当前位置:文档之家› Yaesu VX-8DR扩频及恢复方法

Yaesu VX-8DR扩频及恢复方法

Yaesu VX-8DR扩频及恢复方法
Yaesu VX-8DR扩频及恢复方法

Yaesu VX-8DR扩频及恢复方法

扩频方法:

1.开机

2.按SET 键1秒进入SET 模式

3.选功能#21 CWID

4.转DIAL 钮: CWID (ON)

5.按MODE 键

6.转DIAL 钮选A, 按MODE 键

7.转DIAL 钮选H, 按MODE 键

8.重做6-7 项,直至键完AH029M 空格空格

9.按SET 键退出SET 功能

10.关机

11.按HM/RV + MENU 键开机

12.转DIAL 钮及MODE 选至三个星字:***

13.按F 键

(以上步骤完成后如果不生效,执行14、15可选步骤)

14.关机

15.重新开机,完成设定

扩频后的发射频率是: 120-173.995MHz, 220-221.995MHz,400-469.995MHz,300-576MHz 恢复方法:

按照上述扩频步骤做到11步,

12. 然后MODE选择B1,然后按MODE键切换到B3

继续做上述扩频步骤的第13步。

直接序列扩频通信

MATLAB仿真直接序列扩频通信 1.摘要 直接序列扩频通信系统(DS-CDMA)因其抗干扰性强、隐蔽性好、易于实现码分多址(CDMA)、抗多径干扰、直扩通信速率高等众多优点,而被广泛应用于许多领域中。针对频通信广泛的应用,本文用MATLAB工具箱中的SIMULINK通信仿真模块和MATLAB函数对直接序列扩频通信系统进行了分析和仿真,使其更加形象和具体。 关键字:扩频通信m序列gold正交序列matlab仿真 2.引言 直接序列扩频(DSSS— Direct Sequence Spread Spectrum)技术是当今人们所熟知的扩频技术之一。这种技术是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端,用与发端扩展用的相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信息。 它是二战期间开发的,最初的用途是为军事通信提供安全保障, 是美军重要的无线保密通信技术。这种技术使敌人很难探测到信号。即便探测到信号,如果不知道正确的编码,也不可能将噪声信号重新汇编成原始的信号。有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr 和钢琴家George Antheil提出的。基于对鱼雷控制的安全无线通信的思路,他们申请了美国专利#2.292.387。不幸的是,当时该技术并没有引起美国军方的重视,直到十九世纪八十年代才引起关注,将它用于敌对环境中的无线通信系统。 直序扩频解决了短距离数据收发信机、如:卫星定位系统(GPS)、3G移动通信系统、WLAN (IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等应用的关键问题。扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。 3.直接序列扩频DS-SS是直接用具有高码率的扩频码序列在发送端去扩展信 号的频谱。而在收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。

扩频编码M序列和gold序列

M序列 由n级移位寄存器所能产生的周期最长的序列。这种序列必须由非线性移位寄存器产生,并且周期为2n(n 为移位寄存器的级数)。例如,考察图中a的非线性反馈移位寄存器,其状态转移关系如表:

状态(a k-3,a k-2,a k-1)的接续状态是(a k-2,a k-1,a k),其中a k=a k-3嘰a k-1嘰1嘰a k-2a k-1是一种非线性逻辑。从任一状态出发,例如从(000)出发,其接续状态恰好构成一个完全循环(图b),由此产生一个周期为23=8的3级序列。M序列最早是用抽象的数学方法构造的。它出现于组合数学的一些数学游戏中,例如L.欧拉关于哥尼斯堡的七桥问题等。后来发现这种序列具有某些良好的伪随机特性。例如,M序列在一个周期中,0与1的个数各占一半。同时,同样长度的0游程与1游程也各占一半。所有这些性质在数据通信、自动控制、光学技术和密码学诸领域中均有重要应用。 隐蔽通信内容的通信方式。为了使非法的截收者不能理解通信内容的含义,信息在传输前必须先进行各种形式的变化,成为加密信息,在收信端进行相应的逆变化以恢复原信息。电报通信、电话通信、图像通信和数据通信,都有相应的保密技术问题。另一方面,为了从保密通信中获得军事、政治、经济、技术等机密信息,破译技术也在发展。保密技术和破译技术是在相互对立中发展起来的。 1881年世界上出现了第一个电话保密专利。电话保密开始是采用模拟保密或置乱的方法,即把话音的频谱或时间分段打乱。置乱后的信号仍保持连续变化的性质。在第二次世界大战期间,频域和时域的置乱器在技术上已基本成熟。70年代以来,由于采用集成电路,电话保密通信得到进一步完善。但置乱器仍是有线载波和短波单边带电话保密通信的主要手段。模拟保密还可以采用加噪声掩盖、人工混响或逆向混响等方法,但因恢复后话音的质量大幅度下降或保密效果差,这些方法没有得到推广应用。数字保密是由文字密码发展起来的。数字信号(包括由模拟信号转换成的数字信号),由相同速率的密码序列加密,成为数字保密信号;保密信号传输到收信端后由同一密码序列去密,恢复原数字信号。随着集成电路的发展,数字保密通信已成为保密通信的主要发展方向。话音、图像等模拟信号都可以用数字保密方式。一般来说,数字破译要比模拟破译困难得多。数字保密的主要限制是传输数字信号所需带宽要比传输模拟信号的带宽大好多倍。 模拟保密通信话音信号置乱后的带宽基本保持不变,这是模拟保密通信的一个特点。但是,置乱后恢复的话音质量有所下降。置乱的过程越复杂,则话音质量下降的程度越大。 倒频用倒频器(图1)把话音频谱颠倒过来,使高频变为低频,低频变为高频,这是最简单的一种频域置乱方法。频域置乱器的基本电路是平衡调制器和带通滤波器。平衡调制器可以搬移和倒置频谱,而滤波器可以滤取所需要的频谱成分。输入的话音信号经过平衡调制器后输出上、下两个边带。适当地选择

基于m序列的直接序列扩频

扩频通信实验 实验名称:基于m序列的直接序列扩频 专业班级:通信111501班 学生姓名:穆琦沈傲立孙琳王瑞学熊晓倩

学号:201115040111 13 16 20 27 指导教师:郑秀萍 时间:2014.10.29 1 需求分析 在通信发射端将载波信号展宽到较宽的频段上;在接收端,用同样的扩频码序列进行解扩和解调,把展宽的信号还原成原始信息.通过扩展频谱的相关处理,大大降低了频谱的平均能量密度,可在负信噪比条件下工作,获得了高处理增益,从而降低了被截获和检测的概率,避免了干扰影响.通过仿真模型结果分析抗噪声性能结果。 2 概要设计 扩频通信系统分为直接序列扩频系统、跳频扩频系统、跳时扩频系统和混合式扩频系统。直接序列扩频系统,又称“平均”系统或伪噪声系统,就是采用高码率的扩频码序列PN 码(伪随机码),在发送端与编码数据信号进行模2 加,产生一扩频序列,这一码序列由于码元很窄,占用了很宽的频带,达到扩频的目的,然后用扩频序列去调制载波并予以传输。在接收端接收到的扩频信号经高频放大混频之后,用与发端相同且同步的伪随机码对扩频信号进行相关解扩,由于收发端伪随机码的相关系数为1,故可以完全恢复所传的信息,而干扰和噪声由于与接收机伪

随机码不相关,在相关解调时大大降低进入信号通频带内的干扰。它是目前应用较广泛的一种扩展频谱系统。在国外已获得成功的空间探测器“喷气推进实验室(JPL)测距技术”就是一种直接序列调制,TATS-1 军用卫星中的扩展频谱多址(SSMA)系统等都使用DSSS。 直接序列扩频系统的接收一般采用相关接收,并分成两步,即解扩和解调。在接收端,接收信号经过数控振荡器放大混频后,用与发射端相同且同步的由M 序列发生器产生的伪随机码对中频信号进行相关解扩,把扩频信号恢复成窄带信号,然后再由基带滤波器进行解调,最后恢复出原始信息序列。扩频与解扩过程中,利用PN序列生成器模块( PN Sequence Generator ) ,产生6级、传输速率500b/s的PN伪随机序列来达到扩频和多址接入效果,这里扩频增益为50倍.扩频的运算是信息流与PN码相乘或模二加的过程.解扩的过程与扩频过程完全相同,即将接收的信号用PN码进行第二次扩频处理.要求使用的PN码与发送端扩频用PN码不仅码字相同,而且相位相同.否则会使有用信号自身相互抵消.解扩处理将信号压缩到信号频带内,由宽带信号恢复为窄带信号.同时将干扰信号扩展,降低干扰信号的谱密度,使之进入到信息频带内的功率下降,从而使系统获得处理增益,提高系统的抗干扰能力.调制与解调使用二相相移键控PSK方式. 为了方便分析, 我们可对系统作如下假设: 系统各用户同步;系统各用户功率相同;仅考虑系统MAI和白噪声干扰引起的误码, 忽略信号传输、调制解调过程中的误码。 3 开发工具和编程语言 开发工具:

m序列产生及其特性

一、实验目的 通过本实验掌握m 序列的特性、产生方法及应用。 二、实验内容 1、观察m 序列,识别其特征。 2、观察m 序列的自相关特性。 三、基本原理 m 序列是有n 级线性移位寄存器产生的周期为21n -的码序列,是最长线性移位寄存器序列的简称。码分多址系统主要采用两种长度的m 序列:一种是周期为1521-的m 序列,又称短PN 序列;另一种是周期为 4221-的m 序列,又称为长PN 码序列。m 序列主要有两个功能:①扩展调制信号的带宽到更大的传输带宽, 即所谓的扩展频谱;②区分通过多址接入方式使用同一传输频带的不同用户的信号。 3、m 序列的互相关函数 两个码序列的互相关函数是两个不同码序列一致程度(相似性)的度量,它也是位移量的函数。当使 用码序列来区分地址时,必须选择码序列互相关函数值很小的码,以避免用户之间互相干扰。 研究表明,两个长度周期相同,由不同反馈系数产生的m 序列,其互相关函数(或互相关系数)与自 相关函数相比,没有尖锐的二值特性,是多值的。作为地址码而言,希望选择的互相关函数越小越好,这 样便于区分不同用户,或者说,抗干扰能力强。 在二进制情况下,假设码序列周期为P 的两个m 序列,其互相关函数R xy (τ)为 ()xy R A D τ=- (9-9) 式中,A 为两序列对应位相同的个数,即两序列模2加后“0”的个数;D 为两序列对应位不同的个数, 即两序列模2加后“1”的个数。 为了理解上述指出的互相关函数问题,在此以5n =时由不同的反馈系数产生的两个m 序列为例计算它 们的互相关系数,以进一步讲述m 序列的互相关特性。将反馈系数为8(45)和8(75)时产生的两个5级m 序 列分别记做:1m :1000010010110011111000110111010和2m :111110111000101011010000110100,序列1m 和 2m 的互相关函数如表9-3所示。 表9-3序列1m 和2m 的互相关函数表

扩频与解扩实验

电子信息工程系实验报告 课程名称:移动通信技术 实验项目名称:扩频与解扩实验 实验时间: 班级:通信091 姓名:Jxairy 学 号:910705131 实 验 目 的: 1、掌握扩频的基本原理。 2、理解扩频增益的概念。 实 验 设 备: 1、移动通信实验原理实验箱 一台 2、20M 双踪示波器 一台 实 验 内 容: 1、观察基带信号扩频前后波形(频谱)。 2、观察扩频前后PSK 调制的波形(频谱)。 实 验 原 理: 扩展频谱通信系统是指将待传输信息的频谱用某个特定的扩频函数扩展成为宽频带信号后送入信道 中传输,在接收端利用相应手段将信号解压缩,从而获取传输信息的通信系统。也就是说在传输同样信息 时所需的射频带宽,远比我们已熟知的各种调制方式要求的带宽要宽得多。扩频带宽至少是信息带宽的几 十倍甚至几万倍。信息不再是决定调制信号带宽的一个重要因素,其调制信号的带宽主要由扩频函数来决 定。 在本实验中我们采用的是直接序列扩频。 图1 直接序列扩频流程图 直接序列扩频通信的过程是将待传送的信息码元与伪随机序列相乘,在频域上将二者的频谱卷积,将 信号的频谱展宽,展宽后的频谱呈窄带高斯特性,经载波调制之后发送出去。在接收端,一般首先恢复同 步的伪随机码,将伪随机码与调制信号相乘,这样就得到经过信息码元调制的载波信号,再作载波同步, 解调后得到信息码元。 直接序列扩频通信的过程是将待传送的信息码元与伪随机序列相乘,在频域上将二者的频谱卷积,将 信号的频谱展宽,展宽后的频谱呈窄带高斯特性,经载波调制之后发送出去。在接收端,一般首先恢复同 步的伪随机码,将伪随机码与调制信号相乘,这样就得到经过信息码元调制的载波信号,再作载波同步, 解调后得到信息码元。 我们采用“扩频增益”GP 的概念来描述扩频系统抗干扰能力的优劣,其定义为解扩接收机输出信噪比 与其输入信噪比的比值,即:

基于软件无线电的直接扩频方案的实现【开题报告】

开题报告 电子信息工程 基于软件无线电的直接扩频方案的实现 一、综述本课题国内外研究动态,说明选题的依据和意义 20世纪90年代初,美国MITRE公司的首席科学家J.Mitola首先提出软件无线电概念。软件无线电最初指一种宽频段多模式的无线电台,利用加载在一定硬件上的软件来实现所需的无线通信功能。现在,软件无线电是指将模块化、标准化和通用化的硬件单元以总线或交换方式连接起来构成通用平台,通过在这种平台上加载模块化、标准化和通用化的软件来实现各种无线通信功能的一种开放体系结构及技术。 软件无线电提出了一种崭新的设计、制造和使用无线通信系统与设备的思想,它摆脱了面向用途而完全依赖硬件的传统无线电设计思路,通过一种模块化的通用硬件平台,把系统提供的业务从长期依赖于固定电路的方式中解放出来,利用软件软件可编程、易修改和成本低的优势,把无线通信技术水平提升到一个新的高度。扩频通信是无线通信中一种主要的技术,凭着抗干扰、抗噪音、保密性、多址复用等一系列优势,目前在无线通信中得到了广泛的应用。而直接扩频作为目前扩频通信中使用最多,最为典型的一种工作方式,随着软件无线电在无线通信中的应用,使得基于软件无线电的直接扩频技术越来越受到重视,成为研究的热点。 目前人们普遍认为,近几十年来无线通信经历了三次大的变革。第一次是模拟到数字的变革;第二次是从固定到移动的变革;而第三次是从硬件到软件、从专用到通用的变革,这就是指软件无线电技术革命。 现代军事通信系统要求具备灵活性、抗干扰性、易开发和维护、互通性等各种优点,软件无线电就是实现现代军事通信要求特性的关键。自从它诞生以来,软件无线电在军事通信中得到了广泛的应用。软件无线电在移动通信系统中,特别是在3G和B3G新一代移动通信系统中的应用也已成为研究的热点。扩频技术作为通信系统中一种典型的、广泛应用的技术,必将从软件无线电的发展中获益。欧洲的先进通信技术与业务计划中,有三项计划是将软件无线电技术应用在第三代移动通信系统中的。在国内,研究软件无线电起步较早的是一些著名的大学、

M序列的产生和性能分析

M序列的产生和性能分析 摘要 在扩频函数中,伪随机信号不但要求具有尖锐的互相关函数,互相关函数应接近于零,而且具有足够长的码周期,以确保抗侦破、抗干扰的要求;由足够多的独立地址数,以实现码分多址的要求。M序列是伪随机序列的一种,可由m序列添加全0状态而得到。m序列与M序列对比得出在同级移位寄存器下M序列的数量远远大于m序列数量,其可供选择序列数多,在作跳频和加密码具有极强的抗侦破能力。 本文在matlab中的Simulink下用移位寄存器建立了4级、5级、6级M 序列的仿真模型,进行了仿真,画出其时域图、频谱图、互相关性图。通过时域图和频域图可看出,经过扩频后的信号频带明显的被扩展;由M序列互相关性图,得出M序列有较小的互相关性,较强的自相关性,但相关性略差于m序列。最后,本文又将M序列应用于CDMA扩频通信仿真系统中,得到下列结论:当使用与扩频时相同的M序列做解扩操作与用其他序列做解扩的输出有巨大的差别。使用相同的序列进行解扩时系统输出值很大,而使用其他序列解扩时输出值在零附近变化。这就是扩频通信的基础。 关键词:伪随机编码, 扩频通信自相关函数,互相关函数

M SEQUENCE GENERATION AND PERFORMANCE ANALYSIS ABSTRACT In spread-spectrum communication, pseudo-random sequence must have high autocorrelation value, low cross correlation, long code period and lots of dependent address to satisfy code division multiple access(CDMA). M sequence is one kind of the pseudo-random sequences. It can be may obtained through adding entire 0 states to m sequence. The number of M sequence is greater than the m-sequence under the same level shift register. It may supply the more choice. The M-sequence is often applied to the frequency hopping and adds the password to have greatly strengthened anti- solves the ability. At first, M sequences which has n=4、5、7 levels of shift registers are produced under Simulink of Matlab. The time domain chart, the spectrograph, the mutual correlation chart are plotted. Through the time domain chart and the spectrograph, we could see how the bandwidth of the information signal is expanded. The pseudo-random symbol speed rate higher noise signal frequency spectrum is proliferated widely, the output power spectrum scope is lower. This can explain the spread-spectrum communication system principle from the frequency range. Through the M sequence’s auto correlation chart we can see that the auto correlation of M-sequence is quite good but is inferior to the m sequence. Finally, the M sequence is applied to the code division multiple access (CDMA) communication system. This is the spread-spectrum communication foundation. KEY WORDS:Pseudo-random code, auto-correlation, cross-correlation

浅谈扩频通信技术[文献综述]

文献综述 电子信息工程 浅谈扩频通信技术 摘要:扩频通信技术是一种信息处理传输技术,它是利用与被传输数据无关的扩频码对被传输信号进行频谱扩展,使得扩展后的频谱占有远远超过被传送信息所必需的最小带宽。扩频通信技术用于各种原因包括增强自然干扰和干扰,以防止检测,并限制功率流密度的安全通信设立的。本文简要阐述了扩展频谱通信技术的基本原理、历史、现状以及发展趋势。 关键词:扩频通信;CDMA 1、前言 扩展频谱通信具有很强的抗干扰性,其多址能力、保密、抗多径等功能也倍受人们的关注,它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。扩频通信技术自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。直到80年代初才被应用于民用通信领域。2、扩频通信技术 2、1扩频通信简介 所谓扩展频谱通信,可以简单的描述成:“扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的序列码来完成的,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进行相关同步接收、解扩及恢复所传信息数据[1]。”扩频通信是一种数字传输方式,扩频信号的带宽被展宽了,其带宽的扩展是通过扩频序列对被传信息进行调制实现的,在接收端使用相同的扩频序列对扩频信号进行相关解调,还原出被传信号[2]。 扩频通信的一般工作原理如图1所示。其中信道编码器、信道解码器、调制器和解调器是传统数字通信系统的基本构成单元。在扩频通信系统中除去了这些单元外,应用了相同的伪随机序列发生器,分别作用在发送前端的调制器与接收前端的解调器。这两个序列发生器产生伪随机噪声(PN)二值序列,在调制端将传送信号在频域进行扩展,在解调端解扩该扩频发送信号。

扩频通信实验报告

中南大学 扩频通信实验报告 实验一:扩频与解扩观测实验 时间:4月9号 一、实验目的 1、了解直接序列扩频的原理。 2、了解扩频前后信号在时域及频域上的变化。 二、实验器材 ⒈主控&信号源模块、2号、14号、11号模块各一块 ⒉双踪示波器一台 ⒊连接线若干

三、实验原理 1、实验原理框图 数字信号源 扩频 解扩 DoutMUX BSOUT 2# 模块14# 模块 11# 模块 NRZ1 NRZ-CLK1 扩频序列1 序列1(TP8) 扩频序列2 序列2(TP8) CDMA1AD 输入1 AD 输入2CDMA2 Dout 实验框图 2、实验框图说明 本实验选择【扩频与解扩观测实验】菜单。如框图所示,我们用2号模块作为信号源,DoutMUX 输出32K 数字信号,送入至14号模块的NRZ1。14号模块此时完成扩频功能,扩频序列由14号模块内部产生,将开关S1设置为0000,开关S2设置为0111,即可设置该路扩频序列1的码型(测试点为TP8序列1)。扩频信号由端口CDMA1输出。同时,当14号模块的开关S3设置为0111、开关S4设置为0000且端口NRZ2和NRZ-CLK2无信号输入时,端口CDMA2输出的伪随机序列与14号模块的扩频序列1相同,本实验中将该序列“CDMA2”可作为后续的解扩序列。此时的11号模块完成解扩功能,其中扩频信号从端口“AD 输入1”输入,解扩序列从“AD 输入2”输入,解扩信号从11号模块的“Dout ”输出。 该实验【扩频与解扩观测实验】中扩频序列的长度可通过PN 序列长度设置开关S6进行选择15位或16位。当开关S6拨至“127位”时,表示该实验的扩频为15位;当开关S6拨至“128位”时,表示该实验的扩频为16位。 注:为配合示波器调节,为了较好的对比观测扩频前和扩频后的码元,建议选择16位。 四、实验步骤 1、按框图所示连线。 源端口 目标端口 连线说明 模块2:DoutMUX 模块14:TH3(NRZ1) 数据送入扩频单元

三种扩频码的作用

短码、长码和Walsh码 直序列扩频通信系统 扩频通信是一种无线通信技术。他所用的传送频带比任何用户的信息频带和数据速率都大许多倍。用W表示传送带宽(单位为Hz),用R表示数据速率(单位为bit/s),W/R被称为扩展系数或处理增益。W/R的值一般可以在一百到一百万的范围(20db~60db)。 讲到这里,不得不把香农老先生搬出来,这个人可是咱们现代通信理论的奠基人,严重的崇拜(可惜他的著作《信息论》咱实在是看不懂啊,汗!) 香农容量公式(Shannon’ scapacityequation),这个公式放在这里,人老先生费半天劲搞出来的,我们不去讨论其推算原理,只认为这是正确的。哦,香农还指出这是在加性高斯白噪声的信道模型下的公式,基本上我们现在的移动通信就是用这个东东啦。 C=Blog2[1 + S/N] 其中:B为传送带宽(单位为Hz); C为信道容量(单位为bit/s);

S/N为信号噪声功率比。 传统通信系统通常压缩信号速率至尽可能小的带宽信道进行传送,cdma系统则采用宽带信道传送信号,以获得处理增益,提高信道容量。为什么哪?根据香农公式,他老人家说增加信道带宽可以换取更高的信道容量或者是更低的信噪比,以提高收发双方通信的可靠性。 当一个用户以9600bps速率进行语音通信时,cdma的信道带宽是1,228,800hz,处理增益为1,228,800hz/9600=128=21dB。以此推算,每当用户数增加一倍,信道处理增益下降3db,当用户数达到32个时,信噪比接近底线,达到单扇区容量极限。实际上,cdma系统对单载波单扇区通话的用户数进行了限制,以确保系统处理增益可以保持在理想的水平。 发信者把需传送的低速数据与一组快速扩频序列合成后通过发射机发射出去,接收者从空中借口截取信息流后,用同一快速扩频序列进行解扩频,从而得到原始信息。 好,扩频的概念有了。我们再接着往下看。 cdma系统通过码片(chip)来传输信号(signal),通常每一比特信息要占用几个码片。所有用户共用cdma信道资源,每个用户拥有自己唯一的码型以区别

基于Matlab产生m序列

目录 前言 (1) 第一章设计任务 (2) 1.2设计内容 (2) 1.2设计要求 (2) 1.3系统框图 (2) 第二章m序列的分析 (4) 2.1m序列的含义 (4) 2.2m序列产生的原理 (5) 2.2m序列的性质 (6) 2.3自相关特性 (7) 第三章m序列的设计 (8) 3.1特征多项式确定 (8) 3.2本原多项式的确定 (9) 3.3m序列的发生 (10) 第四章程序调试及结果分析 (11) 4.1m序列的仿真结果及分析 (12) 4.2该设计的序列相关性仿真结果及分析 (13) 结论 (14) 参考文献 (15) 附录:程序代码 (16)

前言 扩频通信因其具有抗干扰、抗多径衰落、抗侦察等优点在通信领域中得到广泛应用。扩频序列的设计和选择是扩频通信的关键技术,扩频序列性能的优劣在很大程度上决定了通信系统的多址干扰和符号间干扰的大小,从而直接影响到系统的性能。因此,深入研究扩频序列的性质,构造设计具有良好相关性的扩频序列,来满足扩频系统的要求,是直接序列扩频系统的核心课题。白噪声是一种随机过程,它有极其优良的相关特性。但至今无法实现白噪声的放大、调制、检测、同步及控制等,而只能用类似于白噪声统计特性的伪随机序列来逼近它,并作为扩频系统的扩频码。 常见的伪随机序列有m 序列、GOLD 序列、M 序列、Walsh 序列等。m 序列是目前研究最为彻底的伪随机序列,m 序列容易产生,有优良的自相关和互相关特性。序列是伪随机序列的一种情况。他可以在很多领域中都有重要应用。由n级移位寄存器所能产生的周期最长的序列。这种序列必须由非线性移位寄存器产生,并且周期为2n(n为移位寄存器的级数)。 通过对伪随机码中常用的m序列的结构和性质进行了分析,本文给出了基于MATLAB平台的m序列生成算法及代码伪随机序列分析。

扩频通信发展

扩频通信技术最初是在军事抗干扰通信中发展起来的[3],后来又在移动通信中得到广泛的应用[4],因此扩频技术的历史经历了两个发展阶段,而目前它在这两个领域仍占据重要的地位。 1. 在军事通信中的应用 扩频通信系统是在50年代中期产生的,其最初的应用包括军事抗干扰通信、导航系统、抗多径实验系统以及其它方面[5]。 扩频技术的最初构想是在第二次世界大战期间形成的。在战争后期,干扰和抗干扰技术成为决定胜负的重要因素。战后得出了“最好的抗干扰措施就是好的工程设计和扩展工作频率”的结论。跳频通信的思路就是在这段时期出现的:如果对窄带信号使用编码的频率控制,则可以使其在任何时间占据宽频段中的任何一部分,这样敌人要进行干扰就必须维持很宽的频段。另一方面,直序扩频则起源于导航系统中高精度测距。 真正实用的扩频通信系统是在50年代中期发展起来的。麻省理工学院林肯实验室开发的扩频通信系统F9C-A/Rake系统被公认为第一个成功的扩频通信系统,在该系统的研制过程中,首次提出了瑞克(RAKE)接收的概念并成功应用,该系统也是第一个真正实用的宽带通信系统。第一个跳频扩频通信系统BLADES也在这段时期研制成功,在该系统中第一次利用移位寄存序列实现纠错编码。在此期间,喷气实验室(JPL)在其空间任务中完成了伪码产生器的设计以及跟踪环路的设计。 自从扩频通信的概念在50年代开始成熟以后,此后的二十多年扩频通信技术仍得到很大的发展,但都只是局部的发展,如硬件的改进和应用领域的拓展。而个人通信业务(PCS)的发展终于使扩频技术迎来了另一次大发展的机遇。 2. 在民用通信中的应用 一直到80年代初期,扩频通信的概念都只是在军事通信系统中得到应用,这种状况到了80年代中期才得到改变。美国联邦通信委员会(FCC)于1985年5月发布了一份关于将扩频技术应用到民用通信的报告[6]。从此,扩频通信技术获得了更加广阔的应用空间。 扩频技术最初在无绳电话中获得成功应用,因为当时已经没有可用的频段供无绳电话使用,而扩频通信技术允许与其它通信系统共用频段,所以扩频技术在无绳电话的通信系统中获得了其在民用通信系统中应用的第一次成功经历。而真正使扩频通信技术成为当今通信领域研究热点的原因是码分多址(CDMA)的应用。 90年代初,在第一代模拟蜂窝通信系统的基础上,出现了PCS研究的热潮。要实现PCS并考虑其长期发展,需要FCC为其分配100~200 MHz的带宽,而与频谱分配相关的

M序列的产生

M 序列的产生 1. 对象或参数 数学模型如下: )()2(5.0)1()2(7.0)1(5.1)(k v k u k u k z k z k z +-+-=-+-- 其中,)(k v 是白噪声N (0,1)(服从正态分布),输入信号采用4阶M 序列,幅度为1. 辨识模型如下: )()2()1()2()1()(2121k v k u b k b k z a k z a k z +-+-=-+-- 设输入信号的取值为k=1到k=16的M 序列,则待辨识参数L L L L LS z H H H ττθ1-)(= ∧。 ????????????=∧4321a a a a LS θ????????????=)16(...)4()3(z z z z L ????? ???????---=)14()15()14()15(......)2()3(z(2)-)3(-)1()2()1()2(-u u z z u u z u u z z H L 编制仿真程序,,获取输入输出数据,运用最小二乘法对系统的参数进行辨识,并将辨识结果与实际参数进行对比。 2. 程序框图

3. 程序实现 function [] = JM-232() %--------------------------------------------------------实验题目及初始化定义 disp('最小二乘法的实现') disp(' ') disp('数学模型为:z(k)-1.5z(k-1)+0.7z(k-2)=u(k-1)+0.5u(k-2)+v(k).') disp(' 所选择的辨识模型为:z(k)+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k).') disp(' 故实际参数a1=-1.5, a2=0.7, b1=1, b2=0.5. ') disp(' ') disp('系统输入采用4 阶M 序列且其幅度为1,输出受到白噪声序列v(k)干扰.') ds = input(' 假设白噪声序列v(k)服从正态分布,均值为0,请输入方差ds = '); disp(' ') disp(' ') a0=65539;M=2147483647;x=123456;b=10000; U=[];V=[];Z=[];T=[]; P=zeros(20,4);H=zeros(14,4);LS=zeros(4,1);ZL=zeros(14,1); %------------------------------------------------产生4 阶M 序列作为输入信号u(k) fori=1:4 P(1,i)=1; U(1)=-2*(P(1,4)-0.5); end for j=2:16 fori=2:4 P(j,i)=P(j-1,i-1); end P(j,1)=mod(P(j-1,3)+P(j-1,4),2); U(j)=-2*(P(j,4)-0.5); end disp('** 通过仿真获得:')

移动通信课程设计实验报告-利用matlab进行m序列直接扩频仿真(DOC)

目录 一、背景 (4) 二、基本要求 (4) 三、设计概述 (4) 四、Matlab设计流程图 (5) 五、Matlab程序及仿真结果图 (6) 1、生成m序列及m序列性质 (6) 2、生成50位随机待发送二进制比特序列,并进行扩频编码 (7) 3、对扩频前后信号进行BPSK调制,观察其时域波形 (9) 4、计算并观察扩频前后BPSK调制信号的频谱 (10) 5、仿真经awgn信道传输后,扩频前后信号时域及频域的变化 (11) 6、对比经信道前后两种信号的频谱变化 (12) 7、接收机与本地恢复载波相乘,观察仿真时域波形 (14) 8、与恢复载波相乘后,观察其频谱变化 (15) 9、仿真观察信号经凯萨尔窗低通滤波后的频谱 (16) 10、观察经过低通滤波器后无扩频与扩频系统的时域波形 (17) 11、对扩频系统进行解扩,观察其时域频域 (18) 12、比较扩频系统解扩前后信号带宽 (19) 13、比较解扩前后信号功率谱密度 (20) 14、对解扩信号进行采样、判决 (21) 15、在信道中加入2040~2050Hz窄带强干扰并乘以恢复载波 (24) 16、对加窄带干扰的信号进行低通滤波并解扩 (25) 17、比较解扩后信号与窄带强干扰的功率谱 (27) 六、误码率simulink仿真 (28) 1、直接扩频系统信道模型 (28) 2、加窄带干扰的直扩系统建模 (29) 3、用示波器观察发送码字及解扩后码字 (30) 4、直接扩频系统与无扩频系统的误码率比较 (31) 5、不同扩频序列长度下的误码率比较 (32) 6、扩频序列长度N=7时,不同强度窄带干扰下的误码率比较 (33) 七、利用Walsh码实现码分多址技术 (34) 1、产生改善的walsh码 (35) 2、产生两路不同的信息序列 (36) 3、用两个沃尔什码分别调制两路信号 (38)

直接序列扩频

扩展频谱(Spread Spectrum,SS)技术最初是为军用目的而开发出来的,应用于军事导航和通信系统中。出于提高通信系统抗干扰性能的需要,扩频技术的研究得以广泛开展,使得一些民用领域也从扩频技术的独特性质中受益。本章将概括性地描述扩频技术的基本概念、理论基础、系统组成及性能;介绍扩频系统的优点与应用。以此阐明直接序列扩频系统(DS—SS)发射机的设计与实现的重要意义。 1.1 扩频的概念 扩展频谱通信系统(Spread Spectrum Communication System)是指待传输信息的频谱用某个特定的扩频函数(Spreading Function)扩展后成为宽频带信号,送入信道中传输,接收端再利用相应手段将其解扩,从而获取传输信息的通信系统。 为此,扩频函数(信号)必须满足以下的特性:扩频信号是不可预测的伪随机的宽带信号;它的带宽远大于欲传输信息(数据)带宽;具有类似于噪声的随机特性等。由于扩频信号的上述特性,扩频系统具有许多的优点: (1)扩频信号的不可预测性,使得扩频系统具有很高的抗干扰(anti-jam,AJ)能力。因为干扰者难以通过观测实施干扰,而只能采用发射大功率宽带的干扰信号进行干扰。 (2)扩频信号的功率相当均匀地被分布在很宽的频率范围,以致被传输信号功率密度很低,侦察接收机难以检测。因此,扩频系统具有低截获概率性(Low Probability of Intercept,LPI),即信号有很好的隐蔽性。 (3)通过对宽带扩频信号的相关检测,可以使扩频系统具有很高的距离鉴别力,可用于测距。 (4)扩频通信系统具有良好的码分多址(CDMA)能力,对不同的用户使用不同的码,使得旁人无法窃听,因而具有高的保密性,可用于多址通信中。 1.2 扩频技术的应用与分类 正因为这种种优点,扩频技术得到了迅速的发展,扩频系统也得到了越来越广泛的应用。在通信、数据传输、信息保密、定位、测距和多址技术等方面,显示了它极强的生命力。在电子对抗时代,扩频技术用于通信、导航和识别信息综合系统,为军事上开展联合指挥提供最先进的通信系统,是强有力的电子对抗手段之一。另外,扩频技术在医学领域中也得到了应用,例如,超声多普勒血流成像。 在各种扩频方式中,直接序列扩频(Direct Sequencing,DS)和频率跳变(Frequency Hopping,FH)是最为常用的扩频技术。时间跳变(Time Hopping,TH)也是一种扩频技术,主要用于时分多址(TDMA)通信。此外,还有这几种技术的混合应用,例如,跳频/直接序列(FH/DS)混合扩频,跳时/跳频(TH/FH)混合扩频和跳时/直接序列(TH/DS)混合扩频等,它们都可看作上述几种基本方式的综合运用。从使用各种扩频技术成功的范例来看,各种不同的扩频方式都有其特点,在各自特定的领域里发挥所长,所以每种扩频方式都很重要。 1.3 扩频技术的理论基础 扩频技术的理论基础是香农(Shannon)定理,它可用香农信道容量公式 S C = W log 2(1 + )(1-1) N 来描述。该公式表明,在高斯白噪声干扰的信道中,当传输系统的信号噪声功率比S/N下降时,可用增加系统传输带宽W的方法来保持信道容量C不变。对于任意给定的信噪比,可以用增大传输带宽来获得较低的信息差错率和较高的传输速率。扩频技术正是利用这一原理,用高速率的扩频码(Spreading

第4章 扩频序列底捕获与同步

第四章 扩频序列底捕获与同步 扩频通信属数字通信,因此载波同步,比特同步(位同步),帧同步,还有特有的扩频码同步。 表现为: 同步时延差= ,表示同步 为此接收机扩频码同步系统必须: 先搜索捕获,驱使本地扩频序列 与接收序列取得起始相位基本一致,即:;然后进入同步跟踪,保持相位同步。 接收机组成 <未同步 扩频码同步要求收发双方 时钟频率对准 码序列起点对齐(初始相位一致) 双方时钟不稳 若时钟由载频分频产生,载频不稳导致时钟不稳 双方启动序列有时差 电波传播时延,多径时延,双方时钟不稳

一、直扩序列的捕获 1.1 单积分顺序搜索捕获(或称为滑动相关捕获法) 所谓顺序搜索捕获:不断地改变本地序列相位,并在每个相位进行相关检测,判断该相位是否同步,原理电路如图所示: 相关器 设 相关(相乘、带通)输出: 由于存在,需要平方―――利用积分器收集能量作检测 积分运算 \ 相干低通平滑―――>起到时间统计平均作用(各态历经) 设门限为A : :取得同步 :未取得同步―――>不断改变本地码序列相位 设每搜索一次控制一次,本地码序列相位改变量为,每控制一次所需时间为统计平均时间长度―――即积分间隔 因此,若设积分间隔为,且序列长度 一般,,为寄存器级数 则捕获时间: , 搜索完整个序列长度才搜索到 无需搜索就已同步

∴平均捕获时间: 检测概率―――实际已经同步时,判决为同步的概率 虚警概率―――未同步时,判决为同步的概率 以上分析过程没有考虑噪声和干扰,即检测概率,虚警概率 实际存在噪声干扰,必产生 显然,与积分时间有关 俞大,表示噪声被平滑(平均),必然,而,但捕获事件长! 搜索捕获过程,理论上可用一个马尔可夫链来描述,由马尔可夫链地生成函数信号流图,可得: ――为使本地序列 同步 接收序列所需的最大相位改变量, 当: ――证实电路(证明同步真假),积分时间的检测器(经k 次证明是真的!) 显然――对于单积分: 为此可采用多积分方式来减小 假设有n 个积分器,积分时间各不相同, 捕获开始,用积分时间短先积分,若输出大于门限,判决同步,由于――>可 能误判,为此,再用时间长积分器去检测证实去除虚警―――> 这样:可在较短时间内去除非同步――> 串行多积分方式 多积分又分为 并行多积分方式 如图所示: ,相位已对齐,但误判为未同步 ,相位未对齐,但误判为同步

m序列扩频

下面是直扩系统仿真程序,第一段是扩频和调制,第二段是m序列生成,求第一段程序接着编写解扩和解调的程序~ (1)clc clear %.............................生成待传输信息,码元宽度为切普宽度的10倍................... message=randint(1,4);%随机生成4个0 1码 code=[]; for i=1:length(message) if message(1,i)==0 code1=zeros(1,10); else code1=ones(1,10); end code=[code,code1]; end %...............................生成m序列...................................... a=[ 0 1 0 0 1 1 1 ]; %m序列特征多项式 b=[0 0 0 0 0 0 1]; %移位寄存器初始状态 c=length(code); %生成m序列长度 m_sequence=mseq(a,b,c); dsss=code.*m_sequence;%扩频%.............................BPSK调制....................................... f=20; %载波频率,为码元速率二倍 t=0:1/(f-1):1; cp=[]; mod=[]; for j=1:length(dsss) if dsss(j)==0 cp1=-ones(1,20); else cp1=ones(1,20); end c=cos(2*pi*f*t); cp=[cp,cp1]; mod=[mod,c]; end bpsk=cp.*mod; plot(bpsk,'linewidth',1.5);grid on ylabel('bpsk modulation'); axis([0 20*length(dsss) -2 2]); (2) function[seq]=mseq(connections,registers,len) m=length(connections);

直接序列扩频系统

5.1 直扩系统的组成与原理 5.1.1 组成与原理 前面已经说过:所谓直接序列(DS )扩频,就是直接用具有高码率的扩频 码序列在发端去扩展信号的频谱。而在收端,用相同的扩频码序列去进行 解扩,把展宽的扩频信号还原成原始的信息。 图5-1为直扩系统的组成与 原理框图。 一^ : ——一 _i L 」—1 — - TWWVWV 讥一 I ----------------------------- 1 II £ * 图5- 1 在图5- 1(a )中,假定发送的是一个频带限于fin 以内的窄带信息。将 此信息在信息调制器中先对某一副载额 fo 进行调制(例如进行调幅或窄带 调频),得到一中心频率为fo 而带宽为2fin 的信号,即通常的窄带信号。 一般的窄带通信系统直接将此信号在发射机中对射频进行调制后由天线辐 射出去。 但在扩展频谱通信中还需要增加一个扩展频谱的处理过程。常用的一 种扩展频谱的方法就是用一高码率fc 的随机码序列对窄带信号进行二相相 fc 7,,- Th :

移键控调制见图5-1(b) 中发端波形。二相相移键控相当于载波抑制的调幅双边带信号。选择fc >> fo > fin。这样得到了带宽为2fc的载波抑制的宽带信号。这一扩展了频谱的信号再送到发射机中去对射频f T进行调制 后由天线辐射出去。 信号在射频信道传输过程中必然受到各种外来信号的干扰。因此,在收端,进入接收机的除有用信号外还存在干扰信号。假定干扰为功率较强的窄带信号,宽带有用信号与干扰信号同时经变频至中心频率为中频f I 输出。不言而喻,对这一中频宽带信号必须进行解扩处理才能进行信息解调。解扩实际上就是扩频的反变换,通常也是用与发端相同的调制器,并用与发端完全相同的伪随机码序列对收到的宽带信号再一次进行二相相移键控。 从图5-1(b) 中收端波形可以看出,再一次的相移键控正好把扩频信号恢复成相移键控前的原始信号。从频谱上看则表现为宽带信号被解扩压缩还原成窄带信号。这一窄带信号经中频窄带滤波器后至信息解调器再恢复成原始信息。但是对于进入接收机的变窄带干扰信号,在收端调制器中同样也受到伪随机码的双相相移键控调制,它反而使窄带干扰变成宽度干扰信号。由于干扰信号频谱的扩展,经过中频窄带通滤波作用,只允许通带内的干扰通过,使干扰功率大为减少。由此可见,接收机输入端的信号与噪声经过解扩处理,使信号功率集中起来通过滤波器,同时使干扰功率扩散后被滤波器大量滤除,结果便大大提高了输出端的信号噪声功率比。 这一过程说明了直扩系统的基本原理和它是怎样通过对信号进行扩频与解扩处理从而获得提高输出信噪比的好处的。它体现了直扩系统的抗干扰能力。 综上所述,直扩系统的特点是: 频谱的扩展是直接由高码率的扩频码序列进行调制而得到的

相关主题
文本预览
相关文档 最新文档