当前位置:文档之家› 联合站电脱水器课程设计..

联合站电脱水器课程设计..

联合站电脱水器课程设计..
联合站电脱水器课程设计..

目录

第1章联合站及其电脱水概述 (1)

1.1联合站电脱水器简介 (1)

1.2 CAD流程图 (2)

第2章联合站电脱水系统方案设计 (3)

2.1联合站工艺系统概述 (3)

2.2 方案及方案说明 (4)

第3章联合站电脱水系统仪表选型及计算 (6)

3.1 电脱水器的选取 (6)

3.2 选型计算结果 (7)

第4章课程设计心得 (12)

参考文献 (13)

附录 (14)

第1章联合站及其电脱水概述

1.1联合站电脱水器简介

联合站,即集中处理站,是油田地面集输系统中重要组成部分。就油田的生产全局来说,油气集输是继油藏勘探、油田开发、采油工程之后的很重要的生产阶段。如果说油藏勘探是寻找原油,油田开发和采油工程是提供原料,那么油气集输则是把分散的原料集中处理,使之成为油田产品的过程。

联合站一般建在集输系统压力允许的范围内,为了不影响开发井网以及油田中后期加密井网的布置与调整,应尽量建在油田构造的边部。

联合站将来自井口的原油、伴生天然气和其他产品进行集中、运输和必要的处理、初加工,将合格的原油送往长距离输油管线首站外输,或者送往矿场油库经其他运输方式送到炼油厂或转运码头,合格的天然气则集中到输气管线首站。

联合站一般包括如下的生产功能:油气水分离、原油脱水、原油稳定、天然气脱水、轻油回收、原油储存及向矿场油库输送、污水处理、净化污水回注地层、接收计量输来的油气混合物、变配电、供热及消防等。

联合站设计是油气集输工艺设计的重要组成部分,对它的要求是使其最大限度的满足油田开发和油气开采的要求,做到集输先进、经济合理、生产安全可靠,保证为国家生产符合数量和质量的油田产品。

从地层中开采出的原油不可避免的含有大量的水,给之后的储运、加工环节带来了很多不利影响。因此必须对采出油进行脱水处理,以保证外输前原有的含水量低于0.5%。采出油中水主要以溶解水、乳化水和悬浮水为主,其中乳化水最为稳定,特别对于重质油来说,很难利用常规的重力沉降法将其脱除。人们针对乳化液脱水进行了很多研究,如静电聚合、化学破乳、微波破乳及离心分离等,其中应用最为广泛的首推静电聚合法和化学破乳法。静电聚结主要适用于W/O型乳化液,利用电场将连续相(油)中分散相(水)聚结成尺寸较大水滴,使其便于分离。电脱水技术见图。

图1-1 电脱水技术

1.2 CAD流程图

图1-2 工艺流程图

根据实际以及总平面布置原则,进行了平面布置,站内设有原油罐区、原油稳定区、工艺区、锅炉区、污水处理区、预留区、消防区、变电区、行政管理区等。在进行基础参数和热力、水力计算之后,根据流程设计原则,设计了联合站的基本流程,本站的主要流程有:

1.有泵密闭流程:

注破乳剂天然气处理区

站外来油→进站阀组→油气水三相分离器→缓冲罐→循环泵→

污水→污水处理区

电脱水器→加热炉→原油稳定塔→(净化油罐)→原油外输泵→计量→外输2.无泵密闭流程:

注破乳剂天然气处理区

站外来油→进站阀组→油气水三相分离器→缓冲罐→

污水→污水处理区

电脱水器→加热炉→原油稳定塔→(净化油罐)→原油外输泵→计量→外输3.停电流程:

进站来油→进站阀组→油气水三相分离器→缓冲罐→事故罐→循环泵后的正常流程根据原油的特性,主要进行了电脱水器的选取,同时对站内工艺管线进行了设计与校核,从而知道本次设计在理论上能满足设计任务。

设计联合站电脱水方面的过程中,我参考了电脱水的设计数据以及联合站油气集输,石油库的设计规范等。结合平时的学习和实习中对联合站电脱水获得的感性认识,使我对联合站电脱水工艺环节有了全面的了解和认识。

第2章联合站电脱水系统方案设计

2.1联合站工艺系统概述

1.油气水混合物的收集

一个区域中若干油井的井口产物经过计量后,输送到联合站进行集中处理。在收集的过程中对于高粘度、高凝点原油要采取一定措施,使它能够在允许的压力下安全的输送到联合站而不至于凝固在管线内。通常采用的方法有:加热保温法;化学降粘、降凝法;物理降粘、降凝法。

2.油气水的初步分离

在实际生产工程中,从油井出来的不单是原油,常常含有气、水、砂、盐、泥浆等。为了便于输送、储存、计量和使用,必须对它们进行初步分离。油井产物中常含有水特别在油井生产的中后期,含水量逐渐增多,利用离心重力等机械方法分离成气液两相。有些井出砂量很高,同时还应该除去固体混合物。

油气水的初步分离主要在三相分离器中进行,在开式流程中,也在沉降罐中进行。

油和机械杂质、盐的分离一般与油水分离同时进行。当含盐、含砂量高时,有的要用热水冲洗和降粘后再沉降分离,连同水、机械杂质和盐一起脱除。

3.原油脱水

对轻质、中质含水原油,宜采用热沉降、化学沉降法脱水;对中质、重质的高含水原油,先采用热化学沉降法脱水,再用电脱水,对乳化度高的高粘度、高含水原油,应先破乳再沉降脱水。

4.原油稳定

原油中甲烷、乙烷、丙烷、丁烷(正构)在通常情况下是气体,这些轻烃从原油中挥发出来时会带走大量戊烷、己烷等成分,造成原油的大量损失,为了降低油气集输过程中的原油蒸发损耗,一个有效的方法就是将原油中挥发性强的轻烃比较完全的脱除出来,使原油在常温下的蒸汽压降低,这就是原油稳定。

原油稳定所采用的方法可以分为闪蒸法和分馏法两大类。闪蒸法又分为常压闪蒸、负压闪蒸和正压闪蒸。

5.轻烃回收

从原油中脱除的轻烃,经过回收加工是石油化工的重要原料,也是工业与民用的洁净燃料。随着石油化学工业的飞速发展和世界性能源短缺,天然气回收液烃技术得以迅速发展,轻烃回收给国家创造了更多的财富。

轻烃回收工艺基本可以分为三种:吸附法、油吸收法和冷凝分离法。我国油田气轻烃回收都采用冷凝分离法,按冷冻深度不同,冷凝分离可以分为浅冷(-15℃~-25℃)和深冷(-60℃~-100℃)两种。

6.天然气

随油井中原油一起采出的伴生气,直接输送到气体处理厂。

7.含油污水的净化

原油经过沉降、脱水后放出来的水,还含有一定量的原油、泥砂等物质,必须经过净

化才能回注或外排。从污水中回收污油,既节约能源又保护环境,经过处理后的污水一般回注地层,保持油层压力,提高油藏采收率。

含油污水处理的常用方法是:重力沉降除油法、混凝沉降法、气体浮选法、斜板除油法和过滤除油法。

8.辅助生产系统

辅助生产系统包括给排水系统、供热系统、变配电系统、通讯系统、采暖及通风系统、道路系统等。这些系统都是联合站的必要组成部分,是联合站正常工作的保证。

2.2 方案及方案说明

设计工艺流程应能保证联合站处理的油气产品的质量要求,产量高,经济效益好。在满足联合站各项生产任务的基础上,应充分采用先进技术,考虑各种能量的合理利用,采用密闭流程,避免各种蒸发损耗,工艺流程应能适应操作的变化,但又要避免烦琐,防止浪费,管线阀门要尽量少,线路要短,油气流向合理。

在原油开采至净化外输的全密闭流程,要比开式流程有多方面的优点:

(1)一般的开式流程原油损耗约为2~4%,而密闭后能降低到0.5%以下,密闭式流程不仅降低了油气损耗,而且还提高了产品的质量。

(2)密闭式流程结构简单,成本降低,有利于提高自动化工致程度和管理水平。

设计中考虑到进站原油的含水率(70%)和含气量(综合油气比为55Nm3(气)/t(油),工艺上采用油气三级分离,两段脱水。三级分离指一级油气水三相分离,二级缓冲分离以及在稳定塔内的三级分离。两段脱水是指一级油气水三相分离脱水和电脱水器脱水。

该站除正常的生产流程外,还有站内循环以满足原油不需外输时的要求,还有原油罐区用以事故(如停电)发生后储存油品,等来电后,再进入正常工作,避免因联合站或外输管线的突发事故而影响油田生产。

原油在联合站内处理的工艺流程如下:

(1)正常流程:

注破乳剂气计量→气站

站外来油→进站阀组→油气水三相分离器→缓冲罐→循环泵→

污水→污水处理区

电脱水器→加热炉→原油稳定塔→(净化油罐)→原油外输泵→计量→外输

(2)无泵流程:

注破乳剂气计量→气站

站外来油→进站阀组→油气水三相分离器→缓冲罐→

污水→污水处理区

电脱水器→加热炉→原油稳定塔→(净化油罐)→原油外输泵→计量→外输

(3)停电流程:

进站来油→进站阀组→油气水三相分离器→缓冲罐→事故罐→循环泵后的正常流程

进站总阀组和电脱水器都设有加药装置,可以加入破乳剂,以利于油气水在分离器中的分离和电脱水器的脱水。

程设计中的几点说明:

(1)各作业区,装置的布置应与平面布置相符,应标明各工艺管线尺寸、安装高度、介质的流向、管线线型及管件应符合的规定,尺寸不按比例。

(2)凡是由于偶然事件(着火停电)或操作失去可能使压力升高而造成事故之处(如分离器、加热炉、油罐、轻油罐等常压容器及往复泵、齿轮泵出口),都装备有安全阀或呼吸阀。

(3)凡是不允许液体倒流之处(如离心泵的出口、有压进罐管线、药剂线进电脱水器入口等)都装上了止回阀。

(4)为防止爆炸、火灾等恶性事故蔓延,流程设计必须要有切断油气源的措施(如压力越站、紧急放空、自动关闭油罐进出口阀门)。

第3章 联合站电脱水系统仪表选型及计算

3.1 电脱水器的选取

操作温度:52℃; 操作压力:0.3MPa ;

查《油田油气集输设计技术手册》,选取φ3600×14000的电脱水器,其中空容积是155.7m 3/台,且知道一般原油在电脱水器中的停留时间是40分钟。

一级分离后,进入电脱水器的原油含水率为20%,计算单台电脱水器的含水原油的体积流量。

单台电脱水器的含水原油体积流量: i

V V t

=

式中:V —单台电脱水器处理的含水原油体积流量,/h m 3

i V —电脱水器的空罐容积,/台m 3;

t —选定的含水原油在电脱水器内的停留时间,h 。

55.23340

607.155=?==

t V V i m 3/(h·台) 则,经电脱水器处理的含水原油的体积流量为:

74.7428

.0109.806104516.4793

3

=???=∑V m 3/h 18.355

.23374

.742==∑=

V V n (台) ∴取N=4台

实际的体积流量为:474

.742=V =185.685m 3/h

实际的停留时间:min 31.50685

.1850

7.155=?=t >40min

当一台检修时,即N=3

单台体积流量为:==3

74

.742"V 247.58m 3/h 且120%V=1.2×233.55=280.26m 3/h>V=247.58m 3/h

即选用了4台φ3000×11000的电脱水器满足要求。 原油含水: 70% 原油进站温度: 40oC

进站压力: 0.5MPa

油气水三相分离器: 进口温度:40oC 出口温度:55oC

控制压力:0.5MPa(0.4MPa) 出口原油含水:%20≤ 缓冲罐:控制压力: 0.15MPa 电脱水器:脱水温度:52oC 操作压力:0.3MPa 出口原油含水:<0.5% 稳定塔:稳定温度:不低于60oC 操作压力:-0.03 Mpa 大罐:储存温度:45~50oC 原油外输温度: 60oC 外输距离:30km

油水在三相分离器中停留时间:5~30分钟 油水在电脱水器中停留时间:40分钟 3.2 选型计算结果 1.原油物性计算:

(1) 密度: 在20℃-120℃范围内

t ρ=

)

20(120

-+t αρ

780<20ρ<860时,α=(3.083-2.638×103-20ρ)×103- 1/℃

(2) 动力粘度:

1000)]lg()(1*[*)(1

--+=t t t c t t a c c μμμ

1000≥t μmPa·s 时,c=10,a=2.52×103-1/℃

10≤t μ≤1000mPaS 时,c=100, a 31044.1-?=1/℃

t μ<10mPaS 时,C=1000,a 31076.0-?=1/℃

式中,t μ,0t μ—温度为t (℃)和0t (℃)时原油的粘度,毫帕·秒;

c ,a —系数。

(3) 运动粘度:

t t t ρμυ=

式中,

t

μ—t℃时原油的运动粘度,厘沱;

t

υ—t℃时原油的动力粘度,mPa·s;

t

ρ—t℃时原油的密度,kg/m3。

由上面的公式,可以计算出各温度下原油的密度、运动粘度、动力粘度。

2.油田联合站外输天然气节流装置的口径d20计算:

已知条件:

工作介质:天然气取压方式:法兰取压

操作温度:30℃工况密度:ρ=1.9678kg/Nm3

标况密度:ρ=0.97kg/Nm3工作压力:P1=215600Pa

操作状态下粘度:η=0.0112cP 最大压差:δp=9800Pa

管道内径:D20=363mm 体积流量:Q max=8300Nm3/h

等熵指数:k=1.315 相对湿度:φ=100%

孔板材质线膨胀系数:λd=0.000012 mm/mm℃

管道材质线膨胀系数:λD=0.000011mm/mm℃

孔板孔径d20的设计计算

(1)求工况下管道直径:

D= D20[1+λd (t-20)]=0.363[1+0.000012(30-20)]=0.36304356(m) (2)求雷诺数

Red=4δpρ/πDη=4*8300/3600*1.9678/(3.14*0.36304356*0.0112)=1421.38085(3)求A2

A2=ηRed/D20√ (2△pρ)=0.0112Red/0.360*√ 38568.88=0.225(4)设C∞=0.6060

ε=1

(5)据Xn=A2/C

(n-1)ε

(n-1)

βn=[X n2/(1+ X n2)]0.25

C n=0.5959+0.312βN2.1-0.18

当n=4时,求得E4=3.46*10-10<5*10-10

∴β=β4=0.5983

C=C4=0.60498

(6)求d

d=Dβ=0.36304356*0.5983=0.217208961948(m)

=21.7208961948(mm) (7)求d20

d20=d/[1+λd(t-20)]

=0.217208961948/[1+0.000012(30-20)]

=0.2171829(m)

=21.71829(mm) 最后得到d20=21.71829(mm)。

3.油田联合站电脱水器油水界面控制中的调节阀口径计算:

已知条件:

工作介质:污水 工作温度:C t ?=55 阀前绝压:1P ==MPa 343.0 阀后绝压:2P ==MPa 314.0 操作密度:31/g cm ρ= 最大流量: 3max 19.810/W kg h =?

管道直径:65D mm = 介质临界压力25.07C p MPa =; 阀入口温度下介质饱和蒸气压力0.018v p MPa =; 求调节阀的口径:

利用调节阀的流量系数Cv ,可以简化调节阀口径计算的问题,调节阀流量系数Cv 定义: 阀处于全开状态,阀端压差为1磅/英寸‘0.07kgf /Cm’的条件下,60F15.6℃的清水,每分钟通过阀的美加仑数。决定调节阀口径根据已知的流体条件,先计算出所要求的Cv ,再从Cv 表上,选取合适的调节阀口径。

(1)求调节阀流量系数Cv Cv=1.17*Q*[G/(P1-P2)]1/2 式中:Q----最大流量 m 3/h

G----比重

P1----进口压力 Kgf/cm 2 P2----出口压力 Kgf/cm 2

得:Cv=1.17*19.8*[1*10-3/(0.343-0.314)1/2]=51.802 (2)求调节阀口径d d=√(4 Cv/3600πv)*1000 v=4W nax /πD 2ρ=10.7735m/s ∴d=73.0926mm

因调解阀为联合站电脱水器油水界面控制,需有调解、切断、克服△P 、防堵的特点,故选用蝶形调解阀。该阀结构简单、重量轻、体积小、成本低,流通能力大,适用于低压差、大流量的场合。普通蝶阀泄漏量较大,但采用台阶式密封和聚四氟乙烯阀座或橡胶阀座面可提高阀的密封性能。目前国外高性能蝶阀均采用双向密封,其密封性能很强。力矩小,配备执行机构小,填料和密封装置耐用。适用于公称压力比较低的场合。 4.循环泵到电脱水器之间管线的计算:

(1) 沿程摩阻的计算:

取经济流速2.0m/s,管线长约为60m

440.207

0.363m 3.14 2.0

Q d w π?=

==?总

选管径为Φ377×7的无缝钢管,则实际流速为:2.0m/s

46

2.00.363R e 5.30101

3.6910

vd γ-?===?? 取e=0.1 518

3

87

759.759.7

Re 3.171020.110()

0.363

ε

-==

=??? 3000

0.2540.25

0.31640.3164

0.0209Re (5.3010)

λ=

==? 则沿程摩阻为:

1.7560.25

l 4.75

0.207(13.6910)0.0246600.7023m 5807.80Pa 0.363

h -??=??== (2) 局部摩阻的计算:

表3-1 管线上的阀件

名称 单向阀

90°弯头 转弯三通

通过三通

闸阀 数量 1 4 2 5 2

d L d

340

60

40

4.5

4

()

22

d j1 2.00.02092404023405 4.524229.8

2.95m=24354.52pa

l v h d g λ=?=??+?++?+??= 设备安装高度取0.8m,高程差取3m :

H 845.549.8324807.72Pa P g h ρ?=?=??=

所以此段管路总压降为0.70 2.953 6.650.055MPa P m ?=++== 5.电脱水器到加热炉之间管线的计算:

(1) 管径的选择

从电脱水器出来的原油为纯净原油,含水≤0.5%,(按0.5%计算) 此条件下352806.9kg/m ρ=,3w 1000kg/m ρ=

油品的密度:3l 806.90.99510000.005807.9kg/m ρ=?+?=

()22o (1 2.514.1) 6.0301 2.50.00514.10.005 6.108mP s

μμ??++=?+?+?=?=

3

626.108107.5610m /s 807.9

μγρ--?===?

3

3479.451610594.190m /h 806.9

G

Q ρ?===

30.0050.005

594.190 2.986m /h 0.9950.995

w Q Q =

=?= 2.9861000 2.986t/h w w w G Q ρ==?= 2.986479.4516482.437t/h w G G G =+=+=总

3

33482.43710597.15m /h 0.166m /s 807.9

G Q ρ?====总

440.1660.363m 3.14 1.6

Q d v π?=

=?= 选Φ377×7的管线

则实际流速为:22

440.166

1.6m/s 3.140.363Q v d π?=

==? (2)沿程摩阻计算

46

1.60.363

R e 7.68107.5610

vd

γ

-?=

=

=?? 518

3

87

759.7

59.7

Re 3.171020.110()

0.363

ε

-=

=

=??? ∴13000Re Re <<,属于水力光滑区

取=50m L , 1.7560.25

l 4.75

0.166(7.56

10)0.0246500.343m 2715Pa 0.363h -??=??== (3)局部摩阻计算

0.250.25

0.31640.31640.01576800Re λ===,

∴22

d j1 1.60.0152120.415m 3288Pa 229.8l v h d g λ=?=??==?

总压降328827156003Pa p ?=+=

表3-2 管线上的阀件

名称 90°弯头 转弯三通

闸阀 数量

2 2

3 d L d

60

40

4

第4章课程设计心得

通过老师的讲解、阅读指导书和上网搜集资料,我完成了本次课程设计,通过本次课程设计,我深感自己实践能力的欠缺,以后我应加强培养自己的自控工程设计能力。自控工程课程设计是“过程控制”、“自动检测技术”等课程非常有益的课外实践补充,通过本门课程的学习,使我们获得自控工程设计的基础知识,掌握工程设计方法及CAD制图方法和Office办公软件使用方法,掌握利用计算机辅助设计来完成节流装置的选型及计算、调节阀的选型及口径计算。标准节流装置计算和调节阀计算繁琐,只有借助编程软件才能顺利完成,由此可见熟练掌握一门编程语言的必要性与重要性,日后我要加强这方面的学习,多做编程练习。在查阅资料中,我了解到加热炉是将物料或工件加热的设备。按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。

本次课程设计培养了我们理论与实践相结合的能力,工程设计能力及创新能力,为我们今后走上工作岗位奠定良好基础。在以后的学习生活中,我一定勤加练习这些软件和编程语言的使用,争取熟练掌握,为以后工作打好基础。

参考文献

[1]化工部标准. HG20505—HG20516. HG/T20636—20639.

[2]国家标准. GB/T2624—93.

[3]奚文群,翁维勤.调节阀口径计算指南[M].兰州:化工部自控设计技术中心站,1991.

[4]王骥程,祝和云.化工过程控制工程[M]. 北京:化学工业出版社,2003.

[5]董德发,张天春.自控工程设计基础[M].大庆:大庆石油学院,1999.

附录

#include "math.h"

main()

{double

D20=0.1,zp=135078.47,qm=16.455,t=353,s=677,u=0.001139,h=0.00001338,k=0.0000175; double X[10],B[10],C[10],g[10],E[10],D,Red,A2,e,d20,d,L1;

int i=0,n=0;

C[0]=0.6060; e=0.0000000005;

D=D20*(1.0+h*(t-20.0));

L1=25.4/D;

Red=4.0*qm/(3.141592654*D*u);

A2=u*Red/(D*sqrt(2.0*zp*s));

printf("****************\nD=%f\nRed=%f\nA2=%f\n",D,Red,A2);

do

{ i++;

if(i<3) X[i]=A2/C[i-1];

else X[i]=X[i-1]-g[i-1]*(X[i-1]-X[i-2])/(g[i-1]-g[i-2]);

B[i]=pow(X[i]*X[i]/(1.0+X[i]*X[i]),0.25);

C[i]=0.5959+0.0312*pow(B[i],2.1)-0.1840*pow(B[i],8)+0.0029*pow(B[i],2.5)*pow(1000000/R ed,0.75);

g[i]=A2-X[i]*C[i];

E[i]=fabs(g[i]/A2);}

while(E[i]>e);

n=i;

d=D*B[n];

d20=d/(1.0+k*(t-20.0));

for(i=1;i<=n;i++)

printf("n=%d\nX=%-12.10f B=%-12.10f C=%-12.10f g=%-12.10f

E=%-12.10f\n",i,X[i],B[i],C[i],g[i],E[i]);

printf("d20=%12f\n",d20);}

运行结果:

大气污染控制工程--电除尘器课程设计报告

电除尘器设计课程设计报告 学生姓名: 班级: 学号: 时间:2013年5月13日-19日 指导教师: 华中科技大学环境科学与工程学院

课程设计任务书 一、待除尘电厂基本情况 某电厂地处东南季风区,四季分明,温暖湿润,春季温暖雨连绵,夏季炎热雨量大,秋季凉爽干燥,冬季低温,少雨雪。 根据当地气象台多年气象资料统计,其特征值如下: 累年平均气压:1011.0hPa 累年最高气压:1038.9hPa 累年最低气压: 986.6hPa 累年平均气温:17.6℃ 极端最高气温:40.9℃ 极端最低气温:-9.9℃ 厂址处全年北(N)风出现频率为20.0%,西北 (NW)风出现频率为14.7%,西(W)风出现频率13.1%,南(S)风出现频率6.0%,东北(WE)风出现频率9.6%,东(E)风出现频率8.3%,东南(SE)风出现频率8.0%,西南(SW)风出现频率7.2%,静风出现频率为13.1%。 电厂烟气情况: 烟气量 Q =500,000 m3/h(工况) 废气温度 t j=350-400℃ t c=330-370℃ 含尘浓度 C =5-10g/m3 (工况) 煤挥发分A=26.6%(烘煤时) 电厂所用煤的组成成分 成分SO SO3O2N2H2O 2 组成10-120.1-0.3 2.7-377.6-808-9 粉尘粒径分布 粒径20-2515-1010-88-66-44-22-1<1总计平均值17.512.59753 1.5<0.5 含量 2.2 4.6 2.614.127.941.3 6.0 1.1100%

粉尘比电阻 温度℃21120230300 比电阻 Ω·cm 3×1079×1071×107 3.8×107二、除尘器设计要求 烟气量 Q =500,000 m3/h(工况) 出口粉尘浓度:100mg/m3(标准工况) 三、设计参数 1、电场风速选择 2、确定所需的收尘极面积、间距 3、确定电场数 4、电晕线选型(给出图纸) 5、收尘极板选型(给出图纸) 四、电除尘器设计课程设计报告要求 1、课程设计文本结构 1)课程设计任务书2)课程设计目录3)课程设计正文4)致谢5)附录6)参考文献 2、课程设计内容要求 根据三中所确定内容,给出设计参数,要求: 1)给出设计依据 2)给出设计过程 3)给出参考文献出处 五、基本参考文献 [1] 化工设备设计全书《除尘设备设计》科学技术出版社,1989 [2] (日)通产省公安害保安局《除尘技术》建筑工业出版社, 1977 [3] 鞍山矿山设计研究院《除尘设计参考资料》辽宁人民出版社, 1978 [4] 黎在时. 《电除尘器的选型安装与运行管理》中国电力版社,2005 [5] 黎在时《静电除尘器》.冶金工业出版社1993年12月第一版

布袋除尘器设计说明书

课程设计任务书 课程名称:大气污染控制工程 题目:车间布袋除尘系统设计 学院:环化学院系:环境工程系 专业班级:环工121班 学号:5802112002 学生姓名:杨强 起讫日期:2015-06-29——2015-07-03 指导教师:李丹职称: 学院审核(签名): 审核日期:

目录 一、概述 (3) 1、大气污染的概念 (3) 2、大气污染的分类 (3) 3、大气污染的危害 (3) 4、治理大气污染的必要性 (4) 5、除尘的必要性 (4) 二、课程设计题目描述和要求 (5) 1、设计目的 (5) 2、设计任务 (5) 3、设计课题与有关数据 (5) 4、局部排气通风系统的组成 (6) 5、管道设计的原则 (7) 三、袋式除尘器除尘方式的选取与布置 (8) 1、袋式除尘器的原理 (8) 2、袋式除尘器的优点 (9) 3、袋式除尘器的缺点 (10) 4、袋式除尘器方案设计 (10) 4.1进气方式的确定 (10) 4.2进气过滤方式的确定 (11) 4.3滤料的确定 (11) 四、集气罩的设计 (11) 1、控制点控制速度Vx的确定 (11) 2、集气罩排风量、尺寸的确定; (12) 3、集气罩设计小结 (13) 五.袋式除尘器设计计算 (13) 1、过滤面积的确定 (13) 2、滤袋的排列和平面布置的确定 (13) 2.1滤袋长度的确定 (13) 2.2滤袋的排列与间距 (13) 3、清灰装置的确定及计算 (14) 4、灰斗高度的确定 (16) 5、袋式除尘器压力损失的计算 (16) 六、管道设计及风机选择 (17) 1、管道的初步设计及压损的确定; (17) 2、选择风机和电机 (23) 七、主要参考资料 (24)

201320141课程设计工艺说明30000t 年丙烯制异丙醇项目工艺设计

30000t/年丙烯制异丙醇项目工艺设计 德士古工艺的优点主要有:丙烯单程转化率高、反应操作灵活易控制、阳离子交换树脂催化剂易褥、催化剂对设备腐蚀较弱、能耗低、无污染环境等; (4)开发树脂法丙烯直接水合工艺及配套的耐高温阳离子树脂催化剂,建设高效的国产化异丙醇生产装置十分必要。 1 反应车间 来自总厂的质量分数为99.7%、压力为1.25Mpa、温度为25℃的丙烯经三级单螺杆泵(P0101A/B、P0102A/B、P0103A/B)压缩至8Mpa,再经U型管换热器(E0101、E0102)加热至135℃,然后分成三股物流进入三台并联的固定床反应器(R0101A、R0101B、R0101C);脱盐水(电导率≤5μS/cm)经三级单螺杆泵(P0104A/B、P0105A/B、P0106A/B)压缩至8Mpa,再经U型管换热器(E0103)加热至120℃,然后分成三股分别进入固定床反应器(R0101A、R0101B、R0101C)的三段床层,三段床层进水量的比为4.14:1:1。 本工艺采用强酸性阳离子交换树脂作为催化剂,催化剂的床层温度要控制在130℃-165℃,因为当温度高于165℃时,磺酸根基团的脱落速度将加快,导致反应的转换率迅速降低,并且异丙醇的选择性也开始下降。当温度小于130℃时,丙烯时空收率将减低。在本反应中,总水稀摩尔比为12,大水稀比一方面有利于增加反应推动力,同时产物异丙醇在水中的浓度也较低,可抑制副产品二异丙醚的生成,因而提高目标产物异丙醇的选择性:另一方面,由于丙烯水合为放热反应,大水稀比有利于控制床层的反应温度,并可使催化剂表面能得到充分浸润,能及时移走催化剂床层的反应热,防止催化剂超温失活。

模电课程设计报告

模电课程设计实验报告课题:函数信号发生器 指导老师:________________ 学院:___________________ 班级:___________________ 姓名:___________________ 学号:___________________

日期:__________________ 一.设计目的与要求 1.1设计目的 1.设计电路产生RC桥式正弦波产生电路,占空比可调的矩形波电路,占空比可调的三角波电路,多用信号源产生电路,分别产生正弦波、方波、三角波 2.通过设计,可以将所学的电子技术应用到实际当中,加深对信号产生电路的理解,锻炼自己的动手能力与查阅资料的能力。使自己的对模电的理解更为透彻。 1.2设计内容及要求 1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

(3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围100Hz~3KHz、输出幅值≥5V、负载电阻1KΩ。 软件仿真部分元器件不限,只要元器件库中有即可,但需要注意合理选取。 二.单信号发生电路 2、1 RC桥式正弦波产生电路 参数计算:

器件选择: 2、2占空比可调的矩形波产生电路 参数计算: 器件选择:

2、3占空比可调的三角波产生电路 参数计算: 器件选择:

过程控制工程课程设计

过程控制工程 课程设计任务书 设计名称:扬子烯烃厂丁二烯装置控制模拟设计设计时间:2006.2.20~2006.3.10 姓名:毛磊 班级:自动化0201 学号:05号 南京工业大学自动化学院 2006年3月

1.课程设计内容: 学习《过程控制工程》课程和下厂毕业实习2周后,在对扬子烯烃厂丁二烯装置的实际过程控制策略、实习环节的控制系统以及相应的组态软件有一定的认识和了解的基础上,针对扬子烯烃厂丁二烯装置,设计一个复杂控制系统(至少包含一个复杂回路和3-5个简单回路),并利用组态软件进行动态仿真设计,调节系统控制参数,使控制系统达到要求的控制效果。 1)独立完成设计任务,每个人根据下厂具体实习装置,确定自己的课程设 计题目,每1-3人/组; 2)选用一种组态软件(例如:采用力控组态软件)绘制系统工艺流程图; 3)绘制控制系统原有的控制回路; 4)利用下厂收集的实际数据和工艺要求,选择被控对象模型,利用组态软 件,对控制系统进行组态; 5)改进原有的控制回路,增加1-2个复杂回路,并进行组态; 6)调节控制参数,使性能指标达到要求; 7)写出设计工作小结。对在完成以上设计过程所进行的有关步骤:如设计 思想、指标论证、方案确定、参数计算、元器件选择、原理分析等作出 说明,并对所完成的设计做出评价,对自己整个设计工作中经验教训, 总结收获。 2. 进度安排(时间3周) 1)第1周选用一种组态软件绘制系统工艺流程图;绘制控制系统原有的 控制回路; 2)第2周利用下厂收集的实际数据和工艺要求,选择被控对象模型,利 用组态软件,对控制系统进行组态; 3)第3周(1-3) 改进原有的控制回路,增加1-2个复杂回路,并进行组态; 调节控制参数,使性能指标达到要求; 4)第3周(4) 书写课程设计说明书 5)第3周(5) 演示、答辩

模电课程设计报告(10)

《模拟电子技术》课程设计报告 系别:电气工程系 专业班级:09电科(一)班 学生姓名:曹海锋 指导教师:赵剑锷 2011年09月25 日 郑州科技学院

目录 1 课程设计的目的 (1) 2课程设计的题目要求 (1) 3课程设计报告内容 (1) 3.1实验设计的意义 (2) 3.2半双工对讲机实现方法 (2) 3.3 电路原理分析 (2) 3.4电子元件清单及选择 (3) 4总结 (3) 参考文献 (4)

摘要 无线对讲机是移动通信中一个重要的分支,应用非常广泛,无线电对讲机和其它无线通信工具(如手机)其市场定位各不相同,难以互相取代,还将长期使用下去。本论文研究设计了一款调频无线对讲机。首先介绍了调频无线对讲机的功能、性能指标和工作原理。从工作原理出发,通过现代电子系统设计方法,深入行业现状寻找到低成本的器件MC3363、MC2833、LM386等,确立了完整具体的方案。在具体的硬件设计实现上,分成发射和接收两部分,分别对各个功能模块以信号、控制为联系进行设计。在硬件设计上,通过主要芯片将各功能模块有机地组织起来协 同完成系统需要的功能。 1课程设计目的 对讲机在现实生活中应用广泛。这次设计制作的对讲机简单实用可以满足日常生活使用。我们学习模拟电子技术重要的在于应用,通过这次实践,可以让我们将理论与实践结合,是对我们已经学习知识的一次实际应用与巩固,更是一次升华!这对于以后学习其他知识奠定基础,我们知道学习模电就要将元件的特点,功能,使用方法等熟练掌握,组成一个合理,经济,实用的系统。总而言之,这次实践是我受益匪浅。 2 课程设计的题目要求 本对讲机成本低廉,电路简单,可用于办公室不同房间对讲、婴儿室监听等。通话距离可达2Km。 a.采用集成运放和集成功放及阻容元件等构成对讲机,实现甲、乙双方异地通话。 b.用扬声器用作话筒和喇叭,双方对讲、互不影响。 c.电源电压4.5~9.0v. 3.课程设计报告内容 3.1半双工对讲机实验设计的意义 有线对讲机在日常生活中应用广泛。有线对讲机原理简单,设计方便,制作简易,成本低。广泛用于医院病员呼叫机、门铃、室内电话等。所以有线对讲机日益成为日常生活中不可缺少的部分。我们了解了它的原理过程,正确使用操作它,可以提高我们知识的应用性。本次试验既增长了我们的知识,又让磨砺了我们的意志以及团队意识。更让我们对电子模拟更加感兴趣,为以后的研究道路

除尘课程设计

第一章绪论 (5) 1.1车间粉尘性质 (6) 1.2 车间粉尘危害及治理 (6) 1.2.1 粉尘危害 (6) 1.2.2 碳黑治理方法 (7) 1.2.3 旋风除尘器的原理 (7) 1.3 除尘系统 (8) 1.4 课程设计背景、主要内容、意义与预期目标 (9) 1.4.1 主要内容课程设计背景 (9) 1.4.2 主要内容 (9) 1.4.3 课程设计意义 (10) 1.4.4 课程设计预期目标 (10) 第2章数据分析 (11) 2.1 已知数据 (11) 2.2 风量确定 (12) 2.3 净化设备选择或设计 (12) 第3章集气罩设计 (13) 3.1集气罩设计的设计原则 (13) 3.2设计方法选择 (13) 3.2.1控制风速法原理 (13) 3.2.2 控制风速选择 (14) 3.3 集气罩选择 (14) 3.3.1 集气罩集气原理 (14) 3.3.2 集气罩类型和选择 (15) 3.3 风量计算 (15) 3.3.1 风量计算方法选择 (15) 3.3.2 风量计算 (15) 3.4 集气罩的尺寸 (16) 第4章管道、弯头及三通设计 (17) 4.1 管道设计 (17) 4.1.1 管道速度选择 (17) 4.1.2 管径选择 (18) 4.2 弯头、三通管的设计 (20) 第5章管道阻力计算及风机的选择 (21) 5.1各管道的阻力计算 (21) 5.1.1计算最不利环路的压力损失 (21) 5.1.2 并联管路压力损失计算 (22) 5.2选择风机和电动机 (23) 第6章除尘器的设计 (25) 6.1 除尘器的分类及选择 (25) 6.1.1除尘器的分类 (25) 6.1.2 除尘器的选择 (25) 6.2 旋风除尘器尺寸 (27) 总结 (28)

大气污染控制工程课程设计静电除尘器

南京工程学院 课程设计说明书(论文)题目锅炉烟气静电除尘器的设计 课程名称大气污染控制工程 院(系、部、中心) 康尼学院 专业环境工程 班级 K环境091 学生姓名朱盟翔 学号 0 设计地点文理楼A404 指导教师李乾军 设计起止时间:2012年5月7日至 2011 年5月18日 目录 烟气除尘系统设计任务书

一、课程设计的目的 通过课程设计近一步消化和巩固本能课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 二、设计原始资料 锅炉型号:SZL4-13型,共4台 设计耗煤量:600 kg/h (台) 排烟温度:160 ℃ 烟气密度(标准状态): kg/m3 空气过剩系数:α= 排烟中飞灰占煤中不可燃成分的比例:18% 烟气在锅炉出口前阻力:800 Pa 当地大气压力: kPa 冬季室外空气温度:-1℃ 空气含水(标准状态下)按m3

烟气其他性质按空气计算 煤的工业分析元素分析值: C ar =68% H ar =% S ar =% O ar =6% N ar =1% W ar =4% A ar =16% V ar =14% 按锅炉大气污染物排放标准(GBl3271-2011)中二类区标准执行。 烟尘浓度排放标淮(标准状态下):30mg/m 3 二氧化硫排放标准(标准状态下):200mg/m 3。 基准氧含量按6%计算。 净化系统布置场地如图1所示的锅炉房北侧15m 以内。 图1. 锅炉房平面布置图 图 2. 图1的剖面图 三、设计内容 (1) 燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算。 (2) 净化系统设计方案的分析确定。 (3) 除尘器的比较和选样:确定除尘器类型、型号及规格,并确定其主要运行参数。

6万吨年顺丁橡胶项目的试生产申请报告

浩普新材料科技股份有限公司 6万吨/年顺丁橡胶项目试生产申请 烟台经济技术开发区城市管理环保局: 浩普新材料科技股份有限公司投资建设的6万吨/年顺丁橡胶项目,该项目的环境影响报告书于二○一二年四月二十三日取得环评批复,其批复文号为鲁环审[2012]58号。项目部分主体工程与环保设施配套已建设完成,落实了环评报告中提出的污染防治措施、风险防范措施等要求,拟申请已完工程的试生产申请。已完工程的具体情况如下: 一、建设项目基本情况 1.1项目名称:浩普新材料科技股份有限公司6万吨/年顺丁橡胶项目 项目性质:新建 1.2建设地点:烟台经济技术开发区大季家镇 1.3建设单位名称:浩普新材料科技股份有限公司 建设单位性质:股份公司 1.4生产规模:顺丁橡胶,年产量为60000吨。 二、环评文件审批 浩普新材料科技股份有限公司6万吨/年顺丁橡胶项目于2012年委托山东省环境保护科学研究设计院进行环境影响评价,并于2012年4月取得环评批复,其批复文号为鲁环审[2012]58号。 三、项目主要内容 3.1项目投资 项目总投资85658万人民币,其中环保投资为3020万元,占投资总额的3.5%。 3.2建设内容 产品及产量:顺丁橡胶,年产量为60000吨。 工程建设内容见表3.2-1。

表3.2-1 工程建设内容 3.3 产品规格:产品BR-9000规格(GB/T 8659-2008)见表3.3-1

3.4主要原辅材料:生产中原料消耗表3.4-1;化学品消耗表3.4-2。 表3.4-1 原料消耗表 表3.4-2 化学品消耗表 3.5主要设备装置:生产中主要装置设备情况见表3.5-1至表3.5-2。 表3.5-1 压力容器设备

模电课程设计报告

模拟电路课程设计 题目:OCL功率放大器 学院:信息学院 专业:自动化 班级学号: 学生姓名: 指导教师;

目录

一、课程设计任务及要求 1、设计目的 ①学习OCL功率放大器的设计方法 ②了解集成功率放大器内部电路工作原理 根据设计要求,完成对OCL功率放大器的设计,进一步加强对模拟电子技术的了解 ④采用集成运放与晶体管原件设计OCL功率放大器 ⑤培养实践技能,提高分析和解决实际问题的能力 2、设计指标 ①频率响应:50Hz≤f≤20KHz ②额定输出功率:P o=8W ③负载电阻:R L=8Ω ④非线性失真尽量小 ⑤输入信号:U i<=100mv

3、设计要求 (1)进行方案论证及方案比较 (2)分析电路的组成及工作原理 (3)进行单元电路设计计算 (4)画整机电路图 (5)写出元件明细表 (6)小结和讨论 (7)写出对本设计的心得体会 分析设计要求,明确性能指标;查阅资料、设计方案分析对比。 4、制作要求 论证并确定合理的总体设计方案,绘制结构框图。 5、OCL功率放大器各单元具体电路设计。 总体方案分解成若干子系统或单元电路,逐个设计,计算电路元件参数;分析工作性能。

6、完成整体电路设计及论证。 7、编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 二、总体方案设计 1、设计思路 功率放大器的作用是给负载R l提供一定的输出功率,当R I一定时,希望输出功率尽可能大,输出信号的非线性失真尽可能小,且效率尽可能高。放大电路实质上都是能量转换电路。从能量控制的观点来看,功率放大电路和电压放大电路没有本质的区别。但是,功率放大电路和电压放大电路所要完成的任务是不同的。对电压放大电路的主要要求是使其输出端得到不失真的电压信号,讨论的主要指标是电压增益,输入和输出阻抗等,输出的功率并不一定大。而功率放大电路则不同,它主要要求获得一定的不失真(或失真

旋风除尘器电除尘器课程设计

旋风除尘器电除尘器课 程设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

目录一.设计内容 (3) 1.设计基础资料 (3) 2.设计要求 (3) 二.设计计算 (3) 1.集气罩设计 (3) 2.风量计算 (4) 3.旋风除尘器设计选型 (4) 4.旋风除尘器效率计算 (7) 5.二级除尘器设计选型 (8) 6.管道设计计算 (12) 7.风机和电机的选择 (17) 8.排气烟囱的设计 (18) 三.心得体会与总结 (19) 参考文献 (20) 附图 (21) 题目:水泥厂配料车间粉尘污染治理工程(课程)设计一.设计内容 1. 设计基础资料 ●计量皮带宽度:450mm ●配料皮带宽度:700mm ●皮带转换落差:500mm

●设粉尘收集后,粉尘浓度为2000mg/m3,粉尘的粒径分布如下表. 2. 设计要求 ●排放浓度小于50 mg/m3 ●设计二级除尘系统,第一级为旋风除尘器,第二级为电除尘器或者袋式除尘器. ●计算旋风除尘器的分级除尘效率和除尘系统的总效率. ●选择风机和电机 ●绘制除尘系统平面布置图 ●绘制除尘器本体结构图 ●编制设计说明书 二.设计计算 1.集气罩设计 集气罩的设计原则: ①改善排放粉尘有害物的工艺和环境,尽量减少粉尘排放及危害。 ②集气罩尽量靠近污染源并将其包围起来。 ③决定集气罩的安装位置和排气方向。 ④决定开口周围的环境条件。 ⑤防止集气罩周围的紊流。 ⑥决定控制风速。

本设计采用密闭集气罩,密闭罩设计的注意事项:密闭罩应力求密闭,尽量减少罩上的孔洞和缝隙;密闭罩的设置应不妨碍操作和便于检修;应注意罩内气流的运动特点。 搅拌机上方采用整体密闭集气罩,尺寸φ2000×500(高度)mm 。 传送带上方采用局部密闭集气罩,尺寸1210×1210mm 。 2.风量计算 对于整体集气罩,取断面风速为s 对于局部集气罩,取断面风速为s 总风量 /s 5.748m 0.73260.67826Q 2Q Q 3 21=?+?=+= 3.旋风除尘器的设计选型 1) 设计选型 一级除尘系统采用旋风除尘器,其特点是旋风除尘器没有运动部件,制作、管理十分方便;处理相同风量的情况下体积小,价格便宜;作为预除尘器使用时,可以立式安装,亦可以卧式安装,使用方便;处理大风量是便于多台联合使用,效率阻力不受影响,但是也存在着除尘效率不高,磨损严重的问题。 普通除尘器是由进风管、筒体、锥体和排气管组成。含尘气体进入除尘器后,沿外壁由上而下做旋转运动,同时少量气体沿径向运动到中心区域。当旋转气流的大部分到达锥体底部后,转而向上沿轴心旋转,最后经排出管排出。 旋风除尘器净化气量应与实际需要处理的含尘气体量一致。选择除尘器直径时应尽量小些;旋风除尘器入口风速要保持18—23m/s ;选择除尘器时,要根据工况考虑阻力损失及结构形式,尽可能减少动力消耗减少,便于制造维护;结构密闭要好,确保不漏风。

大气污染控制工程课程设计(旋风除尘器)

本文系贵州大学环境科学专业大气污染与治理课程设计(仅供学习交流使用) 目录 大气污染治理课程设计任务书 一、设计题目:旋风除尘器的设计 二、设计内容: 三、设计要求: 四、课程设计的配套教材及参考资料 旋风除尘器设计说明书 一、课程设计题目 二、课程设计的目的 三、课程设计的内容 四、旋风除尘器的特点及选用注意事项 五、旋风除尘器的结构和除尘机理及除尘效率影响因素 六、旋风除尘器型号选择 七、XCX旋风除尘器设计计算 八、结束语

大气污染治理课程设计任务书 班级:----------- 姓名:----- 学号:----------- 一、设计题目:旋风除尘器的设计 二、设计内容: 一个焦炉装煤车在装煤过程中形成尘源。通过管道接入地面除尘系统,经过旋风除尘器除尘后外排。 主要设计参数: (1)处理风量为(3800)m3/h。烟气温度约50℃。 (2)除尘器入口含尘质量浓度为(30)g/m3。 (3)除尘器入口含尘气流速度(23)m/s。 根据上述参数完成旋风除尘器的设计计算及图纸绘制。三、设计要求: (1)设计说明书 主要内容:封面、目录、设计任务书、除尘器的选择理由及其结构和工作原理、除尘器的设计与计算、结语。 (2)图纸 A3号图纸,完成除尘器结构示意图和除尘器剖面图,标出设备尺寸。 (3)设计时间:贵州大学2008~2009年度第一学期第19周(4)设计计算说明书和图纸均鼓励采用计算机制作。 四、课程设计的配套教材及参考资料

[1]郝吉明,马广大等编著.《大气污染控制工程》,北京:高等教育出版社.2002 [2]Noel de Nevers主编.《大气污染控制工程》 (影印版) (第2版). 北京:清华大学出版社.2000 [3]刘景良主编.《大气污染控制工程》,北京:中国轻工业出版社.2002 [4]粱丽明,彭林著.《城市大气有机物污染》,北京:煤炭工业出版社.2000 [5]赵毅,李守信主编.《有害气体控制工程》,北京:化学工业出版社.2001 [6]林肇信主编. 《大气污染控制工程》北京:高等教育出版社.1991

广工模电课程设计报告

课程设计 课程名称模拟电子技术基础课程设计 题目名称波形发生电路 学生学院物理与光电工程学院 专业班级 12级电子科学与技术 学号3112008399 学生姓名 big stupie brother 指导教师 miss zhu 2013-12-7

目录 1.摘要和关键词 2.设计任务与技术指标 3.电路设计及其原理 1)方案比较 2)单元电路设计 ①RC桥式正弦振荡电路 ②射极跟随器电路 ③方波产生电路 ④三角波产生电路 3)元件选择 4)电路工作原理总结 4.电路调试与结果 5.设计不足和存在问题 6.实验总结 7.参考文献 8.附录

1.摘要和关键词 【摘要】: 用RC桥式正弦波振荡电路产生正弦波,正弦波频率可通过调节电阻R及电容C实现100HZ—20KHZ的变换,再通过电压跟随器输出正弦波,电压跟随器起到保护前级不受后级影响。正弦波通过过零比较器,整形为方波,同样经过电压跟随器输出方波。方波通过积分运算电路,整形为三角波,同样经过电压跟随器输出三角波,方波、三角波的频率与正弦波频率相同。 【关键词】:RC桥式振荡电压跟随器过零比较器积分运算电路 2.设计任务与技术指标 要求:设计并制作用分立元件和集成运算放大器组成的能产生正弦波、方波和三角波波形发生器。 基本指标:1、输出的各种波形基本不失真; 2、频率范围为50HZ~20KHZ,连续可调; 3、方波和正弦波的电压峰峰值VPP>10V,三角波的VPP>20V。 3.电路设计及其原理 1)方案比较 方案一先通过压控方波振荡电路产生方波信号,方波信号经过积分运算电路整形为三角波,三角波通过低通滤波器整形为正弦波。 方案二用RC桥式正弦波振荡电路产生正弦波,正弦波频率可通过调节电阻R 及电容C实现100HZ—20KHZ的变换,再通过电压跟随器输出正弦波。正弦波通过过零比较器,整形为方波,同样经过电压跟随器输出方波。方波通过积分运算电路,整形为三角波。 方案二同方案一比较,有较为明显的优势,首先,由于是采用滤波方式产生正弦波,高低频特性较差,可实现的波形频率范围较窄。方案二采用RC桥式正弦振荡电路产生正弦波,频率范围较宽,用过零比较器整形为方波,更容易实现幅度的调节。由于方案二的优势,本设计采用方案二。 方案二原理框图如下

除尘技术课程设计

14 日

目录 一、课程设计任务书 (2) 1.原始资料 (2) 2.设计要求 (4) 二、设计正文 (5) 1. 电除尘器的基本原理和结构 (5) 2. 设计说明 (5) 3. 电除尘器结构尺寸的计算 (6) 4、电除尘器结构图及各主要部件结构图 (9) 三、课程设计总结 (12) 四、参考文献 (12)

一、课程设计的任务书 1、原始资料: 某电厂要求设计与200MW火电机组配套的除尘器,所提供原始资料如下:1.1、煤、灰及烟气资料 表1 工业分析 表3 灰的成份分析数据

表4 飞灰的比电阻 表 表6 灰及烟气其他性质 1.2、系统及工况资料 锅炉型号:DG-670/13.7-540/540 额定蒸发量:670t/h 排渣方式:固态排渣 1.3、对电除尘器的要求 ①除尘效率:≥99.5% ②允许漏风率:≤5% ③本体压力损失:≤350Pa 2、要求 为该机组设计配置2台除尘器,除尘效率不低于99.5%,试对该电除尘器进行总体设计,并画出简图。

二、设计正文 1、电除尘器的基本原理和结构 ○1除尘器的工作原理: 除尘器有许多种类型和机构,但它们都是按照同样的基本原理设计出来的。用电除尘的方法分离气体中的悬浮尘粒,主要包括以下5种物理过程: (1)施加高电压产生强场强使气体电离,即产生电晕放点; (2)悬浮尘粒的荷电; (3)荷电尘粒在电场力的作用下向电极运动; (4)荷电尘粒在电场中被捕集; (5)振打清灰。 ○2电除尘器的基本结构: (1)电气系统: 1)高压供电装置:高压整流变压器,电抗器,高压控制柜 2)低压自动控制系统:保温箱的恒温控制,振打程序控制,排灰控制,安全连锁 (2)本体系统: 1)收尘极系统:极板、悬吊及振打 2)电晕极系统:电晕线、阴极大、小框架,阴极吊挂,阴极振打 3)烟箱:进气烟箱、出气烟箱 4)气流均布装置:气流均布板、收尘电场内部阻流板、灰斗阻流板、导流板 5)槽形极板: 6)壳体 7)支座 8)储、排灰系统 9)辅助设施 2、设计说明 除尘器主要技术参数的确定 (1)根据国家烟尘排放标准,最终的烟尘排放量为30mg/m3,

丁二烯环评问题(可编辑修改word版)

关于菏泽玉皇化工有限公司7 万t/a 氧化脱氢制丁二烯项目 环评生产工艺相关问题 一、MTBE 生产单元 1、希望贵方根据MTBE 生产工艺流程图给出相应的文字说明,其中应关注以下几个问题:(1)R-501、C-501A、C-501B、碳四残液水洗塔(C-502)及其它主要反应塔的主要反应方程或反应机理说明;(主要涉及到催化反应原理、产品分离原理和甲醇回收原理)答:反应方程式:醚化反应方程式: 甲醇+异丁烯------甲基叔丁基醚+ 水 (2)醇烯比、反应温度;答:指的甲醇:原料C4 中的异丁烯含量物质的量的比值(3)催化剂的种类及主要成分答:(树脂催化剂) (4)该生产工艺流程中的碳四残液聚集罐(V-504)中所产生的碳四残液是否就是可研中所提到的醚后C4。答:这就是醚后C4。只要控制指标是异丁烯的含量。 2、给出本装置的物料平衡表 假若按照7 万吨设计:醚后C4 年使用量为18.3 万吨。 3、说明该工段中反应塔回流罐(V-503)和甲醇/水塔回流罐(V-505)中进入火炬系统的量,具体见下表

碳四残液水洗塔外排的废水量(小时量以及年排放量)、废水中主要污染物浓度 答:外排废水量 179kg/h 1432 吨/年 主要污染物为:甲醇,浓度为 0.09%。 4、该工段的设备表。 二、丁烯分离单元 1、在该单元中乙腈缓冲罐中加入氮气,此处氮气主要起何种作用; 答:补压的作用,当缓冲罐压力偏低时用氮气进行补压。 2、丁烯萃取塔 C-601 顶部排出的丁烷等轻组分,主要包括哪些物质(只要提供物质名称即可); 答:正丁烷、异丁烷、丁烯-1,反丁烯-2、丙烯 等 3、丁烯萃取塔内、丁烯解析塔内、丁烯水洗塔以及丁烷水洗塔主要发生何种反应, 可以文字描述; 答:没有发生任何化学反应,只是简单的萃取精馏过程,在 C601 塔内主要是脱除正丁烷、异丁烷、丁烯-1,反丁烯-2、丙烯 等杂事。在 C602 塔内主要是解析萃取剂乙腈, 在丁烯水洗塔以及丁烷水洗塔内只要是水洗气体中的乙腈,使之溶解于水,回收乙腈。4、该 部 分 内 容“来自 C - 6 3 回收再生塔(C-605)塔底循环洗涤水换热后向 C-605 塔进料。C-605 塔底再沸器(E-610)用蒸汽加热,乙腈从塔顶馏出,经 C-605 塔顶冷凝器(E-611)冷凝后进入 C-605 塔回流罐(V-605),然后用回流泵P-605 部分回流,部分送至V-602。C-605 塔底循环洗涤水经E-609与进料换热后进入循环水洗涤罐 V-606 部分循环使用,多余污水排出。” 找不到相应的工艺流程图,能否提供与上述内容相配套的工艺流程图。并提供“多 余污水排出”的废水量、典型组分比例。 答:上述叙述式错误的,不是我们的工艺。 正确的是:来自 C-603、C-604 塔底含有乙腈的洗涤水进入 V410,通过 P415ab 进入乙腈

模电课设报告

模电课设报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

南京航空航天大学模拟电子技术课程设计报告 (频率-电压变换器) 学生姓名:田恬 学号: 班级: 0315203 电工电子实验中心 2017年6月

目录 第一章:设计指标 第二章:系统概述 第三章:单元电路设计与分析 第四章:电路调试过程 第五章:结束语 附件1:器件表 附件2:参考文献 附件3:总图

第一章设计指标 试设计一个频率-电压变换器,要求: (1)当正弦波信号的频率f i在200Hz-2kHz范围内变化时,对应输出的直流电压Vo在2-10V范围内线性变化,误差在5%左右。 (2)正弦波信号源采用函数波形发生器。 (3)采用±12V电源供电。 第二章系统概述 一、设计思想 函数波形发生器输出的正弦波经比较器变换成方波。方波经频率变换 通过反成直流电压。直流正电压经反相器变成负电压,再与参考电压V R 相加法器得到符合技术要求的Vo。 二、各功能的组成 (1)本次使用741运放设计三角波发生器作为设计函数波形发生器。调节范围为200Hz-2000Hz,在调试过程中,挑选中间的几个值进行测试。(2)电压比较器采用LM311。 (3)F/V变换采用集成块LM331构成的典型电路。通过参考书和报告上的指导书确定相关参数,测定输出的电压范围在。 (4)反相器采用比例为-1,通过集成芯片OP07实现。 的大小。使输出的(5)反相加法器同样用芯片OP07实现,通过调节V R 电压在2-10V。

三、总体工作过程 第三章 单元电路设计与分析 一、三角波发生器 电路如图所示,它由运放A1、A2,电阻R1、R2组成的同相迟滞比较器,运放A2以及R 、C 构成的反相有源积分电路组成。其输出信号周期为 二、电压比较器 LM311是一种电压比较器,它能将一个模拟电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。 三、频率电压变换器 直接应用F/V 变换器LM331,其输出与输入的脉冲信号重复频率成正比. (1)LM331内部原理图 此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. (2)工作波形图及工作过程 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。此时放电管T 截止,于是Ct 由Vcc 经Rt 充电,其上电压Vct 按指数规律增大。与此同时,电流开关S 使恒流源I 与○1 Vo=2- 参考电 -2V Vo3直流 Vo2 方 f i =200- 正弦 函数波 比较 F/V/变反相反相 μF

电除尘器课程设计资料报告材料

课程设计报告 ( 2015--2016年度第一学期) 课程名称:除尘技术 题目:电除尘器设计 院系:环境学院 班级:环工1201 学号: 3 学生:何德瑞 指导教师:吕建燚 设计周数: 1 周

成绩: 日期: 2016年1 月17 日 目录 一、待除尘电厂基本情况 (4) 二、电除尘器简介 (4) 1、电除尘器的分类 (4) 2、电除尘器的工作原理 (5) 3、电除尘器特点 (5) (1)优点: (5) (2)缺点: (6) 三、设计正文 (6) 1、设计要求 (6) 2、主要参数选择 (6) (1)电场风速 (6) (2)收尘极板的板间距 (6) (3)电晕线的线间距 (7) (4)粉尘的驱进速度 (7) 3、电除尘器主要部件的结构形式 (7) (1)集尘板 (7)

(2)电晕线 (8) (3)集尘极及电晕线的振打 (8) (4)进气烟箱与出气烟箱 (8) (5)气流分布板和槽型板 (8) (6)壳体 (8) (7)灰斗 (9) (8)梁柱的布置形式 (9) (9)集尘极与电晕极的配置 (9) (10)计算所需的收尘极面积 (9) (11)确定电场数 (10) (12)烟气量 (10) 4、电除尘器各部分尺寸的计算 (10) (1)初定电场断面 (11) (2)电场高度 (11) (3)电除尘器的通道数 (11) (4)电场有效宽度 (11) (5)实际电场断面 (11) (6)电除尘器的壁宽度 (11) (7)单电场的长度 (12) (8)柱间距 (12) (9)高 (12) (10)电除尘器壳体壁长 (12) (11)进气箱进气口面积 (13) (12)出气烟箱 (13) (13)灰斗排灰量 (13) (14)灰斗 (13)

电除尘器课程设计报告书

课程设计题目 一、除尘器主要参数的选取 二、确定主要参数 1. 设定电场风速 V=1.0m/s 2. 设定板间距 2b=400mm 极板采用C型板,紧固型悬挂方式 3. 设定线间距=240mm 极线采用RS管型芒刺线(起晕电压15KV) 4. 驱进速度ω=0.1m/s 5. 电场强度 E=50000V/m 6. 电压 U=70KV 三、确定主要部件结构形式 1. 采用卧式电除尘器 2. 设计为单室m=1 3. 电场数 n=2 4. 振打方式:挠臂锤机械振打 5. 进出气烟箱:①进气方式:前部中心进气 ②气流分布:在进气烟箱设置开孔率为50%气流均布板和导流板 ③槽形极板:在出气烟箱设置槽形极板 6. 灰斗:2个灰斗

四、各部尺寸计算 1. 收尘面积 213.281 .0)94.01ln() 1ln(m f =--=--=ωη 94.05 3.0110=-=-=i c c η 2276273.7615.11 .0)94.01ln(05.18) 1ln(m m k Q A ≈=?-?-=?--=ωη 2. 初定电场断面积 2'05.180 .105.18V Q F m === 3. 极板的有效高度 m 00.32 05.182F h '=== 极板的有效宽度 m h 02.63 05.18F B '=== 4. 通道数 1604.153 4.00 5.1822b B Z '≈=?===bh F 反算极板的宽度B m b Z B 4.64.0162'=?=?= 5. 验算实际断面积 2'2.194.60.3h m B F =?=?= 验算电场风速 s m 49.02 .1905.18F Q '===V

丁二烯管线设备爆裂致灾危害

请注意丁二烯管线、设备爆裂致灾危害 一、前言 101年4月6日凌晨03:30分,XX某石化厂之丁二烯工场管线爆破, 引发火灾(如图1),在附近居民强烈反应及新闻媒体持续追踪报导下,引发民众再度对工安问题的疑虑与关注,特别是石化制程,由于其流体多具有可燃、爆炸或毒性特质,稍一不慎,制程发生工安意外,不但设备毁坏,生产停止,甚至引起附近居民抗议,企业形象受损,如造成员工生命损伤,更是一个家庭永远的痛,工安问题一定要审慎面对防护! 二、事故经过 本工安事故发生于XX某石化厂之丁二烯工场,其连接再沸器与安全 阀之10吋管线,平常处于滞留状态,因管内丁二烯与氧发生反应,产生丁二烯过氧化物,该丁二烯过氧化物再与丁二烯单体聚合,生成爆米花状(popcorn)丁二烯聚合物(如图2),该爆米花状丁二烯聚合物又快速聚合反应,体积迅速膨胀,致管线充压而撑破,导致管内丁二烯聚合物、丁二烯暴露于空气中,产生过氧化物,进而与大气中氧急速反应,导致管线爆裂(如* 图3),引发大火。 图2 丁二烯聚合生成爆米花状、海绵状聚合物

图3 丁二烯管线爆裂 三、丁二烯相关事故 丁二烯制程设备、管路发生爆炸、火灾事故时有所闻(如表1)。丁二 烯火灾、爆炸工安事故大致可分两大类型:一类是物理性因素所造成,主 因是丁二烯端聚物的生成和迅速增大,胀破设备、管道,导致爆炸、火灾 物料大量泄漏,遇火源即发生火灾爆炸;另一类是化学因素所造成,主因 是丁二烯过氧化物在一定的条件下爆炸分解,其爆炸威力强大,如果可燃 物量多,则可能发生二次爆炸、着火,其危害更大。 表1 丁二烯设备、管路工安事故案例 2012丁二烯工场制程,因连接再沸器与安全阀之管线爆破造成丁二烯与空气接触,引发火灾。 2000 法国丁二烯工场制程,因连接再沸器与安全阀之管线爆破 ,造成7吨丁二烯外泄,被气体侦测器侦测到,紧急应变得宜,未酿成事故。2000 中国40吨丁二烯球槽发生爆炸火灾。 1994 日本一500 kg 丁二烯钢瓶在使用时,因内含微量爆米花状丁二烯聚合物,且该钢瓶储放在直接日晒下,造成丁二烯聚合物迅速增长,堵住安全阀,钢瓶因过压而爆炸。 1978 中国丁二烯脱水塔再沸器底部手孔盲板处由于存有死角 ,丁二烯在此生成端聚物,胀破盲板法兰,造成大量丁二烯喷出遇火源引起爆炸。1964 中国丁二烯储槽进行清理作业时,由于丁二烯过氧化物聚

模电课程设计实验报告分析

模电课程设计实验报告 实验内容:一、设计并制作一个能输出+5V 电压的直流稳压电源,输入电压为直流9V。二、利用课程设计(一)制作的电源、电压比较器、电压跟随器设计,驱动三 极管,通过可调电阻,控制LED灯的点亮和熄灭。 实验要求:(1)设计出+5V 直流稳压电源的电路原理图; (2)在万用板上焊接组装给定的元器件并进行调试,输入电压没有极性之分, 输出电压+5V,并点亮电源指示灯(红色); (3)设计一款电压比较器A,参考电压2.5V; (4)设计一款电压跟随器B,跟随电压比较器A 的电压; (5)驱动三极管,通过可调电阻,实现对LED(绿色)灯的控制; (6)完成课程设计报告的撰写。 实验原理: 一、制作稳定电压源 采用二极管、集成运放、电阻、稳压管、电容、二极管、LED发光二极管等元件器件。 输入电压为9V 的直流电源经桥式整流电路和滤波电路形成稳定的直流电源,稳压部分采用 串联型稳压电路。比例运算电路的输入电压为稳定电压;同时,为了扩大输出大电流,集 成运放输出端加晶体管,并保持射极输出形式,就构成了具有放大环节的串联型稳压电路。整体功能结构如图 直流9V 1、单相桥式整流电路 直流5V 为了将电压转换为单一方向的电压,通过整流电路实现。查阅资料可知单相整流电路有单相桥式整流电路(全波整流电路)。桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通,将变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单相桥式整流电路,具有输出电压高,变压器利用率高、脉动系数小等优点。所以在电路中采用单相桥式整流电路。 2、滤波电路 整流电路滤波电路稳压电路

相关主题
文本预览
相关文档 最新文档