当前位置:文档之家› (完整版)电磁式仪表与磁电式仪表区别

(完整版)电磁式仪表与磁电式仪表区别

(完整版)电磁式仪表与磁电式仪表区别
(完整版)电磁式仪表与磁电式仪表区别

电磁式仪表与磁电式仪表有何不同?

添加时间:2015-08-12 来源:艾特贸易网| 阅读量:1170

答:电磁式仪表与磁电式仪表是两种不同类型的仪表。它们有很多不同之处,突出表现在性能、结构和表盘上。

(1)从表盘上就可区分开这两种仪表。除了图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁系仪表的刻度则由密变疏。

(2)从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此只能用其直接测量直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量,但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。

(3)结构和工作原理的不同是两种仪表的根本区别。虽然它们都分为固定和可动两大部分,但其具体组成内容不同。

磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一组线圈,被测电流流经线圈时,利用通电导线在磁场中受力的原理(即电动机原理),实现可

动部分的转动。磁电式仪表的结构如图1.2所示。

图1.2 磁电式仪表的测量结构示意图

电磁式仪表的固定部分是被测电流流经的线圈,有电流通过即可形成较强的磁场;可动部分的核心是一片可被及时磁化的软磁性材料(如铁片、坡莫合金等),利用被磁化的动铁片与通电线圈(或被磁化的静铁片)磁极之间的作用力,实现可动部分的偏转。

由于电磁式仪表构造简单、成本低廉,在电工测量中获得了广泛的应用,尤其是开关板式交流电流表、电压表,基本上都采用这种仪表。

图1.3 电磁式仪表的测量机构示意图

电磁式仪表的结构如图1.3所示,根据测量机构的结构形式不同,分为扁线圈吸引型和圆线圈排斥型两种。

交通检测器的种类及其优缺点

交通检测器的种类及其优缺点 检测器的概述 目前国内外在交通检测系统或交通信息采集系统中,大量应用了电磁传感技术、超声传感技术、雷达探测技术、视频检测技术、计算机技术、通信技术等高新科学技术。相应地,交通信息检测器主要有:电感环检测器(环型感应线圈)、超声波检测器、红外检测器、雷达检测器、视频检测器等。 交通检测器以车辆为检测目标,检测车辆的通过或存在状况,对于异常交通流信息如拥堵、事故等也能进行实时监测,也检测路上车流的各种参数,如车流量、车速、车型分类、占有率、排队等,其作用是为控制系统提供足够的信息以便进行最优的控制。 检测器的分类 检测器种类很多,其工作原理大致可分为两类:○ 1检测能使某种开关触点闭合的机械力;○ 2检测因车辆的运动或存在引起的能量变化。压力检测器就是利用机械力检测的例子,而利用能量变化进行检测则有环形线圈检测器超声波检测器等等。 按照能否检测静止车辆来分,检测器可分为两类。有些检测器如环形线圈、磁强计检测器能检测存在于检测区域的静止或运动的车辆,这类检测器称为存在型检测器;而另一类检测器只能检测运动通过检测区域的车辆,这类检测器称作通过型检测器。 检测器还可以检测和交通有关的环境条件,以便在出现有害的环境条件时能够对交通进行控制或提出警告。 常用检测器的原理及优缺点介绍 超声波检测器 工作原理:根据光沿直线传播的原理,当光遇到障碍物时就会被反射回来,同理当超声波遇到障碍物(车辆)时就会产生一反射波,反射波传送回接收端,根据时间差就可以判断是否有车辆通过。正常情况下,没有车辆时超声波返回到超声波检测器用的时间比有车辆通过时用的时间要长,当接收到反射波的事件变短就可以判断出车辆通过。 超声波车辆检测器的工作原理可分为两种:传播时间差法和多普勒法。 (1) 传播时间差法 这是一种将超声波分割成脉冲射向路面并接收其反射波的方法。当有车辆时,超声波会经车辆提前返回,检测出超前于路面的反射波,就表明车辆存在或通过。 如图3-3a 所示,若超声波探头距地面高度为H ,车辆高度为h ,波速v ,发自探头的超声波脉冲的反射波从路面和车辆返回的时间分别为t 和t ’,则: t =v H 2 t ’=()v h H -2(3-13) 可见时间t ’与车辆高度h 向对应。这个特点即用来判别车辆存在,也可用于估计车高。从图3-3b 还可看出,调整启动脉冲的启动时间和宽度,能够限制输出信号发生的时间t ’的

磁电式 电磁式 电动式仪表的定义 原理

磁电式、电磁式、电动式仪表的定义、原理 1 什么是磁电式仪表? 磁电式仪表广泛地应用于直流电压和电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。 2 磁电式仪表是由哪几部分构成的? 磁电式仪表是由固定的磁路系统和可动部分组成的。仪表的磁路系统是在永久磁铁1的两极,固定着极掌2。两极掌之间是圆柱形铁心3。圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌和铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。处在这个磁场中的可动线圈4是用很细的漆包线绕制在铝框架上的。框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。指针6安装在前半轴上。当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。 反作用力矩可以由游丝、张丝或悬丝产生。当采用游丝时,还同时用它来导人和导出电流,如图4-1(b)所示。因此装设了两个游丝,它们的螺旋方向相反。仪表的阻尼力矩则由铝框产生。高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。 磁电式仪表按磁路形式又分为内磁式、外磁式和内外磁式三种,如图4-2所示。内磁式的结构是永久磁铁在可动线圈的内部。外磁式的结构是永久磁铁在可动线圈的外部。内外磁式的结构是在可动线圈的内外都有永久磁铁,

磁场较强,可使仪表的结构尺寸更为紧凑。 3 磁电式仪表是如何工作的? 磁电式仪表是根据载流导体在磁场中受力的原理,即电动机原理而制成的。磁电式仪表测量机构产生力矩的原理如图4-3所示。 4.什么是电磁式仪表? 电磁式仪表是测量交流电流与电压最常见的一种仪表。它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其是固定安装的测量中得到了广泛的应用。 5.电磁式仪表与磁电式仪表有何不同? 电磁式仪表与磁电式仪表是两种不同类型的仪表。它们有很多不同之处,突出的表现在性能、结构和表盘上。 从表盘上就可区分开这两种仪表。除它们的图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁式仪表的刻度则由密变疏。 从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此它的直接被测量只能是直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量。但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。 结构和工作原理的不同是两种仪表的根本区别。虽然它们都分为固定和可动两大部分,但其具体组成内容不同。磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一线圈,被测电流流经线圈时,利用通电导线在磁场中受力的原理(即电动机原理),实现可动部分的转

常用电工仪表的分类、基本组成及工作原理

1.常用电工仪表的分类 电气测量指示仪表种类繁多,分类方法也很多,了解电气渊量指示式仪表的分类,有助于认识它们所具有的特性,对学习电气测金指示式仪表的概况有一定的帮助。 下面介绍几种常见的电气测量指示仪表的分类方法。 (1)按工作原理分有磁电系、电磁系、感应系、静电系等。 (2)按被侧电量的名称分有电流表(安培表、毫安表和微安表)、电压表(伏特表、毫伏表)、功率表、电能表、功率因数表、频率表、兆欧表以及其他多种用途的仪表,如万用表等。 (3)按被测电流的种类分有直流表、交流表、交直流两用表。 (4)按使用方式分有开关式与便携式仪表。开关板式仪表通常固定安装在开关板或某一装置.七,一般误差较大,价格也较低,适用于一般工业测量。便携式仪表误差较小(准确度较高),价格较贵,适于实验室适用。 (5)按仪表的准确度分有0.1,0.2,0.5,1.0,1.5,2.5,5.0共七个等级。 此外.按仪表对电磁场的防御能力可分为Ⅰ,Ⅱ,Ⅲ,Ⅳ四级;按仪表使用条件分为A,B,C三组。 2.电工仪表的基本组成和工作原理 电工指示仪表的基本工作原理都是将被测电量或非电量变换成指示仪表活动部分的偏转角位移量。被测量往往不能直接加到测量机构上,一般需要将被测量转换成测量机构可以测量的过渡量.这个把被测量装换为过渡量的组成部分叫测量线路。把过渡量按某一关系转换成偏转角的机构叫测量机构。测量机构有活动部分和固定部分组成,它是仪表的核心。如图A1所示,电工指示仪表一般有测量线路和测量机构这两个部分组成。 测量机构的主要作用是产生使仪表的指示器偏转的转动力矩,以及使指示器保持平衡和迅速稳定的反作用力矩及阻尼力矩。 测量线路把被测电量或非电量转换为测量机构能直接测量的电量时,测量机构活动部分在偏转力矩的作用下偏转。同时测量机构产生反作用力矩的部件所产生的反作用力矩也作用在活动部件上,当转动力矩与反作用力矩相等时,可动部分便停止下来。由于可动部分具有惯性,以至于其达到平衡时不能迅速停止下来,而是在平衡位置附近来回摆动。测量机构中的阻尼装笠产生的阻尼力矩使指针迅速停止在平衡位置上,指出被测量的大小,这也就是电工指示仪表的基本工作原理。

(完整版)电磁式仪表与磁电式仪表区别

电磁式仪表与磁电式仪表有何不同? 添加时间:2015-08-12 来源:艾特贸易网| 阅读量:1170 答:电磁式仪表与磁电式仪表是两种不同类型的仪表。它们有很多不同之处,突出表现在性能、结构和表盘上。 (1)从表盘上就可区分开这两种仪表。除了图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁系仪表的刻度则由密变疏。 (2)从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此只能用其直接测量直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量,但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。 (3)结构和工作原理的不同是两种仪表的根本区别。虽然它们都分为固定和可动两大部分,但其具体组成内容不同。 磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一组线圈,被测电流流经线圈时,利用通电导线在磁场中受力的原理(即电动机原理),实现可

动部分的转动。磁电式仪表的结构如图1.2所示。 图1.2 磁电式仪表的测量结构示意图 电磁式仪表的固定部分是被测电流流经的线圈,有电流通过即可形成较强的磁场;可动部分的核心是一片可被及时磁化的软磁性材料(如铁片、坡莫合金等),利用被磁化的动铁片与通电线圈(或被磁化的静铁片)磁极之间的作用力,实现可动部分的偏转。 由于电磁式仪表构造简单、成本低廉,在电工测量中获得了广泛的应用,尤其是开关板式交流电流表、电压表,基本上都采用这种仪表。 图1.3 电磁式仪表的测量机构示意图 电磁式仪表的结构如图1.3所示,根据测量机构的结构形式不同,分为扁线圈吸引型和圆线圈排斥型两种。

各种流量计的优缺点及适合的介质

各种流量计的优缺点及适合的介质 一、电磁流量计 1、优点 (1)电磁流量计可用来测量工业导电液体或浆液。 (2)无压力损失。 (3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。 (4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。 2、缺点 (1)电磁流量计的应用有一定的局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。另外在高温条件 下其衬里需考虑。 (2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度, 不同流体介质具有不同的密度,而且随温度变化。如果电磁流量计转换器不 考虑流体密度,仅给出常温状态下的体积流量是不合适的。 (3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。在安装变送器时, 从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。 安装地点不能有振动,不能有强磁场。在安装时必须使变送器和管道有良好 的接触及良好的接地。变送器的电位与被测流体等电位。在使用时,必须排 尽测量管中存留的气体,否则会造成较大的测量误差。 (4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一 定厚度,可能导致仪表无法测量。 (5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。如100mm口径仪表内径变化1mm会带来约2%附加误差。 (6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。为了准确测量流量, 必须消除各种干扰信号,有效放大流量信号。应该提高流量转换器的性能, 最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择 励磁方式和频率,可以排除同相干扰和正交干扰。但改进的仪表结构复杂, 成本较高。 (7)价格较高。 二、超声波流量计 1、优点 (1)超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。它不会改变流体的流动状态,不会产生压力损失,且 便于安装。 (2)可以测量强腐蚀性介质和非导电介质的流量。

电磁式仪表的结构和工作原理

电磁式仪表的结构和工作原理 电磁系仪表是一种交直流两用的测量仪表,其测量机构主要由通过电流的固定线圈和处于固定线圈内的可动软磁铁芯组成,可分为吸引型、排斥型和排斥-吸引型三种基本类型。下面介绍吸引型的测量机构工作原理。 吸引型测量机构如图1 所示。它是扁平型的固定线圈和可动的软磁铁芯所组成。扁线圈中的中间有一条窄缝。在可动部分的转轴上,还固定有指针、游丝、平衡锤和阻尼片。当被测量的电流通过固定线圈时,在线圈的窄缝中就产生磁场。在磁场的电磁力作用下,软磁铁芯被吸入线圈的窄缝,带动可动部分偏转,当偏转到的转动力矩与游丝的反作用力矩平衡时,指针就稳定下来。 当被测量电流的方向改变时,则磁场方向及铁芯被磁化的极性也同时改变,所以相互之间的吸引作用仍保持不变,也就是转动力矩的方向不变,由此可知转动力矩的方向与电流方向的变化无关,因此电磁系仪表能用于交流电路的测量。 在交流电路中,固定线圈的磁场使可动体发生偏转的电磁能量为 2 12 W Li = 式中i 为通过线圈的电流,L 为线圈的电感。此时电磁能量是用来产生转矩的,测量机构的瞬时转动力矩为 212t dW dL M i dt d α= = 可动部分的平均转矩为 ∫ ∫ = = T T t p dt i T d dL dt M T M 0 20 1211 α 式中, 20 21I dt i T T =∫ (I 是交流电流的有效值)。因此电磁系仪表的转动力矩为 2212p f dL M I K I d α = = 式中f K 表示频率为f 时仪表的系数。 若电磁系仪表用于直流电路时,则转矩为 20I K M = 1—线圈 2—固定线圈 3—可动铁芯 4—磁屏蔽 5磁感应阻尼片 图1 电磁系线圈测量机构

磁电系仪表

《电工仪表与测量》 大作业 专业名称:电气工程及其自动化 班级:电气工程及其自动化14-21班 学号: 20140272011 姓名:张人方 指导教师:邵媛媛 日期: 2015年6月3日

目录 一、磁电系仪表的结构 二、磁电系仪表的工作原理 三、磁电系仪表应用 四、测量电路举例 五、磁电系仪表测量误差的主要来源及补偿方法 六、参考书目、资料 七、总结学习心得 格式要求: 1.正文用宋体:小四 2.行间距:单倍行距 3.标题:黑体,三号,加黑 4.段间距设置:段前0.5 行,段后0 6.正文内容主要涉及到所讲过的各个系别仪表的基本结构、工作原理等基础知识;以及应用和发展趋势等,可以简单涉及相关的设计方面内容;测量电路举例必须有具体测量电路图,电路功能描述等。

电磁系仪表 磁电系仪表在电气测量指示仪表中找有极其重要的地位,广泛应用于直流电流和电压的测量。如果和整流元件配合,可以用于交流电流和电压的测量;与变换器配合,可以测量交流功率、频率、相位以及温度压力等;此外,它还广泛用作电子仪器中的指示器。 一、磁电系仪表的结构 磁电系仪表根据磁路形式的不同,分为内磁式,外磁式和内外结合式三种结构。 外磁式的永久磁铁在可动线圈的外面,主要结构如图1(a)所示,它包括固定部分和可动部分: 图1 磁电系仪表的结构 a)外磁式 b)内磁式 1-永久磁铁 2-极掌 3-铁芯 4-可动线圈 5-转轴 6-平衡锤 7-指针8-游丝 9-空气间隙 10-磁轭 固定部分:永久磁铁、极掌和固定在支架上的圆柱形铁芯 可动部分由绕在铝框架上的可动线圈、前后两根半轴、与转轴相连的指针平衡锤以及游丝组成。当可动部分发生转动时,游丝变形产生与转动方向相反的反作用力矩。另外,游丝还具有把电流导入可动线圈的作用。 内磁式是将永久磁铁做成圆柱形并放在可动线圈之内,它既是铁芯又是磁铁。为

磁电系仪器仪表测量机构与工作原理

编辑版word 磁电系仪器仪表测量机构与工作原理 磁电系仪表是电子仪器仪表的一种,磁电系仪表主要用于直流电流和电压的测量,与整流器配合之后,也可用于交流电流和电压的测量。其优点是:准确度和灵敏度高、功耗小、刻度均匀等。缺点是:过载能力差。该仪表主要由磁电系测量机构和测量线路组成。 1.测量机构和工作原理 磁电系仪表测量机构主要由固定部分和可动部分组成,如图3-1-1。固定部分由马蹄形永久磁铁、极掌和圆柱形铁心等组成表头的磁路系统。固定于表壳上的圆柱形铁心处于两极掌之间,并与两极掌形成辐射均匀的环形磁场。可动部分由绕在矩形铝框架上的可动线圈、与铝框相连的两个半轴以及固定在半轴上的指针、游丝等组成。整个可动部分经两半轴支承在轴承上,线圈则位于环形磁场中。 当电流I 经游丝流入可动线圈后,通电线圈在永久磁铁的磁场中受到电磁力,产生电磁转矩M ,使可动线圈发生偏转,转矩M ∝I 。同时与可动线圈固定在一起的游丝因动圈的偏转而发生变形,从而产生反作用力矩F M ,F M 与指针的偏转角成正比,即F M ∝α。 当M =F M 时,可动部分将不再转动而停留在平衡位置,此时偏转角与输入电流的关系为α∝I 。 如果在仪表盘上直接按电流值刻度,则仪表标尺上的刻度是均匀等份的,而且指针偏转方向与电流方向有关。当电流反向时,可动线圈的偏转也随之反向。 如果可动线圈通入交流电,在电流方向变化时转矩M 的方向也随之变化。若电流变化的频率小于可动部分的固有振动频率,指针将会随电流方向的变化而左右摆动;若电流变化的频率高于可动部分的固有振动频率,指针偏转角将与一个周期内转矩的平均值有关。由于一个周期内的平均驱动转矩为零,所以指针将停留在零位不动。可见,磁电系仪表只能直接测量直流电,而不能测量交流电。若要测量交流电,则必须配上整流装置构成整流系仪表。 2.电流的测量 磁电系仪表可直接作为电流表使用。但由于被测电流要流过截面积极细、允许流过很小电流(<1mA )的游丝和可动线圈,所以最大量程只能是微安或毫安级。为了扩大量程,可在测量机构上并联低值电阻即分流器,如图3-1-2所示。 此时流过表头的电流0I 只是被测电流X I 的一部分,两 者的关系是0 44 0R R R I I A A X +? =。多量程电流表由几个 不同阻值的分流器构成,并通过量程转换开关分别与表头并联。需要扩大的量程越大,分流器的电阻越小。图 图3-1-2 多量程电流表接线图 马蹄形永久磁铁圆柱形铁心极掌 铝框及 可动线圈 游丝 指针 I I 10 5080 图3-1-1 磁电系仪表测量机构

磁电式电磁式电动式仪表的定义原理

磁电式电磁式电动式仪 表的定义原理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

磁电式、电磁式、电动式仪表的定义、原理 1 什么是磁电式仪表 磁电式仪表广泛地应用于直流电压和电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。 2 磁电式仪表是由哪几部分构成的 磁电式仪表是由固定的磁路系统和可动部分组成的。仪表的磁路系统是在永久磁铁1的两极,固定着极掌2。两极掌之间是圆柱形铁心3。圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌和铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。处在这个磁场中的可动线圈4是用很细的漆包线绕制在铝框架上的。框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。指针6安装在前半轴上。当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。 反作用力矩可以由游丝、张丝或悬丝产生。当采用游丝时,还同时用它来导人和导出电流,如图4-1(b)所示。因此装设了两个游丝,它们的螺旋方向相反。仪表的阻尼力矩则由铝框产生。高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。 磁电式仪表按磁路形式又分为内磁式、外磁式和内外磁式三种,如图4-2所示。内磁式的结构是永久磁铁在可动线圈的内部。外磁式的结构是永久磁铁在可动线圈的外部。内外磁式的结构是在可动线圈的内外都有永久磁铁,磁场较强,可使仪表的结构尺寸更为紧凑。 3 磁电式仪表是如何工作的 磁电式仪表是根据载流导体在磁场中受力的原理,即电动机原理而制成的。磁电式仪表测量机构产生力矩的原理如图4-3所示。 4.什么是电磁式仪表 电磁式仪表是测量交流电流与电压最常见的一种仪表。它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其是固定安装的测量中得到了广泛的应用。 5.电磁式仪表与磁电式仪表有何不同 电磁式仪表与磁电式仪表是两种不同类型的仪表。它们有很多不同之处,突出的表现在性能、结构和表盘上。 从表盘上就可区分开这两种仪表。除它们的图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁式仪表的刻度则由密变疏。 从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此它的直接被测量只能是直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量。但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。 结构和工作原理的不同是两种仪表的根本区别。虽然它们都分为固定和可动两大部分,但其具体组成内容不同。磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一线圈,被测电流流经线圈时,

磁电系仪表的结构和工作原理

磁电系仪表的结构和工作原理 磁电系仪表的基本测量机构由固定部分和可动部分组成,如图1所示,其特点是由一个或几个永久磁铁和一个或几个载流线圈所构成的磁场能量来推动可动部分偏转。可动部分的转动力矩中由永久磁铁与载流线圈的磁场相互作用产生的。磁电系测量机构根据可动部分是载流线圈还是永久磁铁,可分为动圈式和动磁式两类。在动圈式仪表中根据永久磁铁安装的位置不同,又分为三种:外磁式、内磁式和内外磁相结合三种形式。固定的磁路由马蹄形永久磁铁、磁轭、极掌和圆柱形铁芯组成,在它们之间的空隙内,形成强辐射状的均匀磁 场。安装在气隙中的动框,是一个用绝缘细导线绕制成的矩形线圈。动框上下的侧面固定着带轴尖的轴尖座,轴尖支撑在轴承的凹槽中,使可动部分可以在气隙中转动。两对游丝的盘旋方向相反,内端与轴固定,外端固定的支架上。游丝不仅产生阻尼力矩,而且是电流引入和引出线。轴上的平衡锤可用来调节可动部分的机械平衡,使可动部分的重心在转轴上。 磁电系仪表的作用原理是以永久磁铁间隙中的磁场与载流线圈相互作用为基础。当可动线圈中有电流通过时,根据左手定理,在可动线圏的两个侧边上将产生如图2所示的 1F 和2F BNIl F F F ===21 式中,B 为空气隙中的磁感应强度,N 为线圈的匝数,I 为通过线圈的电流,l 为线圈中受力边的长度,若在线圈上产生的转动力矩为M ,则 SBNI bBNIl bF F b F b M ===+= 212 2 式中,b 为线圈非受力边的长度,即线圈的宽度;S 为线圈的有效面积,即bl S = 在转矩的作用下,使可动部分转动。此时仪表的游丝被扭转而产生一个反作用力矩M α。当偏转角随着测量电流I 增大时,游丝的反作用力矩也增大,因此有 M D αα=? 式中,D 为游丝反矩系数,α为指针的偏转角。当转动力矩与反作用力矩相等时,表 头上的指针就静止在稳定的偏转位置,此时有 1.永久磁铁 2.磁轭 3. 极掌 4.圆柱形铁芯 5.动框 6.游丝 7.平衡锤 8.磁分路 9.指针 图1 磁电系测量机构 1.永久磁铁 2.圆柱形磁铁 3.可动线圈 图2磁电作用原理

各种液位计优缺点

常用液位计方式有以下几种:连通器式液位计、超声波液位计、电容式液位计、雷达液位计、磁性浮子液位计、磁致伸缩型液位计、静压式液位计、伺服式液位计;测量物位的有超声波物位计和放射性物位计等。从测量原理上来说可以分为接触式测量与非接触式测量、压力式原理测量等。下面就介绍上述的各种液位计的功能与缺点。 1、连通器式液位计: 应用最普通的玻璃液位计结构简单、价廉、直观,适于现场使用: 缺点:易破损,内表面沾污,造成读数困难,不便于远传和调节。 2、超声波液位计: 是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。无机械可动部分,可靠性高,安装简单、方便,属于非接触测量,且不受液体的粘度、密度等影响精度比较低。 缺点:超声波液位计测试容易有盲区。不可以测量压力容器,不能测量易挥发性介质。 3、电容式液位计: 采用测量电容的变化来测量液面的高低的。它是一根金

属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。两电极间的介质即为液体及其上面的气体。由于液体的介电常数ε1和液面上的介电常数ε2不同,比如:ε1>ε2,则当液位升高时,两电极间总的介电常数值随之加大因而电容量增大。反之当液位下降,ε值减小,电容量也减小。所以,可通过两电极间的电容量的变化来测量液位的高低。 缺点:电容液位计的灵敏度主要取决于两种介电常数的差值,而且,只有ε1和ε2的恒定才能保证液位测量准确,因被测介质具有导电性,所以金属棒电极都有绝缘层覆盖。被测液体的介电常数不稳定会引起误差。电容式液位计一般用于调节池、清水池测量。(注:液化气是否会对测量造成影响未知待确定) 4、雷达液位计: 采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下:D=CT/2(D:雷达液位计到液面的距离C:光速T:电磁波运行时间) 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。不需要传输媒介,不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发介质的液位测量。采用

各常用电磁无损检测方法原理,应用,优缺点比较

一普通涡流检测 1原理 涡流检测是以电磁感应为基础,通过测定被检工件内感生涡流的变化来无损地评定导电材料及其工件的某些性能,或发现其缺陷的无损检测方法。当载有交变电流的试验线圈靠近导体试件时,由于线圈产生的交变磁场的作用感应出涡流,涡流的大小,相位及流动形式受到试件性能和有无缺陷的影响,而涡流产生的反作用又使线圈阻抗发生变化,因此,通过测定线圈阻抗的变化,就可以推断被检试件性能的变化及有无缺陷的结论。 2发展 1涡流现象的发现己经有近二百年的历史。奥斯特(Oersted、安培(Ampere ) , 法拉弟(Faraday、麦克斯韦(Maxwell)等世界著名科学家通过研究电磁作用实 验,发现了电磁感应原理,建立了系统严密的电磁场理论,为涡流无损检测奠定 了理论基础[l]。1879年,体斯(Hughes)首先将涡流检测应用于实际一一判断不 同的金属和合金,进行材质分选。自1925年起,在美国有不少电磁感应和涡流检测仪获得专利权,其中,Karnz直接用涡流检测技术来测量管壁厚度;Farraw首次 设计成功用于钢管探伤的涡流检测仪器。但这些仪器都比较简单,通常采用60Hz , 110V的交流电路,使用常规仪表(如电压计、安培计、瓦特计等),所以其工作 灵敏度较低、重复性较差。二战期间,多个工业部门的快速发展促进了涡流检测 仪器的进步。涡流检测仪器的信号发生器、放大器、显示和电源装置等部件的性 能得到了很大改进,问世了一大批各种形式的涡流探伤仪器和钢铁材料分选装置,较多地应用于航空及军工企业部门。当时尚未从理论和设备研制中找到抑制干扰 因素的有效方法,所以,在以后很长一段时间内涡流检测技术发展缓慢。 直到1950年以后,以德国科学家福斯特(Foster)博士为代表提出了利用阻

液位计种类及其优缺点

液位计种类及其优缺点 现在市场上的液位计主要有以下7种,每种液位计的原理、优缺点如下: 1、磁性浮子液位计 原理:根据浮力原理和磁性耦合作用研制而成。当被测容器中的液位升降时,液位计本体管中的磁性浮子也随之升降,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示器,驱动红、白翻柱翻转,当液位上升时翻柱由白色转变为红色,当液位下降时翻柱由红色转变为白色,指示器的红白交界处为容器内部液位的实际高度,从而实现液位清晰的指示。 优点:可以做到高密封,防泄漏和适用于高温、高压、耐腐蚀的场合。对高温、高压、有毒、有害、强腐蚀介质更显其优越性。 缺点:与介质直接接触,浮球密封要求要严格,不能测量粘性介质。磁性材料如退磁易导致液位计不能正常工作。 2、磁性翻板(柱)式液位计 原理:同磁性浮子液位计。 优点:同磁性浮子液位计。 缺点:翻板容易卡死,造成无法远传指示。磁性材料如退磁易导致液位计不能正常工作。 3、电磁波雷达液位计(导波雷达液位计) 原理:雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接

收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下:D=CT/2(D:雷达液位计到液面的距离C:光速T:电磁波运行时间)雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 优点:不需要传输媒介,不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发介质的液位测量。采用非接触式测量,不受槽内液体的密度、浓度等物理特性的影响。 缺点:价格昂贵。仪表需要设置的参数较多,一旦出现问题,通常很难查出是什么原因造成的。如果天线本身不慎沾上介质会报错。如有结晶结冰现象会报错,需加热保温处理,并清理天线。最初安装需要是空仓,即空料位。 4、超声波液位计 原理:超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。 优点:无机械可动部分,可靠性高,安装简单、方便,属于非接触测量,且不受液体的粘度、密度等影响。 缺点:精度比较低,测试容易有盲区。不可以测量压力容器,不能测量易挥发性介质。 5、电容式液位计 原理:采用测量电容的变化来测量液面的高低的。它是一根金属

磁电系仪器仪表测量机构与工作原理

磁电系仪器仪表测量机构与 工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2 磁电系仪器仪表测量机构与工作原理 磁电系仪表是电子仪器仪表的一种,磁电系仪表主要用于直流电流和电压的测量,与整流器配合之后,也可用于交流电流和电压的测量。其优点是:准确度和灵敏度高、功耗小、刻度均匀等。缺点是:过载能力差。该仪表主要由磁电系测量机构和测量线路组成。 1.测量机构和工作原理 磁电系仪表测量机构主要由固定部分和可动部分组成,如图3-1-1。固定部分由马蹄形永久磁铁、极掌和圆柱形铁心等组成表头的磁路系统。固定于表壳上的圆柱形铁心 处于两极掌之间,并与两极掌形成辐射均匀的环形磁场。可动部分由绕在矩形铝框架上的可动线圈、与铝框相连的两个半轴以及固定在半轴上的指针、游丝等组成。整个可动部分经两半轴支承在轴承上,线圈则位于环形磁场中。 当电流I 经游丝流入可动线圈后,通电线圈在永久磁铁的磁场中受到电磁力,产生电磁转矩M ,使可动线圈发生偏转,转矩M ∝I 。同时与可动线圈固定在一起的游丝因动圈的偏转而发生变形,从而产生反作用力矩F M ,F M 与指针的偏转角成正比,即F M ∝ 。 当M =F M 时,可动部分将不再转动而停留在平衡位置,此时偏转角与输入电流的关系为α∝I 。 如果在仪表盘上直接按电流值刻度,则仪表标尺上的刻度是均匀等份的,而且指针偏转方向与电流方向有关。当电流反向时,可动线圈的偏转也随之反向。 马蹄形永久磁铁 圆柱形铁心极掌 铝框及可动线圈 游丝 指针 I I 10 5080 图3-1-1 磁电系仪表测量机构

磁电系仪器仪表测量机构与工作原理

磁电系仪器仪表测量机构与工作原理 磁电系仪表是电子仪器仪表的一种, 磁电系仪表主要用于直流电流和电压的测量, 与整 流器配合之后,也可用于交流电流和电压的测量。其优点是:准确度和灵敏度高、功耗小、 刻度均匀等。缺点是:过载能力差。该仪表主要由磁电系测量机构和测量线路组成。 1.测量机构和工作原理 磁电系仪表测量机构主要由固定部分和可动部分组成,如图 3-1-1。固定部分由马蹄形 位置,此时偏转角与输入电流的关系为a% I 。 如果在仪表盘上直接按电流值刻度, 则仪表标尺上的刻度是均匀等份的, 而且指针偏转 方向与 电流方向有关。当电流反向时,可动线圈的偏转也随之反向。 如果可动线圈通入交流电,在电流方向变化时转矩 M 的方向也随之变化。若电流变化 的频率小于可动部分的固有振动频率, 指针将会随电流方向的变化而左右摆动; 若电流变化 的频率高于可动部分的固有振动频率, 指针偏转角将与一个周期内转矩的平均值有关。 由于 一个周期内的平均驱动转矩为零, 所以指针将停留在零位不动。 可见,磁电系仪表只能直接 测量直流电,而不能测量交流电。若要测量交流电,则必须配上整流装置构成整流系仪表。 2.电流的测量 磁电系仪表可直接作为电流表使用。 但由于被测电流要流过截面积极细、 允许流过很小 电流(v 1mA 的游丝和可动线圈,所以最大量程只能是微安或毫安级。为了扩大量程,可 在测量机构上并联低值电阻即分流器, 如图3-1-2所示。 此时流过表头的电流I °只是被测电流I X 的一部分,两 不同阻值的分流器构成,并通过量程转换开关分别与表 头并联。需要扩大的量程越大,分流器的电阻越小。图 永久磁铁、极掌和圆柱形铁心等组成表头的磁路系统。 固定于表壳上的圆柱形铁心处于两极 掌之间,并与两极掌形成辐射均匀的环形磁场。可动部 分由绕在矩形铝框架上的可动线圈、与铝框相连的两个 半轴以及固定在半轴上的指针、游丝等组成。整个可动 部分经两半轴支承在轴承上,线圈则位于环形磁场中。 当电流I 经游丝流入可动线圈后,通电线圈在永久 磁铁的磁场中受到电磁力,产生电磁转矩 M ,使可动 线圈发生偏转,转矩M % |。同时与可动线圈固定在一 起的游丝因动圈的偏转而发生变形,从而产生反作用力 矩M F , M F 与指针的偏转角成正比,即 M F % 。 马蹄形永久磁铁 圆柱形铁心 当M = M F 时,可动部分将不再转动而停留在平衡 10 1 50 80 者的关系是I ° I X 极掌 指针 游丝 铝框及 可动线圈 图3-1-1 磁电系仪表测量机构 R A 4 R O 图3-1-2 多量程电流表接线图

常见流量测量仪表的优缺点

常见流量测量仪表的优缺点 常见流量测量仪表(差压式流量计、转子流量计、涡轮流量计、电磁流量计)的优缺点 按照目前最流行、最广泛的分类法,即分为:容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计来分别阐述各种流量计的原理、特点、应用概况及国内外的发展情况1.1涡轮流量计涡轮流量计,是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。一般它由传感器和显示仪两部分组成,也可做成整体式。涡轮流量计和容积式流量计、科里奥利质量流量计称为流量计中三类重复性、精度最佳的产品,作为十大类型流量计之一,其产品已发展为多品种、多系列批量生产的规模。优点:(1)高精度,在所有流量计中,属于最精确的流量计;(2)重复性好;(3)无零点漂移,抗干扰能力好;(4)范围度宽;(5)结构紧凑。缺点:(1)不能长期保持校准特性;(2)流体物性对流量特性有较 大影响。应用概况:涡轮流量计在以下一些测量对象获得广泛应用:石油、有机液体、无机液、液化气、天然气和低温流体统在欧洲和美国,涡轮流量计在用量上是仅次于孔板流量计的天然计量仪表,仅荷兰在天然气管线上就采用了2600多台各种尺寸,压力从0.8~6.5MPa的气体涡轮流量计,它们已成为优良的天然

气计量仪表。1.2涡街流量计涡街流量计是在流体中安放一根非流线型游涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的游涡的仪表。涡街流量计按频率检出方式可分为:应力式、应变式、电容式、热敏式、振动体式、光电式及超声式等。涡街流量计是属于最年轻的一类流量计,但其发展迅速,目前已成为通用的一类流量计。优点:(1)结构简单牢固;(2)适用流体种类多;(3)精度较高;(4)范围度宽;(5)压损小。缺点:(1)不适用于低雷诺数测量;(2)需较长直管段;(3)仪表系 数较低(与涡轮流量计相比);(4)仪表在脉动流、多相流中尚缺乏应用经验。1.3电磁流量计电磁流量计是根据法拉弟电磁感应定律制成的一种测量导电性液体的仪表。电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。70、80年代电磁流量在技术上有重大突破,使它成为应用广泛的一类流量计,在流量仪表中其使用量百分数不断上升。优点:(1)测量通道是段光滑直管,不会阻塞,适用于测量含固体颗粒的液固二相流体,如纸浆、泥浆、污水等;(2)不产生流量检测所造成的压力损失,节能效果好;(3)所测得体积流量实 际上不受流体密度、粘度、温度、压力和电导率变化的明显影响;(4)流量范围大,口径范围宽;(5)可应用腐蚀性流体。缺点:(1)不能测量电导率很低的液体,如石油制品;(2)不能测量气体、蒸汽和含有较大气泡的液体;(3)不能用于较高温度。应用概况:电磁流量计应用领域广泛,大口径仪表较多应用于给排

磁电系仪表

磁电系仪表 磁电系仪表广泛应用于直流电流和电压的测量。如果和整流元件配合,可以用于交流电流和电压的测量;与变换器配合,可以测量交流功率、频率、相位以及温度压力等;此外,它还广泛用作电子仪器中的指示器。 第一节磁电系测量机构 一、结构和工作原理 1、结构 图3-1 磁电式测量机构的结构示意图 通常的磁电系测量机构由固定的磁路系统和可动线圈部分组成。其结构如图3-1所示。磁路系统包括永久磁铁1,固定在磁铁两极的极掌2和处于两个极掌之间的圆柱形铁芯3。圆柱形铁芯3固定在仪表支架上,使两个极掌与圆柱形铁芯之间的空隙中形成均匀的辐射状磁场。可动部分由绕在铝框架上的可动线圈4、指针6、平衡锤7和游丝5组成。可动线圈两端装有两个半轴支承在轴承上,而指针、平衡锤及游丝的一端固定安装在半轴上。当可动部分发生转动时,游丝变形产生与转动方向相反的反作用力矩。另外,游丝还具有把电流导入可动线圈的作用。 2、工作原理

磁电系测量机构的基本原理是利用可动线圈中的电流与气隙中磁场相互作用,产生电磁力,可动线圈在力矩的作用下发生偏转,因此称这个力矩为转动力矩。可动线圈的转动使游丝产生反作用力矩,当反作用力矩与转动力矩相等时,可动线圈将停留在某一位置上,指针也相应停留在某一位置上。磁电系测量机构产生转动力矩的原理如图2-2所示。 二、技术特性和应用范围 1、技术特性 (1)准确度高。磁电系测量机构由于采用了永久磁铁,且工作气隙比较小,所以气隙磁场的磁感应强度较大,可以在很小的电流作用下,产生较大的转动力矩。可以减小由于摩擦、外磁场等原因引起的误差,提高了仪表的准确度。磁电系测量机构的准确度可以达到0.1~0.05级。 (2)灵敏度高。仪表消耗的功率很小。 (3)表盘标度尺的刻度均匀,便于读数。 (4)过载能力小。由于被测电流通过游丝导入可动线圈,所以电流过大容易引起游丝发热使弹性发生变化,产生不允许的误差,甚至可能因过热而烧毁游丝。另外,可动线圈的导线横截面很小,电流过大也会使线圈发热甚至烧毁。 (5)只能测量直流。这是因为:如果在磁电系测量机构中直接通入交流电流,则所产生的转动力矩也是交变的,可动部分由于惯性作用而来不及转动。 2、应用范围 磁电系测量机构主要用于直流仪表,在直流标准表、便携式和安装式仪表中都得到广泛应用。 磁电系测量机构的过渡电量是直流电流,只要把被测电量通过测量线路按一定关系变换为直流电流,就可以用它来构成不同功能,不同量程的仪表。 第二节磁电系电流表

磁电系仪器仪表测量机构与工作原理

磁电系仪器仪表测量机构与工作原理 磁电系仪表是电子仪器仪表的一种,磁电系仪表主要用于直流电流和电压的测量,与整流器配合之后,也可用于交流电流和电压的测量。其优点是:准确度和灵敏度高、功耗小、刻度均匀等。缺点是:过载能力差。该仪表主要由磁电系测量机构和测量线路组成。 1.测量机构和工作原理 磁电系仪表测量机构主要由固定部分和可动部分组成,如图3-1-1。固定部分由马蹄形永久磁铁、极掌和圆柱形铁心等组成表头的磁路系统。固定于表壳上的圆柱形铁心处于两极掌之间,并与两极掌形成辐射均匀的环形磁场。可动部分由绕在矩形铝框架上的可动线圈、与铝框相连的两个 半轴以及固定在半轴上的指针、游丝等组成。整个可动部分经两半轴支承在轴承上,线圈则位于环形磁场中。 当电流I 经游丝流入可动线圈后,通电线圈在永久 磁铁的磁场中受到电磁力,产生电磁转矩M ,使可动 线圈发生偏转,转矩M ∝I 。同时与可动线圈固定在一 起的游丝因动圈的偏转而发生变形,从而产生反作用力 矩F M ,F M 与指针的偏转角成正比,即F M ∝α。 当M =F M 时,可动部分将不再转动而停留在平衡 位置,此时偏转角与输入电流的关系为α∝I 。 如果在仪表盘上直接按电流值刻度,则仪表标尺上的刻度是均匀等份的,而且指针偏转方向与电流方向有关。当电流反向时,可动线圈的偏转也随之反向。 如果可动线圈通入交流电,在电流方向变化时转矩M 的方向也随之变化。若电流变化的频率小于可动部分的固有振动频率,指针将会随电流方向的变化而左右摆动;若电流变化的频率高于可动部分的固有振动频率,指针偏转角将与一个周期内转矩的平均值有关。由于一个周期内的平均驱动转矩为零,所以指针将停留在零位不动。可见,磁电系仪表只能直接测量直流电,而不能测量交流电。若要测量交流电,则必须配上整流装置构成整流系仪表。 2.电流的测量 磁电系仪表可直接作为电流表使用。但由于被测电流要流过截面积极细、允许流过很小电流(<1mA )的游丝和可动线圈,所以最大量程只能是微安或毫安级。为了扩大量程,可在测量机构上并联低值电阻即分流器,如图3-1-2所示。此时流过表头的电流0I 只是被测电流X I 的一部分,两者的关系是0440R R R I I A A X +?=。多量程电流表由几个不同阻值的分流器构成,并通过量程转换开关分别与表 头并联。需要扩大的量程越大,分流器的电阻越小。图 图3-1-2 多量程电流表接线图 马蹄形永久磁铁 圆柱形铁心极掌铝框及可动线圈游丝指针I I 105080 图3-1-1 磁电系仪表测量机构

磁电系仪表的优缺点

a揩确度高。磁电系测量机构由于磁感应强度很强,可以在很小的电流作用下.产生较大的转动力矩。因此,可以减小由于摩擦、外磁场等原因引起的误差.提高厂仪表的难确度。b灵敏度高。磁电系仪表的磁感应强度较大,在很小的电流作用下就能产生较大的转动力。c过载能力差。由于被测电流通过游丝导入5f功线圈.游丝和动圈的导线都很细.所以电流过大,容易引起游丝发热使弹性系数变化或损坏动圈。 d小能直接测量电流。因磁电系仪表永久 磁铁产生的磁场方向恒定不变.如果在磁电系测量机构中直接通入交流.则产生的转动力矩就是交变的,可动部分由于惯性作用顺来不及转动,指针只能在零体左右摆动,无法获得被测量的测量值: e表盘到度均匀。磁电系仪表偏转角与被 测电流量的大小成正比,因此它的仪表刻度都 是均匀的。 〔2)电磁系仪表的结构和工作原理。 ①电磁系仪表的结构。电磁系仪表的测量机构常用的有吸引型和排斥型。下面分别介绍吸引型和排斥型电磁系仪表的结构* a.吸引型结构。吸引型电磁系仪表结构如图A4所示:它的测量机构由固定线路和偏心地装在转轴上的呵功铁片组成。固定线圈中间有一条窄缝,可动铁片呵转入此窄缝 内。固定线圈和可动铁片是产生转动力矩的主要元件c转轴上还装有能产生作用力矩的 游丝、指针以及阻尼器。 当电流通过线圈时,线圈附近就产生磁场使可动铁片磁化,U对铁片产生吸引力,从而产生转动力矩.使铁片偏转,引起指针偏转。肖线圈中电流方向改变时,线圈磁场的极性改变,被磁化的动铁片的极性也同时改变,所以不论线圈中电流方向如何,线圈与动铁片之间的作用力始终是吸引力,如图A5所示c团此,指针的偏转方向与电流方向无关。这种吸引型机构可以直接对交流电路进行测量高压电机。 b.斥型结构;排斥型结构如图A6所示。它的fd定部分包括圆形的固定线阂和固定于线圈内壁的铁片。可动部分由固定在转轴卜的可动铁片、游丝、指针和阻尼片组成。当rd定线圈中通过电流后。内部将产生磁场使定铁片和动铁片同时被磁化,而R。极性相同,因此它们相互排斥16广:生转动力矩。游蝗是产生反作用力矩的。阻尼力矩是阻尼片和永久磁铁组成的磁感应阻尼器产生的: 与吸引型测量机构类似,在排斥型测量结构中,不论电流方向如何,在线圈磁场中的定铁片被磁化的极性和动铁片被磁化的极性相同,所以它们之间的相互作用力始终是排斥的。因此,指针的偏转方向与电流方向死关。D见排斥型测量机构同样可以用于交流电路的测量。 ②电磁系仪表的工作原理。不论哪种形式的电磁系测量机构,都是内通过问定线圈的电流产生磁场的,使处于该磁场中的铁片磁化,从而产生转动力矩。 根据电磁系仪表的工作原理,可以得出其转动力矩与固定线圈的匝数的平方成正比. ⑦电磁系仪表的优缺点 a.2载能力强。阅为电磁系测量机构的电流小通过游丝和可动线圈部分,而同定线圈对电流 的承受能力较强: b交直两用。因为固定线圈的极性与其中被磁化的可动铁片的极性能够随着电流方

相关主题
文本预览
相关文档 最新文档