性眼睛;

(2) 昆虫出现残翅, 但没有退化性眼睛; (3) 昆虫未出现残翅, 也无退化性眼睛.

解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:

175.0)()()()(=-+=?WE P E P W P E W P

(2) 由于事件W 可以分解为互斥事件E W WE ,,昆虫出现残翅, 但没有退化性眼睛对应事件 概率为:1.0)()()(=-=W E P W P E W P

(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:825.0)(1)(=?-=E W P E W P . 1.8 设A 与B 是两个事件, P(A) = 0.6; P(B) = 0.8。试问: (1) 在什么条件下P(AB) 取到最大值? 最大值是多少? (2) 在什么条件下P(AB) 取到最小值? 最小值是多少?

解:(1) 由于B AB A AB ??,,故),()(),()(B P AB P A P AB P ≤≤显然当B A ?时P(AB)

取到最大值。 最大值是0.6.

(2) 由于)()()()(B A P B P A P AB P ?-+=。显然当1)(=?B A P 时P(AB) 取到最小值,最小值是0.4.

1.9 设P(A) = 0.2, P(B) = 0.3, P(C) = 0.5, P(AB) = 0, P(AC) = 0.1, P(BC) = 0.2, 求事件 A,B,C 中至少有一个发生的概率.

解:因为 P(AB) = 0,故 P(ABC) = 0.C B A ,,至少有一个发生的概率为:

7

.0)()()()()()()()(=+---++=??ABC P AC P BC P AB P C P B P A P C B A P

1.10 计算下列各题:

(1) 设P(A) = 0.5, P(B) = 0.3, P(A ?B) = 0.6, 求P(AB); (2) 设P(A) = 0.8, P(A ?B) = 0.4, 求P(AB); (3) 设P(AB) = P(A B); P(A) = 0.3, 求P(B)。 解:

(1)通过作图,可以知道,3.0)()()(=-?=B P B A P B A P (2)6.0))()((1)(1)(=---=-=B A P A P AB P AB P

7

.0)(1)()

()()(1))()()((1)(1)()()3(=-=+--=-+-=?-==A P B P AB P B P A P AB P B P A P B A P B A P AB P 由于

1.11 把3个球随机地放入4个杯子中,求有球最多的杯子中球数是1,2,3 概率各为多少? 解:用i A 表示事件“杯中球的最大个数为i 个” i =1,2,3。三只球放入四只杯中,放法有

44464??=种,每种放法等可能。

对事件1A :必须三球放入三杯中,每杯只放一球。放法4×3×2种,故8

3)(1=A P

(选排列:好比3个球在4个位置做排列)。

对事件3A :必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此3个球,选法有4种),故161)(3=

A P 。16

9

161831)(2=--=A P

1.12 掷一颗匀称的骰子两次, 求前后两次出现的点数之和为3; 4; 5 的概率各是多少?

解:此题为典型的古典概型,掷一颗匀称的骰子两次基本事件总数为36。.出现点数和为“3”对应两个基本事件(1,2),(2,1)。故前后两次出现的点数之和为3的概率为

18

1

同理可以求得前后两次出现的点数之和为4,5 的概率各是9

1,121。 1.13 在整数9,2,1,0 中任取三个数, 求下列事件的概率: (1) 三个数中最小的一个是5; (2) 三个数中最大的一个是5.

解:从10个数中任取三个数,共有1203

10=C 种取法,亦即基本事件总数为120。

(1) 若要三个数中最小的一个是5,先要保证取得5,再从大于5的四个数里取两个,取法有

624=C 种,故所求概率为

201

。 (2) 若要三个数中最大的一个是5,先要保证取得5,再从小于5的五个数里取两个,取法

有1025=C 种,故所求概率为

12

1。

1.14 12只乒乓球中有4 只是白色球, 8 只是黄色球。现从这12 只乒乓球中随机地取出两 只, 求下列事件的概率:

(1) 取到两只黄球; (2) 取到两只白球; (3) 取到一只白球, 一只黄球. 解:分别用321,,A A A 表示事件:

(1) 取到两只黄球; (2) 取到两只白球; (3) 取到一只白球, 一只黄球.则

,11

1

666)(,33146628)(2122

42212281======C C A P C C A P 3316)()(1)(213=--=A P A P A P 。

1.15 已知4.0)(,7.0)(==B P A P ,5.0)(=B A P , 求).)((B B A P ? 解:)

())

()(()())(())((B P B B AB P B P B B A P B B A P ?=

??=

? 由于0)(=B B P ,故5.0)

()

()()()())((=-==?B P B A P A P B P AB P B B A P

1.16 已知4.0)(,6.0)(==B P A P ,5.0)(=B A P 。 计算下列二式: (1) );(B A P ?(2));(B A P ?

解:(1);8.05.04.01)()(1)()()()(=?-=-=-+=?B A P B P AB P B P A P B A P (2)()()()()0.8()()0.80.40.50.6;P A B P A P B P AB P B P A B ?=+-=-=-?= 注意:因为5.0)(=B A P ,所以5.0)(1)(=-=B A P B A P 。

1.17 一批产品共20 件, 其中有5 件是次品, 其余为正品。现从这20 件产品中不放回地任 意抽取三次, 每次只取一件, 求下列事件的概率:

(1) 在第一、第二次取到正品的条件下, 第三次取到次品; (2) 第三次才取到次品; (3) 第三次取到次品.

解:用i A 表示事件“第i 次取到的是正品”(3,2,1=i ),则i A 表示事件“第i 次取到的是次

品”(3,2,1=i )。112121

15331421

(),()()()204

41938

PA PA A PA PA A =

===?=

(1) 事件“在第一、第二次取到正品的条件下, 第三次取到次品”的概率为:

3125()18

P A A A =

(2) 事件“第三次才取到次品”的概率为:

1231213121514535

()()()()201918228P A A A P A P A A P A A A ==

??= (3)事件“第三次取到次品”的概率为:41

此题要注意区分事件(1)、(2)的区别,一个是求条件概率,一个是一般的概率。再例如,设有两个产品,一个为正品,一个为次品。用i A 表示事件“第i 次取到的是正品”(2,1=i ), 则事件“在第一次取到正品的条件下, 第二次取到次品”的概率为:1)(12=A A P ;而事件“第二次才取到次品”的概率为:2

1

)()()(12121=

=A A P A P A A P 。区别是显然的。

1.18 有两批相同的产品, 第一批产品共14 件, 其中有两件为次品, 装在第一个箱中; 第二批有10 件, 其中有一件是次品, 装在第二个箱中。今在第一箱中任意取出两件混入到第二箱中, 然后再从第二箱中任取一件, 求从第二箱中取到的是次品的概率。

解:用)2,1,0(=i A i 表示事件“在第一箱中取出两件产品的次品数i ”。用B 表示事件“从第

二箱中取到的是次品”。则2112

121222012222

14141466241

(),(),(),919191

C C C C P A P A P A C C C ?====== 01()12P B A =

,12()12P B A =,2

3

()12P B A =,

根据全概率公式,有:

283

)()()()()()()(221100=

++=A B P A P A B P A P A B P A P B P

1.19 一等小麦种子中混有5%的二等种子和3%的三等种子。已知一、二、三等种子将来长出的穗有50 颗以上麦粒的概率分别为50%, 15% 和10%。假设一、二、三等种子的发芽率相同,求用上述的小麦种子播种后, 这批种子所结的穗有50 颗以上麦粒的概率. 解:设)3,2,1(=i A i 表示事件“所用小麦种子为i 等种子”,

B 表示事件“种子所结的穗有50 颗以上麦粒”

。 则123()0.92,()0.05,()0.03,P A P A P A ===1()0.5P B A =,2()0.15P B A =,

3()0.1P B A =,根据全概率公式,有:

4705

.0)()()()()()()(332211=++=A B P A P A B P A P A B P A P B P

1.20 设男女两性人口之比为51 : 49, 男性中的5% 是色盲患者, 女性中的

2.5% 是色盲患者.今从人群中随机地抽取一人, 恰好是色盲患者, 求此人为男性的概率。 解:用B 表示色盲,A 表示男性,则A 表示女性,由已知条件,显然有:

,025.0)(,05.0)(,49.0)(,51.0)(====A B P A B P A P A P 因此:

根据贝叶斯公式,所求概率为:

151

102

)()()()()()()()()()()()(=

+=+==

A B P A P A B P A P A B P A P B A P AB P AB P B P AB P B A P

1.21 根据以往的临床记录, 知道癌症患者对某种试验呈阳性反应的概率为0.95, 非癌症患者因对这试验呈阳性反应的概率为0.01, 被试验者患有癌症的概率为0.005。若某人对试验呈阳性反应, 求此人患有癌症的概率

解:用B 表示对试验呈阳性反应,A 表示癌症患者,则A 表示非癌症患者,显然有:

,01.0)(,95.0)(,995.0)(,005.0)(====A B P A B P A P A P

因此根据贝叶斯公式,所求概率为:

294

95

)()()()()()()()()()()()(=

+=+==

A B P A P A B P A P A B P A P B A P AB P AB P B P AB P B A P

1.22 仓库中有10 箱同一规格的产品, 其中2 箱由甲厂生产, 3 箱由乙厂生产, 5 箱由丙厂生产, 三厂产品的合格率分别为95%; 90% 和96%. (1) 求该批产品的合格率;

(2) 从该10 箱中任取一箱, 再从这箱中任取一件, 若此件产品为合格品, 问此件产品由甲、 乙、丙三厂生产的概率各是多少?

解:设,},{},{},{321产品为丙厂生产产品为乙厂生产产品为甲厂生产===B B B

}{产品为合格品=A ,则

(1)根据全概率公式,94.0)()()()()()()(332211=++=B A P B P B A P B P B A P B P A P ,该批产品的合格率为0.94.

(2)根据贝叶斯公式,94

19

)()()()()()()()()(332211111=

++=B A P B P B A P B P B A P B P B A P B P A B P 同理可以求得47

24

)(,9427)(32=

=

A B P A B P ,因此,从该10 箱中任取一箱, 再从这箱中任取一件, 若此件产品为合格品, 此件产品由甲、乙、丙三厂生产的概率分别为:47

24

,9427,9419。

1.23 甲、乙、丙三人独立地向同一目标各射击一次, 他们击中目标的概率分别为0.7, 0.8 和 0.9,求目标被击中的概率。

解:记A ={目标被击中},则994.0)7.01)(8.01)(9.01(1)(1)(=----=-=A P A P

1.24 在四次独立试验中, 事件A 至少发生一次的概率为0.5904, 求在三次独立试验中, 事件A 发生一次的概率.

解:记4A ={四次独立试验,事件A 至少发生一次},4A ={四次独立试验,事件A 一次也不发生}。而5904.0)(4=A P ,因此4096.0)()()(1)(444===-=A P A A A A P A P A P 。所以

2.08.01)(,8.0)(1=-==A P A P

三次独立试验中, 事件A 发生一次的概率为:384.064.02.03))(1)((21

3=??=-A P A P C 。

二、第一章定义、定理、公式、公理小结及补充:

(1)

排列组合公式

)!

(!

n m m P n

m -=

从m 个人中挑出n 个人进行排列的可能数。

)!

(!!

n m n m C n m -=

从m 个人中挑出n 个人进行组合的可能数。

(2)加法和乘法原理

加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m ×n

某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 (3)一些常见排列

重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题

(4)随机试验和随机事件

如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个事件;

②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,φ为不可能事件。

不可能事件φ的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件Ω的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B

A?

如果同时有B

A?,A

B?,则称事件A与事件B等价,或称A等于B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为B

A-,也可表示为AB

A-或者B

A,它表示A发生而B不发生的事件。

B

A、同时发生:B

A ,或者AB。φ

=

?B

A,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。

A

-

Ω称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的事件。互斥未必对立。

②运算:

结合律:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C

分配律:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)

对偶律:B

A

B

A

=,B

A

B

A

=

(7)概率的公理化定义

设Ω为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:

1° 0≤P(A)≤1,

2° P(Ω) =1

3° 对于两两互不相容的事件1A,2A,…有

∑∞

=

=

=

??

?

?

?

?

1

1

)

(

i

i

i

i A

P

A

P

常称为可列(完全)可加性。

则称P(A)为事件A的概率。

(8)古典概型1°{}nω

ω

ω

2

1

,

=

Ω,

n

P

P

P

n

1

)

(

)

(

)

(

2

1

=

=

ω

ω 。

设任一事件A,它是由m

ω

ω

ω

2

1

,组成的,则有

P(A)={})()()(21m ωωω =)()()(21m P P P ωωω+++

n m =

基本事件总数

所包含的基本事件数A = (9)几何概型

若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A ,

)

()

()(Ω=

L A L A P 。其中L 为几何度量(长度、面积、体积)。 (10)加法公式

P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B) (11)减法公式

P(A-B)=P(A)-P(AB)

当B ?A 时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B )=1- P(B)

(12)条件概率 定义 设A 、B 是两个事件,且P(A)>0,则称

)

()

(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )

()

(A P AB P 。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1?P(B /A)=1-P(B/A) (13)乘法公式

乘法公式:)/()()(A B P A P AB P =

更一般地,对事件A 1,A 2,…A n ,若P(A 1A 2…A n-1)>0,则有

21(A A P …)n A )|()|()(213121A A A P A A P A P =……21|(A A A P n …

)1-n A 。

(14)独立性

①两个事件的独立性

设事件A 、B 满足)()()(B P A P AB P =,则称事件A 、B 是相互独立的。 若事件A 、B 相互独立,且0)(>A P ,则有

)()()

()()()()|(B P A P B P A P A P AB P A B P ===

若事件A 、B 相互独立,则可得到A 与B 、A 与B 、A 与B 也都相互

独立。

必然事件Ω和不可能事件?与任何事件都相互独立。 φ与任何事件都互斥。

②多个事件的独立性

设ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A 、B 、C 相互独立。 对于n 个事件类似。

(15)全概公式

设事件n B B B ,,,21 满足

1°n B B B ,,,21 两两互不相容,),,2,1(0)(n i B P i =>, 2° n

i i

B A 1

=?,

则有

)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++= 。

(16)贝叶斯公式

设事件1B ,2B ,…,n B 及A 满足

1° 1B ,2B ,…,n B 两两互不相容,Ω=?>i i B B P ,0)(,i=1,2,…,n ,

2° 0)(>A P ,则

∑==

n

j j

j

i i i B A P B P B A P B P A B P 1

)

/()()

/()()/(,i=1,2,…n 。

此公式即为贝叶斯公式。

)(i B P ,

(1=i ,2,…,n ),通常叫先验概率。)/(A B P i ,(1=i ,2,…,n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利

概型

我们作了n 次试验,且满足

◆ 每次试验只有两种可能结果,A 发生或A 不发生; ◆ n 次试验是重复进行的,即A 发生的概率每次均一样;

◆ 每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与

否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用p 表示每次试验A 发生的概率,则A 发生的概率为p q -=1,用)(k P n 表示

n 重伯努利试验中A 出现k 次的概率,

k

n k k

n n q p k P C -=)(,n k ,,2,1,0 =。

概率统计章节作业答案

第一章随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是 ( B ). A.AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =Ω 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为 ( D ). A.1212A A A A B.12A A C.12A A D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

A.()1P A B = B.()()()P AB P A P B = C. ()0P AB = D.()0P AB > 8.设P (A )=0, B 为任一事件, 则 ( C ). A.A =Φ B.A B ? C.A 与B 相互独立 D. A 与B 互不相容 9.已知P (A )=0.4, P (B )=0.5, 且A B ?,则P (A |B )= ( C ). A. 0 B. 0.4 C. 0.8 D. 1 10.设A 与B 为两事件, 则AB = ( B ). A.A B B. A B C. A B D. A B 11.设事件A B ?, P (A )=0.2, P (B )=0.3,则()P A B = ( A ). A. 0.3 B. 0.2 C. 0.5 D. 0.44 12.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )= ( D ). A. 0.08 B. 0.4 C. 0.2 D. 0 13.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ). A.()()P A B P A = B.A B ? C. P (A )=P (B ) D. P (AB )=P (A ) 14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ). A. 0.4 B. 0.2 C. 0.25 D. 0.75 15.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为 ( A ). A. 3 7 B.0.4 C. 0.25 D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ). A. 0.48 B. 0.75 C. 0.6 D. 0.8 17.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为 ( A ).

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

2020年整理概率统计章节作业答案.doc

第一章 随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是 ( B ) . A. AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =ΩU 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少 有一次正面向上”可表示为 ( D ). A.1212A A A A U B.12A A C.12A A D.12A A U 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3), 则3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B =U 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

线性代数与概率统计作业题答案

线性代数与概率统计作 业题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

《线性代数与概率统 计 》 第一部分 单项选择题 1.计算112212 12 x x x x ++=++(A ) A .12x x - B .12x x + C .21x x - D .212x x - 2.行列式1 1 1 111111 D =-=--(B ) A .3 B .4 C .5 D .6 3.设矩阵 231123111,112011011A B -???? ????==???? ????-???? ,求AB =(B ) A .-1 B .0 C .1 D .2 率统计》 率统计》作业题 4.齐次线性方程组123123123 000x x x x x x x x x λλ++=?? ++=??++=?有 非零解,则λ=(C ) A .-1 B .0 C .1 D .2 5.设???? ??=50906791A ,?????? ? ? ?=6735 63 00B ,求AB =(D ) A .1041106084?? ??? B .1041116280?? ??? C .1041116084?? ??? D .1041116284?? ???

6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,0 0A C B ?? = ??? ,则C =(D ) A .(1)m ab - B .(1)n ab - C .(1)n m ab +- D .(1)nm ab - 7.设???? ? ? ?=34 3122 321A ,求1-A =(D ) A .1 3 23 53 22111?? ? ?- - ? ?-? ? B .132********-?? ? ?- ? ?-?? C .13 2353 22111-?? ? ?- ? ?-?? D .13 23 53 22111-?? ? ?- - ? ?-? ? 8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B ) A .111[()]()()T T T A B A B ---= B .111()A B A B ---+=+ C .11()()k k A A --=(k 为正整数) D .1 1()(0)n kA k A k ---=≠ (k 为 正整数) 9.设矩阵m n A ?的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零 B .A 中任意一个r 阶子式不等于零 C .A 中任意一个r-1阶子式不等于零 D .A 中有一个r 阶子式不等于零 10.初等变换下求下列矩阵的秩, 32 1321 317051A --?? ?=- ? ?-? ? 的秩为(C ) A .0 B .1 C .2 D .3

概率统计章节作业答案教学提纲

概率统计章节作业答 案

第一章 随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的 是 ( B ). A. AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =Ω 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少 有一次正面向上”可表示为 ( D ). A.1212A A A A B.12A A C.12A A D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则 3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ). A.()1P A B = B.()()()P AB P A P B =

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率统计作业解答

1文档来源为:从网络收集整理.word 版本可编辑. 《概率论与数理统计》作业解答 第一章 概率论的基本概念习题(P24-28) 1. 写出下列随机试验的样本空间S : (1) 记录一个班一次数学考试的平均分数(设以百分制记分). (2) 生产产品直到有10件正品为止,记录生产产品的总件数. (3) 对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”.如连续查出了2件次品,就停止检查,或检查了4件产品就停止检查. 记录检查的结果. (4) 在单位圆内任意取一点,记录它的坐标. 分析 要写出随机试验的样本空间,就要明确所有的样本点,即随机试验时直接产生的所有可能的结果. 解 (1) 我们考察一个班数学考试平均分的所有可能. 为此,我们先明确平均分的计算:全班的总分除以班级学生数. 设该班有n 个学生,则全班总分的所有可能为0到100n 的所有整数i . 其平均分为i n . 故,所求样本空间为::1,2,,100i S i n n ??==??????? . (2) 由已知,生产的件数至少为10(刚开始生产的10件均为正品),此后,可以取大于等于10的所有整数. 故所求样本空间为:{}10,11,12,S =???. (3) 若记0=“检查的产品为次品”,1=“检查的产品正品”,0,1从左到右按检查的顺序排列,则所求样本空间为: (5) 所求样本空间为:{} 22(,):1S x y x y =+< 2. 设,,A B C 为三个事件,用,,A B C 的运算关系表示下列各事件: (1) A 发生,B 与C 不发生. (2) A 与B 都发生,而C 不发生.

概率论课本作业第一章

第一章 1、一般事件(复合事件):由不止一个样本点做成的事件。 以下哪些试验是随机试验。 (1)抛掷一枚硬币,观察出现的是正面在上还是反面在上; (2)记录某电话传呼台在一分钟内接到的呼叫次数; (3)从一大批元件中任意取出一个,测试它的寿命; (4)观察一桶汽油遇到明火时的情形; (5)记录一门炮向某一目标射击的弹着点位置。 :(1)(2)(3)(5)是随机试验,(4)不是随机试验。2、写出下列随机试验的样本空间。 (1)抛掷一颗骰子,观察出现的点数; (2)抛掷二次硬币,观察出现的结果; (3)记录某汽车站在5分钟内到达的乘客数; (4)从一批灯泡中任取一只,测试其寿命; (5)记录一门炮向其目标射击的弹落点; (6)观察一次地震的震源; : (1){1,2,3,4,5}; (2){(正,正),(正,反),(反,正),(反,反)};

(3){0,1,2,3,4...} (4),其中x表示灯泡的寿命; (5),其中x、y分别表示弹着点的横坐标、纵坐标; (6),其中x、y、z分别表示震源的经度、纬度、离地面的深度。 3、抛掷一个骰子,观察出现的点数。用A表示“出现的点数为奇数”,B表示“出现的点数大于4”,C表示“出现的点数为3”,D表示“出现的点数大于6”,E表示“出现的点数不为负数”, (1)写出实验的样本空间; (2)用样本点表示事件A、B、C、D、E; (3)指出事件A、B、C、D、E何为基本事件,何为必然事件,何为不可能事件。 : (1){1,2,3,4}; (2){1,3,5},{5,6},{3},,{1,2,3,4,5,6}; (3)C为基本事件,E为必然事件,D为不可能事件。 1.先抛掷一枚硬币,若出现正面(记为Z),则再掷一颗骰子,试验停止;若出现反面(记为F),则再抛一次硬币,试验停止,请写出样本空间。 1.答案:

概率论与数理统计课后习题及答案

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为 问若标准差不改变,总体平均值有无显着性变化(α=) 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ ==≠= ===== = - ===- > 所以拒绝H0,认为总体平均值有显着性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设 0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == - === < 所以接受H0,认为这批矿砂的含镍量为. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地

统计学第5章概率论作业

一、选择 1、一项试验中所有可能结果的集合称为() A事件 B简单事件 C样本空间 D基本事件 2、每次试验可能出现也可能不出现的事件称为() A必然事件 B样本空间 C随机事件 D不可能事件 3、抛3枚硬币,用0表示反面,1表示正面,其样本空间Ω=() A{000,001,010,100,011,101,110,111} B{1,2,3}C{0,1}D{01,10} 4、随机抽取一只灯泡,观察其使用寿命t,其样本空间Ω=() A{t=0} B{t<0} C{t>0} D{t≥0} 5、观察一批产品的合格率P,其样本空间为Ω=() A{0

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论习题及答案习题详解

222 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为 11 1211(,,;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 11 ln (1) n n i i i i x nN x d L dp p p ==-=--∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为

相关主题
相关文档 最新文档