当前位置:文档之家› 岩体力学试验报告

岩体力学试验报告

岩体力学试验报告
岩体力学试验报告

岩体力学试验报告

专业地质工程

姓名

学号

实验时间周二7,8节

目录

一、岩体密度试验 (2)

二、岩石单轴抗压试验 (4)

三、抗拉强度试验(劈裂试验) (7)

四、岩体变形试验 (10)

五、直剪试验 (13)

六、三轴压缩实验 (16)

一、岩体密度试验

1.1 工程概况(略)

试验时间2014年10月22日

1.2规范介绍

根据《工程岩体试验方法标准》(GB/T50266-99),岩体密度的测定方法有颗粒密度试验和块体密度试验,本试验采用块体密度试验中的量积法。

根据《工程岩体试验方法标准》,试件描述应包括:

1)岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等。

2)节理裂隙的发育程度及其分布。

3)试件的形态。

根据《工程岩体试验方法标准》,量积法试验应按下列步骤进行:

1)量测试件两端和中间三个断面上相互垂直的两个直径或边长,按平均值计算截面积。

2)量测端面周边对称四点和中心点的五个高度,计算高度平均值。

3)将试件置于烘箱中,在105-110℃的恒温下烘24h,然后放入干燥器内冷却至室温,称试件质量。

4)长度量测精确至0.01m,称量精确至0.01g。

1.3 试验方法

试验采用水泥砂浆棱柱体试件,试件处于自然含水状态。使用的仪器有游标卡尺、电子天平。实验步骤如下:

1)量测试件两端和中间三个断面上相互垂直的两个直径或边长,按平均值计算截面积。

2)量测端面周边对称四点和中心点的五个高度,计算高度平均值。

3)量测试件重量。

1.4 试验结果

岩体密度试验数据及数据处理见表1。

表1 岩体密度试验数据记录表

项目编号:01

试验者:、、校核者:、、试验日期:2014/10/22

1.5 总结

从实验结果可以看出,用量积法测得的密度不仅简便,而且计算结果准确,应保证试件制备有足够的精度。

二、岩石单轴抗压试验

2.1 工程概况

(略)

试验时间2014年10月22日

2.2规范介绍

根据《工程岩体试验方法标准》(GB:T50266-99),单轴抗压强度试验适用于能制成规则试件的各类岩石,且应符合下列要求。

试件尺寸应符合下列要求:

1)圆柱体直径宜为48-55mm。

2)含水颗粒的岩石,试件的直径应大于岩石最大颗粒尺寸的10倍。

3)试件高度与直径之比宜为2.0-2.5。

试件精度应符合下列要求:

1)试件两端面不平整度误差不得大于0.05mm。

2)沿试件高度,直径的误差不得大于0.3mm。

3)端面应垂直于试件轴线,最大偏差不得大于0.25°。

同一含水状态下,每组试验试件的数量不应少于3个。

试件描述应包括下列内容:

1)岩石名称、颜色、矿物成分、结构风化程度、胶结物性质等。

2)加荷方向与岩石试件内层理、节理、裂隙的关系及试件加工中出现的题。

3)含水状态及所使用的方法

试验应按下列步骤进行

1)将试件置于试验机承压板中心,调整球形座,使试件两端面接触均匀。

2)以每秒0.5-1MPa的速度加荷直至破坏。记录破坏荷载及加载过程中的现象。

3)试验结束后,应描述试件的破坏形态

试验成果整理应符合下列要求:

1)按下列公式计算岩石单轴抗压强度:

式中 R——岩石单轴抗压强度(MPa);

P——试件破坏荷载(N)

A——试件截面积(mm2)

2)计算值取3位有效数字。

3)单轴抗压强度试验记录应包括工程名称、取样位置试件、编号、试件描述、试件尺寸和破坏荷载。

2.3 试验方法

试验采用的试件为水泥砂浆棱柱体试件,同试验一。

试验方法与计算方法同《工程岩体试验方法标准》,试验过程:

1)将试件置于试验机承压板中心,调整球形座,使试件两端面接触均匀。

2)以每秒0.5-1MPa的速度加荷直至破坏。

2.4 试验结果

岩体单轴抗拉强度数据及数据处理见表2。

表2 岩石单轴抗压强度试验记录表

项目编号:02

试验者:、、校核者:、、试验日期:2014/10/25

2.5 总结

从实验结果可以看出,材料相同的水泥砂浆试件单轴抗压强度有很大差异,试件01单轴抗压强度仅为试件03的一半。分析原因可能为:

1)试件01的高径比和尺寸都比其他两个试件大,由于尺寸效应和高径比的影响,试件01的单轴抗压强度远小于其他两个试件。

2)试件01本身在加工过程中出现结构面或含水率较高,使得试件01单轴抗压强度降低。

三、抗拉强度试验(劈裂试验)

3.1 工程概况(略)

试验时间2014年10月22日

3.2规范介绍

根据《工程岩体试验方法标准》(GB:T50266-99),抗拉强度试验采用劈裂法,适用于能制成规则试件的各类岩石,试件描述同抗拉强度试验。

圆柱体试件的直径宜为试件的厚度宜为48-54mm,直径的0.5-1.0倍,并应大于岩石最大颗粒的10倍。

试验应按下列步骤进行:

1)通过试件直径的两端,沿轴线方向划两条相互平行的加载基线。将2根垫条沿加载基线,固定在试件两端。

2)将试件置于试验机承压板中心,调整球形座使试件均匀受荷,并使垫条与试件在同一加荷轴线上。

3)以每秒0.3-0.5MPa的速度加荷直至破坏。

4)记录破坏荷载及加荷过程中出现的现象,并对破坏后的试件进行描述。

试验成果整理应符合下列要求:

1)按下列公式计算岩石抗拉强度:

式中——岩石抗拉强度(MPa);

P——试件破坏荷载(N);

D——试件直径(mm);

H——试件厚度(mm)。

2)计算值取位有效数字。

3)抗拉强度试验的记录应包括工程名称、取样位置、试件编号、试件

描述试件尺寸破坏荷载

3.3 试验方法

采用圆柱体试件,按照《工程岩体试验方法标准》,实验步骤为:

1)在圆柱体试件底面圆的直径上两端点和中点对圆柱体高分别测量三次,对圆柱体上中下直径测量三次,取平均值。

2)通过试件直径的两端,沿轴线方向划两条相互平行的加载基线。将2根垫条沿加载基线,固定在试件两端。

3)将试件置于试验机承压板中心,调整球形座使试件均匀受荷,并使垫条与试件在同一加荷轴线上。

4)以每秒0.3-0.5MPa的速度加荷直至破坏。

5)记录破坏荷载及加荷过程中出现的现象,并对破坏后的试件进行描述。

6)计算方法同《工程岩体试验方法标准》。

3.4 试验结果

岩石单轴抗拉强度试验实验数据及数据处理见表3。

表3 岩石单轴抗拉强度试验(劈裂法)记录表

项目编号:03

试验者:、、校核者:、、试验日期:2013/10/25

破坏形态照片

3.5 总结

由实验结果可看出试样的抗拉强度不高,而且试件02与其他两组有较大差别。分析产生差别的原因可能为:

1)试件内部存在结构面降低了试件的抗拉强度。

2)试件在加载时线荷载没有通过试件的圆心,最终破裂面没有通过试

件的直径,使得抗拉强度偏低。

四、岩体变形试验

4.1 工程概况

(略)

试验时间:2014年10月28日

4.2规范介绍

根据《工程岩体试验方法标准》(GB:T50266-99),岩体变形试验有承压板法试验和钻孔变形试验,本试验采用承压办法。承压板法适用于各类岩体,安装时应使整个系统所有部件的中心保持在同一轴线上并与加载方向一致。

试验及稳定标准应符合下列规定:

1)试验最大压力不宜小于预定压力的1.2倍,压力宜分为5级,按最大压力等分施加。

2)加压前应对测表进行初始稳定读数观测,每隔10min同时测读各测表次,连续3次读数不变,方可开始加压试验,并将此读数作为各测表

的初始读数值。钻孔轴向位移计各测点观测,可在表面测表稳定不变后

进行初始读数。

3)加压方式宜采用逐级一次循环法,或逐级多次循环法。当采用逐级一次循环法加压时,每一循环压力应退至零。

4)每级压力加压后应立即读数,以后每隔10min读数1次,当刚性承压板上所有测表或柔性承压板中心岩面上的测表相邻两次读数差与同级

压力下第一次变形读数和前一级压力下最后一次变形读数差之比小于

5%时,可认为变形稳定,并进行退压。退压后的稳定标准与加压时的稳

定标准相同。

5)在加压、退压过程中,均应测读相应过程压力下测表读数一次。

6)中心孔中各测点及板外测表可在读取稳定读数后进行一次读数。

采用刚性承压办法量测岩体表面变形时,按按下列公式计算变形参数:

式中 E——岩体弹性(变形)模量(MPa);

W——岩体变形(cm);

P——按承压板面积计算的压力(MPa);

D——承压板直径(cm);

——泊松比

4.3 试验方法

本试验采用刚性承压板法,主要实验仪器为岩体刚性试验机,在试件的纵向与横向分别贴两个应变片,数据采集传输到电脑。其他步骤同《工程岩体试验方法标准》。

4.4 试验结果

岩石单轴压缩变形试验实验数据及处理见表4。

表4 岩石压缩变形记录表

试验者:、、校核者:、、试验日期:2014/10/28 岩石变形试验试件尺寸数据见表5。

表5 岩石变形试验试件尺寸

岩石变形试验曲线见图1。

图1 岩体变形试验曲线

4.5 总结

试验准备时,应变片的粘贴方法十分重要,试件表面要用砂纸打磨,然后用酒精擦拭,然后才能用502胶水将应变片贴在打磨过的试件上。

试验过程中,有一个不加载的试件作相同处理,作为对照,消除环境因素对试验的影响。

五、直剪试验

5.1 工程概况

(略)

试验时间:2014年11月4日。

5.2规范介绍

根据《工程岩体试验方法标准》(GB:T50266-99),直剪试验适用于岩块、岩石结构面以及混凝土与岩石胶结面。

试件安装应符合下列规定:

1)将试件置于金属剪切盒内,试件与剪切盒内壁之间的间隙以填料填实,使试件与剪切盒成为一个整体。预定剪切面应位于剪切缝中部。

2)安装试件时,法向荷载和剪切荷载应通过预定剪切面的几何中心。

法向位移测表和水平位移测表应对称布置,各测表数量不宜少于2只。

法向荷载的施加方法应符合下列规定:

1)在每个试件上,分别施加不同的法向应力,所施加的最大法向应力,不宜小于预定的法向应力。

2)对于岩石结构面中具有充填物的试件,最大法向应力应以不挤出充填物为宜。

3)不需要固结的试件,法向荷载一次施加完毕,即测读法向位移,55min 后再测读一次,即可施加剪切荷载。

4)需固结的试件,在法向荷载施加完毕后的第一小时内,每隔15min 读数1次,然后每半小时读数1次,当每小时法向位移不超过15min时,即认为固结稳定,可施加剪切荷载。

5)在剪切过程中,应使法向荷载始终保持为常数。

剪切荷载的施加方法应符合下列规定:

1)按预估最大剪切荷载分12级施加。每级荷载施加后,即测读剪切位移和法向位移,5min后再测读一次即施加下一级剪切荷载直至破坏。当

剪切位移量变大时,可适当加密剪切荷载分级。

2)将剪切荷载退至零。根据需要,待试件充分回弹后,调整测表,,按

上述步骤进行摩擦试验。

试验成果整理应符合下列要求:

1)按下列公式计算各法向荷载下的法向应力和剪应力:

式中——作用于剪切面上的法向应力(MPa);

——作用于剪切面上的剪应力(MPa);

P——作用于剪切面上的总法向荷载(N);

Q——作用于剪切面上的总剪切荷载(N);

A——剪切面积(mm2)。

2)绘制各法向应力下的剪应力与剪切位移及法向位移关系曲线,根据曲线确定各剪切阶段特征点的剪应力。

3)根据各剪切阶段特征点的剪应力和法向应力绘制关系曲线,按库伦表达式确定相应的岩石抗剪强度参数。

4)直剪试验记录应包括工程名称、取样位置、试件编号试件描述、剪切面积、各法向荷载下各级剪切荷载时的法向位移及剪切位移。

5.3 试验方法

试验仪器采用了油压千斤顶,位移计等实验器材,加载方式同《工程岩体试验方法标准》。

5.4 试验结果

直剪试验数据及数据处理见表6

表6直剪试验记录表

直剪试验岩石强度线见图3。

图3 直剪试验岩石强度线

5.5 总结

直剪试验适用于岩块、岩石结构面以及混凝土与岩石胶结面。

节理剪切扩容效应指节理在剪切过程中,由于节理面的起伏不平引起节理体积和厚度增加的作用。

在试验过程中,由于横向位移过大,使下面的竖向位移计脱落,故得到的u-v曲线图在后来竖向位移很大。

六、三轴压缩强度试验

6.1规范介绍

根据《工程岩体试验方法标准》(GB/T50266-2013),岩石三周压缩强度试验是测定一组岩石试件在不同侧压条件下的三向压缩强度,据此计算岩石在三轴压缩条件下的强度参数c,φ值。本实验采用等侧压条件下的三轴压缩试验,是指

适用于三向应力状态中的特殊情况,σ

2=σ

3

。能制成圆柱体试件的各类岩石均可

进采用等侧向压力三轴压缩试验。

岩石试件应满足:

圆柱体试件直径应为试验机承压板直径的0.96-1.00。试件的高度与直径的笔直宜为2.0-2.5。

其他条件同单轴压缩试验。

应包括主要的仪器设备有:

a)钻石机,切石机,磨石机和车床等;

b)测量平台;

c)三轴试验机。

试验程序可分为:

1.在进行三轴压缩试验的同时,应进行岩石单轴抗压强度、抗拉强度

的实验。

2.侧向压力可按等差级数或等比级数进行选择。

3.根据三轴试验机要求安装试件。试件应采用防油措施。

4.以0.05MPa/s的加荷速度同时施加侧向压力至预定侧压力值,并使

侧压力在实验过程中保持为常数。

5.以0.5-1.0MPa/s的加荷速度施加轴向荷载,直至试件完全破坏,记

录破坏载荷。

6.对破坏后的试件进行描述。当有完整的破裂面时应测量破坏面与最

大主应力作用面之间的夹角。

按照下列公式计算不同侧向压力条件下的轴向压力:

σ1=

式中σ

—不同侧压条件的轴向压力,MPa;

1

P—试件轴向破坏载荷,N;

A—试件截面积--,mm2。

6.2试验方法

实验采取与岩石的单轴抗压强度试验相同的岩石试件,放入岩石的三轴压缩实验机中,在侧向压力相同的情况下展开操作,其他各项操作参考《工程岩体试验方法标准》。

6.3实验结果

由图中可以计算得出

ζ==12.93

解得φ=58.8°

σc=

解得c=26.81 MPa

6.4总结

实验设备较复杂,实验过程中出现时间不够的问题,下一次实验前必须做好充分准备才

能准时完成实验,根据后续数据,实验比较成功,岩石的内摩擦角和内聚力符合实际。

岩石力学-硕士研究生课程报告-中南大学

硕士研究生课程报告 题目顺层高边坡稳定性影响因素 及工程灾害防治 姓名曾义 专业班级岩土13级 任课教师阳军生张学民 中南大学土木工程学院

引言 近年来,随着铁路公路建设步伐加快,铁路公路等级不断提高,边坡防护建设工程中所遇到的岩土边坡安全稳定性问题也相应增多,并成为岩土工程中比较常见的技术难题。由于工程建设的需要,往往在一定程度上破坏或扰动原来较为稳定的岩土体而形成新的人工边坡,因而普遍存在着边坡稳定的问题需要解决。国家实施西部大开发战略以来,西部山区高等级公路得到迅速发展。在山区修建高等级公路不可避免会遇到大量的深挖高填路基,就目前建设的高速公路情况看:一般情况下,100km长的山区高等级公路,挖填方路基段落长度占路线总长度的60%以上。已建高速公路最高的填方已达到50多米,最高的挖方边坡高度已超过100m。尽管山区高等级公路的建设越来越倡导环境保护,尽量避免深挖高填,但路基作为公路的主要结构,其边坡稳定问题不可避免。在山区复杂多变的地质条件下建设高等级公路,其边坡稳定性问题必将受到人们的普遍关注,高边坡岩土安全状况直接关系到公路交通运输安全。 虽然计算理论方法、地质探测技术、现代监测技术、边坡加固技术及施工技术不断的在进步,但顺层边坡稳定性问题和高边坡稳定性问题,时至今日依然是国内外学者研究的热点问题,并逐步涌现出许多的新的研究方向。 1、顺倾高边坡稳定性研究现状 随着人类工程活动的发展,对边坡问题的研究也在不断深入,归纳前人对边坡问题的研究大致可分为以下几个阶段: 人们对边坡稳定性的关注和研究最早是从滑坡现象开始的(张倬元等,2001)。19世纪末和20世纪初期,伴随着欧美资本主义国家的工业化而兴起的大规模土木工程建设(如修筑铁路、公路,露天采矿,天然建材开采等),出现了较多的人工边坡,诱发了大量滑坡和崩塌,造成了很大的损失。这时,人们才开始重视边坡失稳给人类造成的危害,并开始借用一般材料分析中的工程力学理论对滑坡进行半经验、半理论的研究。 20世纪50年代,我国学者引进苏联工程地质的体系,继承和发展了“地质历史分析”法,并将其应用于滑坡的分析和研究中,对边坡稳定性研究起到了推动作用(张倬元等,1994)。该阶段学者们着重边坡地质条件的描述和边坡类型的划分,采用工程地质类比法评价边坡稳定性。 20世纪60年代,世界上几起灾难性的边坡失稳事件的发生(如意大利的瓦依昂滑坡造成近3000人死亡和巨大的经济损失)(张倬元等,1994),使人们逐渐认识到了结构面对边坡稳定性的控制作用以及边坡失稳的时效特征,初步形

岩石力学研究进展报告

岩石力学研究新进展报告 姓名:XXX 学号:XXXXXXXX 专业:岩土工程

岩石力学研究新进展报告 1 引言 时光如白驹过隙,一学期的《XXXXX》课程在不知不觉间结课了。这一学期的学习,使我在岩石力学方面有了很大的启发,特别是分形理论在岩石力学中的应用令我神往。下面我对岩石力学研究的新进展做简要报告。 岩石力学可以作为固体力学的一个新分支,用以研究岩石材料的力学性能和岩石工程的特殊设计方法。岩石力学经过近50年的发展,在土木工程、水利工程、采矿工程、石油工程、国防工程等领域都得到了广泛的应用,随着科学技术的进步,岩石力学涉及的领域会进一步扩大。岩石力学是一门内涵深,工程实践性强的发展中学科。岩石力学面对的是“数据有限”的问题,输入给模型的基本参数很难确定,而且没有多少对过程(特别是非线性工程)的演化提供信息的测试手段。另一方面,对岩体的破坏机体还不能准确的解释。岩石力学所涉及的力学问题是多场(应力场、温度场、渗流场、甚至还存在电磁场等)、多相(固、液、气)影响下的地质构造和工程构造相互作用的耦合问题。这就表明,工程岩体的变形破坏特征是极为复杂的,其大多数是高度非线性的。目前,岩石力学的许多数学模型是不准确和不完整的,可以广泛接受和适用的概化模型并不多。基于此,近年来,多种数值方法、细观力学、断裂与损伤力学、系统科学、分形理论、块体理论等在岩石力学中的应用以及各种人工智能、神经网络、遗传算法、进化算法、非确定性数学等域岩石力学的交叉学科的兴起,为我们提供了全新和有效的思维方式和研究方法,更能激发研究者的创新精神,这也为突破岩石力学的确定性研究方法提供了强有力的理论基础[1]。 本报告主要对分形岩石力学、块体岩石力学、断裂与损伤岩石力学和岩石细观力学四部分的研究新进展做简要报告。由于时间和精力有限(最近导师安排的任务非常多,而且要准备英语和政治期末考试),每部分内容除第一大段的研究新进展综述外,只对近几年的三篇比较好的文献做分析说明,包括两篇中文学术论文和一篇外文学术论文,这12篇学术论文我都比较仔细的看了。以后若有机会和时间,我会在导师和各位老师同学的不吝赐教下,努力做岩石力学的创新性研究,届时会在文献综述部分查阅和介绍更多最新以及更优秀的文献。 2 分形岩石力学 从古至今,岩石已成为人们熟知的工程材料,它是由矿物晶粒、胶结物质和大量各种不同阶次、不规则分布的裂隙、薄弱夹层等缺陷构成,是一种成分和结构高度复杂的孔隙体。岩石力学经过近50年的发展,人们尝试用各种数学力学方法研究和描述岩石复杂的自然结构性状和物理力学性质,提出了多种岩石力学分析和计算方法,为解决实际工程中的岩石力学问题创造了条件。19世纪70年代Mandelbrot创立分形几何学,提出了一种定量研究和描述自然界中极不规则且看似无序的复杂结构、现象或行为的新方法,从此分形几何学广泛地应用于自然科学研究的各个领域,并且在经济学等社会科学也有很巧妙的应用。19世纪80年代,分形几何学开始应用于岩石力学研究,开始形成分形岩石力学这一门新兴交叉学科。人们逐渐发现岩石力学领域中的分形现象相当普遍,不仅岩石的自然结构性状、缺陷几何形态、分布以及地质结构产状、断层几何形态、分布都观察到分形特征或分形结构,而且岩石体强度、变形、破断力学行为以及能量耗

岩石力学性质试验

岩石力学性质试验 一、岩石单轴抗压强度试验 1.1概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4主要仪器设备 钻石机、锯石机、磨石机或其他制样设备。 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。

岩石力学试验报告-2010

长沙理工大学 岩石力学试验报告 年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字: 实验一 实验二 实验三 实验四 实验五 实验六 实验七

试验一、岩石单向抗压强度的测定 一、试验的目的: 测定岩石的单轴抗压强度Rc。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、试样制备: 1、试料可用钻孔岩心或坑槽探中采取的岩块。在取料和试样制备过程中,不允许人为裂隙出现。 2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。 3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。 5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。 6、试样数量:每组须制备3个。 7、试样制备的精度。 (1)在试样整个高度上,直径误差不得超过0.3mm。 (2)两端面的不平行度,最大不超过0.05mm。 (3)端面应垂直于试样轴线,最大偏差不超过0.25。 三、试样描述: 试验前的描述,应包括如下内容: 1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。 2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。 3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。 试件压坏后,应描述其破坏方式。若发现异常现象,应对其进行描述和解释。 四、主要仪器设备:

岩石力学数值试验实验报告

岩石力学数值试验实验报告 姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军 同组人:郑周立、周义现、胡斌、朱红伟、高言、 王坤 实验名称:圆孔对岩石力学性质影响的数值加载 试验 2014年5月16日

圆孔对岩石力学性质影响的数值加载试验 一、实验目的: 1.通过对RFPA2D学习,知道RFPA2D基本使用方法。 2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。 3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。 二、实验原理: RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。 三、 1、试样尺寸: 100mm*51mm 2、基元数: 100*51 3、应力分析模式: 平面应变 4、圆孔:半径10mm 5、加载方式:单轴压缩 6、加载条件:竖向位移加载 7、均质度m=2 8、加载量:每步0.002mm

9、实验内容: (1)、应力-应变曲线; (2)、强度; (3)、破坏模式 四、实验内容: (一)、操作步骤: 第一步启动RFPA,新建模型建立存放的根目录 第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式... (二)实验结果 弹性模量图 第1步

第4步(开始破坏) 第7步(开始横向破坏) 第32步(彻底破坏) 第200步

最大剪应力图第1步

第4步(开始破坏) 第33步(彻底破坏) 第200步 最大主应力图

岩石力学试验报告

岩石力学实验指导书及实验报告 班级 姓名 山东科技大学土建学院实验中心编

目录 一、岩石比重的测定 二、岩石含水率的测定 三、岩石单轴抗压强度的测定 四、岩石单轴抗拉强度的测定 五、岩石凝聚力及内摩擦角的测定(抗剪强度 试验) 六、岩石变形参数的测定 七、煤的坚固性系数的测定

实验一、岩石比重的测定 岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。 一、仪器设备 岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。 二、试验步骤 1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。 2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。 3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。 4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。 5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。 6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。 三、结果:按下式计算: s d g g g g d 1 2-+= 式中:d ——岩石比重; g ——岩样重、克; g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1

中南大学ANSYS上机实验报告

ANSYS上机实验报告 小组成员:郝梦迪、赵云、刘俊 一、实验目的和要求 本课程上机练习的目的是培养学生利用有限单元法的商业软件进行数值计算分析,重点是了解和熟悉ANSYS的操作界面和步骤,初步掌握利用ANSYS建立有限元模型,学习ANSYS分析实际工程问题的方法,并进行简单点后处理分析,识别和判断有限元分析结果的可靠性和准确性。 二、实验设备和软件 台式计算机,ANSYS10.0软件 三、基本步骤 1)建立实际工程问题的计算模型。实际的工程问题往往很复杂,需要采用适当的模型在计算精度和计算规模之间取得平衡。常用的建模方法包括:利用几何、载荷的对称性简化模型,建立等效模型。 2)选择适当的分析单元,确定材料参数。侧重考虑一下几个方面:是否多物理耦合问题,是否存在大变形,是否需要网格重划分。 3)前处理(Preprocessing)。前处理的主要工作内容如下:建立几何模型(Geometric Modeling),单元划分(Meshing)与网格控制,给定约束(Constraint)和载荷(Load)。在多数有限元软件中,不能指定参数的物理单位。用户在建模时,要确定力、长度、质量及派生量的物理单位。在建立有限元模型时,最好使用统一的物理单位,这样做不容易弄错计算结果的物理单位。建议选用kg,N,m,sec;常采用kg,N,mm,sec。 4)求解(Solution)。选择求解方法,设定相应的计算参数,如计算步长、迭代次数等。 5)后处理(Postprocessing)。后处理的目的在于确定计算模型是否合理、计算结果是否合理、提取计算结果。可视化方法(等值线、等值面、色块图)显

岩石力学实验指导书

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编

北京科技大学 土木与环境工程学院 2008 年3 月 3

试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验; 3、岩石密度试验; 4、岩石耐崩解试验 5、岩石膨胀试验; 6、岩石冻融试验; 7、岩石单轴抗压强度试验, 8、岩石压缩变形试验, 9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (5) 三、岩石密度试验 (10) 四、岩石耐崩解试验 (17) 五、岩石膨胀试验 (20) 六、岩石冻融试验 (28) 岩石力学性质试验 (33) 七、岩石单轴抗压强度试验 (33) 八、岩石压缩变形试验 (39) 九、岩石抗拉强度试验(巴西法) (46) 十、岩石抗剪强度试验(变角剪切) (51) 十一、岩石三轴压缩及变形试验 (56) 十二、岩石弱面剪切强度试验 (68) 十三、点载荷指数的测定 (75) 十四、岩石纵波速度测定 (78) 十五、岩石力学伺服控制刚性试验 (80) 十六、岩石声发射试验 (86)

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

岩层实验报告

中国矿业大学矿业工程学院实验报告

《岩层控制》实验报告 实验一矿山岩体力学实验 注:包括岩石抗拉、抗压、抗剪三个内容。 岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力称为岩石的单轴抗拉强度。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 二、实验仪器 (1)钻石机或车床,锯石机,磨石机或磨床。 (2)劈裂法实验夹具,或直径2.0mm钢丝数根。 (3)游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。(4)材料实验机。 三、实验原理 图3-1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χy r/R 0.5 -0.5x σyσx y 压缩拉伸应力值/MPa 160120804040 图3-1 劈裂实验应力分布示意图四、实验内容

(1) 了解试件的加工机具、检测机具,规程对精度的要求及检测方法; (2) 学会材料实验机的操作方法及拉压夹具的使用方法; (3) 学会间接测试岩石抗压强度及数据处理方法。 五、 实验步骤 (1) 测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、裂隙、风 化程度、含水状态机加工过程中出现的问题进行描述,并填入记录表1-1内。 (2) 检查试件加工精度,测量试件尺寸,填入记录表内。 (3) 选择材料实验机度盘时,一般应满足下式:0.2 P 0< P max <0.8P 0 (4) 通过试件直径两端,沿轴线方向画两条互相平行的线作为加载基线。把试件放入夹具内,夹具上、下刀刃对准加载基线,用两侧夹持螺钉固定好试件,或用两根直径2.0mm 的钢丝放在加载基线上,钢丝间用橡皮筋固定。 (5) 把夹好试件的夹具或夹好钢丝的试件放入材料实验机的上、下承压板之间,使试件的中心线和材料实验机的中心线在一条直线上。 (6)开动材料实验机,施加数百牛载荷后,松开夹具两侧夹持螺钉,然后以0.03~0.05MPa/s 的速度加载,直至试件破坏。 (7)记录破坏载荷,对破坏后的试件进行摄影或描述。 六、 注意事项 (1) 记录试件的完整状态, (2) 选择合适的材料实验机及合适的实验机度盘值, (3) 夹具对试件的加载方向要与试件的轴线在一平面上, (4) 选择合适的加载速率。 七、 数据处理 表1-1 计算试件单向抗拉强度: R 1= 102?DL P π=5.98MPa 式中 R 1—试件的抗拉强度,MPa ; P —试件破坏载荷,kN; D —试件直径,cm; L —试件厚度,cm 。 八、误差分析 (1)试件自身各方面的影响; (2)系统误差;

岩石力学实验方案

实验方案 实验一单轴压缩试验 一、实验得目得 以白垩系软岩为研究对象,设置不同得冻结温度,分别对岩样进行一次冻融循环,并测定其冻融前后得单轴抗压强度与杨氏弹性模量,且绘出应力—应变曲线。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受得载荷称为岩石得单轴抗压强度,即式样破坏时得最大载荷与垂直与加载方向得截面积之比. 本次试验主要测定饱与状态下试样得单轴抗压强度。 二、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取得岩块,在取样与试样制备过程中,不允许发生人为裂隙。 (2)试样规格:经过钻取岩芯、岩样尺寸切割、岩样打磨几道工序制备成直径5cm、高10cm得圆柱体。 (3)试样制备得精度应満足如下要求: a沿试样高度,直径得误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0、25°; d方柱体试样得相邻两面应互相垂直,最大偏差不超过0、25°。 三、主要仪器设备 1、制样设备:钻石机、切石机及磨石机. 2、测量平台、角尺、游标卡尺、放大镜、低温箱等。

3、压力试验机。 四、实验步骤 1、取加工好得岩石试样15块,放入抽真空设备中进行饱水处理,浸泡24h; 2、a.(1)从饱水后得试样中取3块,进行冻结前常温(+20℃)条件下岩石得单轴压缩试验,并记录应力—应变曲线等信息;(2)从剩下得饱水岩样中取出6块放入低温箱中,在恒温—10℃条件下冻结48h;(3)取出冻结后得3块岩样,进行冻结-10℃条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息;(4)取出冻结后另外3块岩样,在室内常温环境下自然解冻后,进行岩石冻结解冻后恢复到常温条件下岩石得单轴压缩试验,并记录应力-应变曲线等信息; b、以剩余得6块试样为对象,把冻结温度设置为—30℃,重复a中步骤(2)~(4); 3、通过试验数据分析在两种冻结温度下,岩样冻结前、冻结中与冻结解冻后三种状态下三种岩石单轴压缩下强度、应力-应变曲线及弹性模量等参数得变化情况. 五.成果整理与计算 1、按下式计算岩石得单轴抗压强度: -———-岩石单轴抗压强度,MPa; ———-最大破坏荷载,N; -—-—垂直于加载方向得试样横截面积,mm2。 2、固体材料得弹性模量就是指弹性范围内应力与应变得比值,反映材料得坚固性.计算割线弹性模量E50,即应力应变曲线零荷载点与单

岩体力学实验..

岩体力学实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

岩石力学实验

专业:年级姓名 指导老师 《岩石力学》实验报告书 西南科技大学环境与资源学院中心实验室

试验1、岩石单向抗压强度的测定 一、仪器设备 材料试验机、游标卡尺。 二、标准试件规格:采用直接为50mm 的圆柱体,高径比为2 :1;也可采用50×50×100mm 的长方体。 三、测定步骤: 1、 测试件尺寸(试件直径应在其高度中部两个互相垂直的方向量测,取算术平均值) 填入记录表内。 2、 选择压力机度盘:一般应满足0.2P <P max <0.8P 式中:P max ——预计最大破坏载荷,KN P ——压力机度盘最大值,KN 3、 开动压力机,使其处于可用状态,将试件置于压力机承压板中心,调整球形坐,使 试件上下受力均匀,0.5~1.0MPa 的速度加载直至破坏。 四、测定结果的计算: 试件的抗压强度: F P R 式中:R ——试件抗压强度,MPa P ——试件破坏载荷,N F ——试件面积,mm 2

试验2、岩石抗拉强度的测定(劈裂法) 一、仪器设备: 材料试验机、劈裂法实验夹具、游标卡尺。 二、试件规格 标准试件采用圆盘形,直径50mm 、厚25mm ;也可采用50×50×50mm 得方形试件。 三、测定步骤: 1、2同抗压强度相同。 3、通过试件直径的两端,沿轴线方向画两条互相平行的线作为加载基线,把试件放入夹具内,夹具上下刀刃对准加载基线,放入试验机的上下承压板之间,使试件的中心线和试验机的中心线在一条直线上。 4、开动试验机,以每秒0.03~0.05MPa 的速度加载直至破坏。 四、测定结果计算: DL P R L 14.32 式中:R L ——岩石单向抗拉强度,MPa P ——试件破坏载荷,N D ——试件直径,mm L ——试件厚度,mm 抗拉强度测定记录表

现场岩石力学试验报告模板

工程勘察: 证书编号 45040Ⅲ -211-U 桂林漓江**水库枢纽工程 现场岩石试验报告 广西*******勘察设计研究院

核定:审查:校核:编写:试验:

1工作概况 (1) 2 现场混凝土与岩体抗剪(断)试验 (1) 2.1 抗剪(断)试验试样布置及地质条件 (1) 2.2 抗剪(断)试验试样制备情况 (2) 2.3 抗剪(断)试验方法 (2) 2.4 抗剪(断)试验成果整理方法 (3) 2.5 抗剪(断)试验破坏机理分析 (3) 2.6 抗剪断试验成果分析 (4) 3 现场岩体变形试验 (5) 3.1 岩体变形试验试样布置及地质条件 (7) 3.2 岩体变形试点制作 (7) 3.3 岩体变形试验方法 (7) 3.4 岩体变形试验成果整理 (7) 3.5 岩体变形试验成果分析 (8) 4 建议 (9)

1 工作概况 桂林漓江**水库枢纽工程位于广西桂林市为漓江一级支流,距离桂林**km有等外公路从**至**村。该水库枢纽主要任务是调蓄讯期洪水水量,枯水期向漓江补水,并利用补水水能发电。拟建枢纽最大坝高约**m,正常高水位**m,总库容约为**万m3,通过引水隧洞到下游厂房发电,电站装机容量为**MW。 坝址现场岩体力学试验于****日至*****日坝轴线左岸及坝轴线下游200m右岸进行现场混凝土与岩体抗剪(断)试验及现场岩体变形试验,共完成工作量见表1。 表1 现场岩石试验工作量表 试验数据采集和处理采用8098多功能岩土检测系统,该微机系统于1991年4月通过广西科学技术委员会的技术鉴定,开工前经广西计量测试研究所率定。各项技术指标均符合DLJ204-81,SLJ2-81《水利水电工程岩石试验规程》(试行),DL5006-92《水利水电工程岩石试验规程(补充部分)》。 2 现场混凝土与岩体抗剪(断)强度试验 2.1抗剪(断)试验试样布置及地质条件 a) 现场混凝土与岩体抗剪(断)试验在坝址区内进行,分别选强、弱风化泥质粉砂岩各12个点(即3组),详见表2。岩层产状一般为**?/NW∠**?,周围岩石为砂岩、泥岩互层。

岩石力学实验指导书

岩石力学实验指导书 修订版 王宝学杨同张磊编 北京科技大学 土木与环境工程学院 2008 年3 月

前言 试验是岩石力学课程教学的重要环节,目的在于辅助课堂教学,直观培养学生的知识结构和动手能力。本指导书是根据我校“2005年教学大纲”,并结合我校的实验条件而编写,主要内容有:1、岩石天然含水率、吸水率及饱和吸水率试验;2、岩石比重试验;3、岩石密度试验;4、岩石耐崩解试验5、岩石膨胀试验;6、岩石冻融试验;7、岩石单轴抗压强度试验,8、岩石压缩变形试验,9、岩石抗拉强度试验(巴西法),10、岩石抗剪强度试验(变角剪法),11、岩石三轴压缩及变形试验,12、岩石弱面抗剪强度试验,13、岩石点载荷指数测定试验,14、岩石纵波速度测定试验,15、岩石力学伺服控制刚性试验;16、岩石声发射试验。 本指导书的内容主要参照《水利水电工程岩石试验规程》(SL264-2001);《水利电力工程岩石试验规程》DLJ204-81,SLJ2-81;同时参考了国际岩石力学会《岩石力学试验建议方法》,中华人民共和国国家标准《岩石试验方法标准》以及《露天采矿手册》等,由于我们水平有限,文中如有不当之处,欢迎读者批评指正。 编者:王宝学、杨同、张磊 2007年12月

目录 岩石物理性质试验 (1) 一、岩石天然含水率、吸水率及饱和吸水率试验 (1) 二、岩石比重(颗粒密度)试验 (3) 三、岩石密度试验 (6) 四、岩石耐崩解试验 (10) 五、岩石膨胀试验 (12) 六、岩石冻融试验 (15) 岩石力学性质试验 (18) 七、岩石单轴抗压强度试验 (18) 八、岩石压缩变形试验 (20) 九、岩石抗拉强度试验(巴西法) (24) 十、岩石抗剪强度试验(变角剪切) (27) 十一、岩石三轴压缩及变形试验 (29) 十二、岩石弱面剪切强度试验 (37) 十三、点载荷指数的测定 (40) 十四、岩石纵波速度测定 (42) 十五、岩石力学伺服控制刚性试验 (43) 十六、岩石声发射试验 (46)

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

西南科技大学考试岩石力学指导

《岩土力学》课程教学指导 一、本课程的性质、目的 本课程是高等学校公路与城市道路工程专业必修专业课,是一门理论与实践并重、工程性较强的课程。本课程是研究土的物理力学性质的一门学科,目的是为了更好地学习有关专业课程,也是为了更好地解决有关土的工程技术问题。 二、本课程的教学重点 1.土的物理性质及工程分类:是土力学的基础知识。 2.土中应力计算:要求掌握自重应力、基础底面压力分布与计算、掌握分布荷载作用下土中应力计算。 3.土的压缩性与沉降计算:重点掌握地基沉降计算。 4.土的抗剪强度:重点掌握强度理论和强度指标。 5.土压力计算:重点掌握两个经典土压力理论。 6.土坡稳定性分析:掌握砂性土和粘性土土坡分析方法,重点掌握条分法。 7.地基承载力:重点掌握容许承载力的确定方法。 三、本课程教学中应注意的问题 1.理论教学环节与实践性教学环节的有效结合; 2.结合教学容,及时介绍新的技术标准,新的设计规,以及公路工程的新理论、新技术,新方法; 3.要重视学生实际能力的培养。 四、本课程采用的教学方法

本课程的主要理论、技术和方法等主要容可采用课堂讲授,注重培养学生理论联系实际能力的培养。 五、课程教学资料 教材: 1.《土质学与土力学》洪毓康人民交通 2001年4月 参考书: 1.《土力学》成宇中国铁道 2000年2月 2. 《土力学地基基础》希哲清华大学 2001年6月 3.《公路工程地质勘察规》JTJ064-98 人民交通 期刊: 4.《岩土力学》 5.《路基工程》 六、成绩评定 1.平时课程作业、实习报告占本课程考核总成绩的40%,考试占60%。 2.根据《西南科技大学学分制学籍管理暂行办法》(西南科大发[2001]207号)第十二条规定:有下列情形之一者,取消考核资格,必须重修。1、学生(免修生除外)在一学期,无论何种原因,累计缺课达教学时数的三分之一者;或任课教师随机抽查缺课6次以上者; 2、有实验、作业等环节的课程,学生未按时完成实验、实验报告及作业等环节。抄袭他人实验报告、作业的,当事人双方的实验报告、作业均按作弊处理,根据学生的认错态度和补做情况,可以考虑是否

(完整版)重庆大学岩石力学总结

重庆大学岩石力学总结 第一章 1 岩石中存在一些如矿物解理,微裂隙,粒间空隙,晶格缺陷,晶格边界等内部缺陷,统称微结构面。 2 岩石的基本构成是由组成岩石的物质成分和结构两大方面来决定。 3 岩石的结构是指岩石中矿物颗粒相互之间的关系,包括颗粒的大小,形状,排列,结构连接特点及岩石中的微结构面。其中以结构连接和岩石中的微结构面对岩石工程性质影响最大。 4岩石中结构连接的类型主要有两种:结晶连接,胶结连接。 5 岩石中的微结构面是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。它包括矿物的解理,晶格缺陷,晶粒边界,粒间空隙,微裂隙等。 6 矿物的解理面指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。 7 岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率,岩石的密度等基本属性。 8 岩石的孔隙率是指岩石孔隙的体积与岩石总体积的比值。 9岩石的水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。包括岩石的吸水性,透水性,软化性和抗冻性。 10 岩石的天然含水率rd w m m w = w m 表示岩石中水的质量,岩石的烘干质量rd m 11 岩石在一定条件下吸收水分的性能称为岩石的吸水性。它取决于岩石孔隙的数量,大小,开闭程度和分布情况。表征岩石吸水性的指标有吸水率,饱和吸水率和饱水系数。岩石吸水率dr dr o a m m m w -=. dr m 为岩石烘干质量,o m 为岩石浸水48小时后的总质量。 12 岩石的饱水率是岩石在强制状态下(高压,真空或煮沸)岩石吸入水的质量与岩石烘干质量的比值。 13岩石的透水性:岩石能被水透过的性能。可用渗透系数衡量。主要取决于岩石孔隙的大小,方向及相互连通情况。A dx dh k q x = K 为岩石的渗透系数,h 为水头的高度,A为垂直于X方向的截面面积,qx 为沿X方向水的流量。 透水性物理意义:是介质对某种特定流体的渗透能力,渗透系数的大小取决于岩石的物理特性和结构特征。 14 岩石在反复冻融后强度降低的主要原因:1构成岩石的各种矿物的膨胀系数不同,当温度变化时,由于矿物的胀缩不均而导致岩石结构的破坏。2当温度降到0℃以下时,岩石孔隙的水结冰,体积增大约%9,会产生很大的膨胀压力,使岩石的结构发生改变甚至破坏。 15 进行岩石强度实验选用的试件必须是完整岩块,而不应包含节理裂隙。 16 岩石强度指标值受下列因素影响:①试件尺寸②试件形状③试件三维尺寸比例④加载速率(加载速率越多,所测岩石强度指标值越高⑤湿度

(整理)岩石力学实验指导书

岩石力学实验指导书(适用于土木工程专业--岩土方向) 岩石力学课程组编写 长江大学城市建设学院 二○○七年九月

目录 学生试验守则 室内岩石试验的任务和工作基本要求 试验一岩石单轴抗压试验 试验二岩石抗拉强度试验 试验三岩石快速直剪试验 说明:本试验指导书主要依据为: 中华人民共和国国家标准:《工程岩体试验方法标准》GB/T50226-1999

学生试验守则 一、每次试验前必须做好复习和预习。复习的内容为教科书上有关本次试验的教学内容;预习内容包括仔细阅读试验指导书和去实验室熟悉有关仪器设备。 二、经过预习应掌握该项试验的意义、目的、操作步骤。对辅导教师提出的检查性问题,应能回答,否则不得进行试验。 三、试验时态度应严肃认真,严格按辅导教师及试验指导书上所讲的操做步骤进行试验,每台设备的操做应按各设备的操做准则进行,以免损坏设备或造成事故。非本次试验使用的仪器设备不得乱动。 四、每次试验前由小组长填写仪器设备领用单。试验完毕后,应将所用仪器设备擦洗干净,放回原处,经小组长检查,辅导教师验收无误后方可离室。如有损坏,应填写仪器设备损坏报告单,待后处理。 五、试验结束后,应在规定时间内提交试验报告。试验报告必须独立完成。书写、计算、制图要求公式、计算过程、单位齐全、清晰整齐。试验成绩是期终考核成绩的一部分。 六、如试验结果未能达到要求或因故未做试验者,应申请补做试验,实验室同意后,在指定日期内进行补做。 以上守则请同学们自觉遵守。

室内岩石试验的任务和工作基本要求 一、室内岩石试验的任务: 是了解岩块的基本物理力学性质及其破坏机制;研究在工程建筑物荷载作用下基岩或围岩的工程性状,为工程地质评价和工程建筑物设计提供资料。 二、室内岩石试验工作基本要求: 1、为使试验工作符合实际情况,保证成果质量,各工程勘测设计阶段的岩石试验工作,应在详细了解工程地质条件、设计意图、建筑物特点和可能采用的施工方法基础上进行。 2、试验工作的安排和布置,应和勘测设计阶段相适应,既要满足本设计阶段的要求,又利于与以后各设计阶段的试验工作相衔接。 3、室内岩块试验的样品,一般在钻孔、平洞和竖井中采取,同组岩样的性质应基本相同。取样位置和数量,应根据地质条件、工程特点和试验要求而定。 4、布置室内岩块试验的一般要求 (1)作为岩石类别划分指标的常规试验项目,应针对岩类的现场分类进行选择,为科学地划分工程地质岩组及掌握不同岩类的自然特性提供资料。 (2)作为工程计算指标的直剪试验,测试条件应符合地质条件和设计要求。 (3)当软弱岩层、断层破碎带的厚度较大,充填物性质均一时,宜采用土工试验的方法进行抗剪强度、压缩试验和其他试验。

相关主题
文本预览
相关文档 最新文档