当前位置:文档之家› 高中数学 典型例题 子集、全集、补集·典型例题 新课标

高中数学 典型例题 子集、全集、补集·典型例题 新课标

高中数学 典型例题 子集、全集、补集·典型例题 新课标
高中数学 典型例题 子集、全集、补集·典型例题 新课标

高中数学新课标典型例题:子集、全集、补集·典型例题

例1 判定以下关系是否正确

(1){a}{a}?

(2){1,2,3}={3,2,1}

(3){0}??≠

(4)0∈{0}

(5){0}(6){0}

??∈=

分析 空集是任何集合的子集,是任何非空集合的真子集.

解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.

说明:含元素0的集合非空.

例2 列举集合{1,2,3}的所有子集.

分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.

解含有个元素的子集有:; 0?

含有1个元素的子集有{1},{2},{3};

含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.

说明:对于集合,我们把和叫做它的平凡子集.A A ?

例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ??

________.

分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.

答 共3个.

说明:必须考虑A 中元素受到的所有约束.

例设为全集,集合、,且,则≠

4 U M N U N M ??

[ ]

分析 作出4图形. 答 选C .

说明:考虑集合之间的关系,用图形解决比较方便.

点击思维

例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是

[ ]

A A

B B A B

C A B

D A B .=...≠≠

???

分析 问题转化为求两个二次函数的值域问题,事实上 x =5-4a +a 2=(2-a)2+1≥1,

y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .

说明:要注意集合中谁是元素.

M 与P 的关系是

[ ]

A .M =U P

B .M

=P

C M P

D M P ..≠??

分析 可以有多种方法来思考,一是利用逐个验证(排除

)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.

答 选B .

说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是

[ ]

A .U (U A)={A}

B A B B A B

C A {1{2}}{2}A

.若∩=,则.若=,,,则≠???

D A {123}B {x|x A}A B .若=,,,=,则∈?

分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.

∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ?

集有,,,,,,,,,,,,,而?{1}{2}{3}{12}{13}{23}{123}B

是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .

说明:选择题中的选项有时具有某种误导性,做题时应加以注意.

例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .

分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.

答 C ={4}或{7}或{4,7}.

说明:逆向思维能力在解题中起重要作用.

例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.

分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},

且,≠

M S ? ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.

说明:集合问题常常与方程问题相结合.

例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a 的值.

S 这个集合是集合A 与集合S A 的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.

解 由补集概念及集合中元素互异性知a 应满足

()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 2

2

2+=①+=+-②+-≠③+-≠④???????

或+=+-①+=②+-≠③+-≠④

(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 22

2???

??

?? 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.

在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.

说明:分类要做到不重不漏.

例年北京高考题集合==π+π

,∈,=11 (1993)M {x|x k Z}N {k 24

x|x k Z}=π+π,∈则k 42

[ ]

A .M =N

B M N

C M N

..≠≠??

D .M 与N 没有相同元素

分析 分别令k =…,-1,0,1,2,3,…得

M {}N {}

M N =…,-π,π,π,π,π

,…,

=…,π,π,π,π,π

,…易见,.

44345474423454

?

答选C.

说明:判断两个集合的包含或者相等关系要注意集合元素的无序性

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

《子集、全集、补集》教案(1)(1)

子集、全集、补集 教学目标:理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系. 教学重点:子集的概念,真子集的概念. 教学难点:元素与子集,属于与包含间的区别;描述法给定集合的运算. 课 型:新授课 教学手段:讲、议结合法 教学过程: 一、创设情境 在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系 二、活动尝试 1.回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图 2.用列举法表示下列集合: ①32{|220}x x x x --+= {-1,1,2} ②数字和为5的两位数} {14,23,32,41,50} 3.用描述法表示集合:1111{1,,,,}2345 *1{|,5}x x n N n n =∈≤且 4.用列举法表示:“与2相差3的所有整数所组成的集合”{||2|3}x Z x ∈-=={-1,5} 5.问题:观察下列两组集合,说出集合A 与集合B 的关系(共性) (1)A={-1,1},B={-1,0,1,2} (2)A=N ,B=R (3)A={x x 为北京人},B= {x x 为中国人} (4)A =?,B ={0} (集合A 中的任何一个元素都是集合B 的元素) 三、师生探究 通过观察上述集合间具有如下特殊性 (1)集合A 的元素-1,1同时是集合B 的元素. (2)集合A 中所有元素,都是集合B 的元素. (3)集合A 中所有元素都是集合B 的元素. (4)A 中没有元素,而B 中含有一个元素0,自然A 中“元素”也是B 中元素. 由上述特殊性可得其一般性,即集合A 都是集合B 的一部分.从而有下述结论. 四、数学理论 1.子集 定义:一般地,对于两个集合A 与B ,如果集合A 中的任何一个元素 都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集 合A.记作A ?B (或B ?A ),这时我们也说集合A 是集合B 的子集. 请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义. 2.真子集:对于两个集合A 与B ,如果B A ?,并且B A ≠,我们就说集合A 是集合B 的真

高中数学子集、全集、补集练习题(附答案)

高中数学子集、全集、补集练习题(附答案)数学必修1(苏教版) 1.2 子集、全集、补集 若一个小公司的财产和职员都是某个大公司的财产和职员,那么这个小公司叫做这个大公司的子公司.同样对于一个集合A中的所有元素都是集合B的元素,那么我们如何给A、B 之间建立一个确切的关系呢? 基础巩固 1.已知集合A={x|-1<x<2},B={x|-1<x<1},则() A.A?B B.B?A C.A=B D.AB= 解析:直接判断集合间的关系. ∵A={x-1<x<2},B={x-1<x<1},B A. 答案:B 2.设集合U={1,2,3,4,5,6},M={1,3,5},则UM=() A.{2,4,6} B.{1,3,5} C.{1,2,4} D.U 解析:UM={2,4,6}. 答案:A 3.已知集合U=R,集合M={x |x2-40},则UM=() A.{x|-22} B.{x|-22}

C.{x|x-2或x2} D.{x|x-2或x2} 解析:∵M={x|x2-40}={x|-22}, UM={x|x-2或x2}. 答案:C 4.设集合A={x||x-a|1,xR},B={x||x-b|2,xR},若AB,则实数a、b必满足() A.|a+b| B.|a+b|3 C.|a-b| D.|a-b|3 解析:A={x|a-1a+1},B={x|xb-2或xb+2},∵AB,a +1b-2或a-1b+2,即a-b-3或a-b3,即|a-b|3. 答案:D 5.下列命题正确的序号为________. ①空集无子集; ②任何一个集合至少有两个子集; ③空集是任何集合的真子集; ④U(UA)=A. 解析:空集只有它本身一个子集,它没有真子集,而一个集合的补集的补集是它本身. 答案:④ 6.若全集U={xR|x24},A={xR||x+1|1},则UA=________. 解析:U={x|-22},A={x|-20},

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高一数学集合练习题及答案-经典

升腾教育高一数学 满分150分 姓名 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤ 9、 满足条件M U }{1=}{ 1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4

二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 三、解答题 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式 19、已知集合{}1,1A =-,B=} { 2 20x x ax b -+=,若B ≠?,且A B A ?= 求实数 a , b 的值。

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

子集、全集、补集练习题及答案

子集、全集、补集练习题及答案 例1 判定以下关系是否正确 (1){a}{a}? (2){1,2,3}={3,2,1} (3){0}??≠ (4)0∈{0} (5){0}(6){0} ??∈= 分析 空集是任何集合的子集,是任何非空集合的真子集. 解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的. 说明:含元素0的集合非空. 例2 列举集合{1,2,3}的所有子集. 分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个. 解含有个元素的子集有:; 0? 含有1个元素的子集有{1},{2},{3}; 含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个. 说明:对于集合,我们把和叫做它的平凡子集.A A ? 例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ?? ________. 分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}. 答 共3个. 说明:必须考虑A 中元素受到的所有约束. 例设为全集,集合、,且,则≠ 4 U M N U N M ?? [ ] 分析 作出4图形. 答 选C .

说明:考虑集合之间的关系,用图形解决比较方便. 点击思维 例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是 [ ] A A B B A B C A B D A B .=...≠≠ ??? 分析 问题转化为求两个二次函数的值域问题,事实上 x =5-4a +a 2=(2-a)2+1≥1, y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A . 说明:要注意集合中谁是元素. M 与P 的关系是 [ ] A .M = U P B .M =P C M P D M P ..≠?? 分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利 用补集的性质:M = U N = U ( U P)=P ;三是利用画图的方法.

2019-2020年高一数学子集 全集 补集

2019-2020年高一数学子集全集补集 一.课题:子集、全集、补集(1) 二.教学目标:1.理解子集、真子集概念. 2.会判断和证明两个集合包含关系. 3.理解“”、“”的含义. 三.教学重、难点:1.子集的概念、真子集的概念; 2.元素与子集、属于与包含间区别、描述法给定集合的运算。 四.教学过程: (一)复习: 集合的表示方法、集合的分类。 (二)新课讲解: 我们共同观察下面几组集合,集合A与集合B具有什么关系? (1) A={1,2,3},B={1,2,3,4,5}. (2) A={x|x>3},B={x|3x-6>0}. (3)A={正方形},B={四边形}. (4)A=?,B={0}. 学生通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而给出: 1.子集 (1)定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作AB(或BA)这时我们也说集合A 是集合B的子集. 请学生各自举两个例子,互相交换看法,验证所举例子是否符合定义. 注意:若集合A不包含于集合B,或集合B不包含集合A,则记作AB(或BA). 例如:A={2,4},B={3,5,7},则AB. 依规定,空集?是任何集合子集.请填空? A,A为任何集合.(A.) 例如:由A={正四棱柱},B={正棱柱},C={棱柱},则从中可看出什么规律. 答:由上可知应有:AB,BC,即可得出AC. 这就是说,包含关系具有“传递性”,对AB,BC同样有AC. (2)任何一个集合是它本身的子集. 如A={9,11,13},B={20,30,40},有AA,BB.

2021年子集全集补集知识点总结及练习

1.2 子集全集补集 学习目的: 1.理解集合之间包括含义,能辨认给定集合与否具备包括关系; 2.理解全集与空集含义. 重点难点:能通过度析元素特点判断集合间关系. 授课内容: 一、知识要点 1.子集、真子集 (1)子集:如果集合A 任意一种元素都是集合B 元素,那么集合A 称为集合B 子集. 即:对任意x ∈A ,均有x ∈B ,则A ____B (或B ?A ). (2)真子集:若A ?B ,且A ≠B ,那么集合A 称为集合B 真子集,记作A ___B (或B _____A ). (3)空集:空集是任意一种集合______,是任何非空集合____.即??A ,?____B (B ≠?). (4)若A 具有n 个元素,则A 子集有 个,A 非空子集有 个. (5)集合相等:若A ?B ,且B ?A ,则A =B . 2.全集与补集: 全集:包括了咱们所要研究各个集合所有元素集合称为全集,记作U . 补集:若S 是一种集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 补集. 简朴性质:(1)S C (S C )=A ;(2)S C S=Φ,ΦS C =S . 二、典型例题 子集、真子集 1.(1)写出集合{a ,b }所有子集及其真子集; (2)写出集合{a ,b ,c }所有子集及其真子集.

2.设M 满足{1,2,3}?M ≠ ?{1,2,3,4,5,6},则集合M 个数为 . 3.设{|12}A x x =<<,{|}B x x a =<,若A 是B 真子集,则a 取值范畴是 . 4.若集合A ={1,3,x },B ={x 2,1},且B ?A ,则满足条件实数x 个数为 . 5.设集合M ={(x,y )|x+y <0,xy >0}和N ={(x,y )|x <0,y <0},那么M 与N 关系为 ______________. 6.集合A ={x |x =a 2-4a +5,a ∈R },B ={y |y =4b 2+4b +3,b ∈R } 则集合A 与集合B 关系是________. 7.设x ,y ∈R ,B ={(x,y )|y -3=x -2},A ={(x,y )|32 y x --=1},则集合A 与B 关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 关系是 . 9.设集合{}{} 21,3,,1,,1,A a B a a a ==-+,A B =若则________=a . 10.已知非空集合P 满足:(){}11,2,3,4;P ?()2,5a P a P ∈-∈若则,符合上述规定集合P 有 个. 11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a },C={x 2+(a+1)x-3,1}.求: (1)当A ={2,3,4}时,求x 值; (2)使2∈B ,B A ,求x a ,值; (3)使B=C x a ,值. 【拓展提高】 12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ?求实数m 取值? ≠

高中数学必修一集合经典习题

集合练习题 一、选择题(每小题5分,计5×12=60分) 1.下列集合中,结果是空集的为() (A)(B) (C)(D) 2.设集合,,则() (A)(B) (C)(D) 3.下列表示①②③④中,正确的个数为( ) (A)1 (B)2 (C)3 (D)4 4.满足的集合的个数为() (A)6 (B) 7 (C) 8 (D)9 5.若集合、、,满足,,则与之间的关系为() (A)(B)(C)(D) 6.下列集合中,表示方程组的解集的是() (A)(B)(C)(D) 7.设,,若,则实数的取值范围是() (A)(B)(C)(D) 8.已知全集合,,,那么 是() (A)(B)(C)(D) 9.已知集合,则等于() (A)(B) (C)(D) 10.已知集合,,那么() (A)(B)(C)(D) 11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()

(A)(B) (C)(D) 12.设全集,若,, ,则下列结论正确的是() (A)且(B)且 (C)且(D)且 二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合 14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为 16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若,求实数的值。 18.(本小题满分12分)设全集合,, ,求,,, 19.(本小题满分12分)设全集,集合与集合,且,求,

20.(本小题满分12分)已知集合 , ,且 ,求实数 的取值范围。 21.(本小题满分12分)已知集合 , , ,求实数的取值范围 22.(本小题满分14分)已知集合 , ,若 ,求实数的取值范围。 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ?, 求实数a 的取值范围. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求 实数a 的值.

集合的并、交、补集测试题(含答案)

集合的并、交、补集 一、单选题(共12道,每道8分) 1.设集合,,则=( ) A.{0} B.{0,2} C.{-2,0} D.{-2,0,2} 答案:D 解题思路: 试题难度:三颗星知识点:并集及其运算 2.若集合,,则=( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:交集及其运算 3.已知集合,,若={2,5},则a+b的值为( ) A.10 B.9 C.7 D.4 答案:C 解题思路: 试题难度:三颗星知识点:交集及其运算 4.设集合,,若,则a的值为( ) A.0 B.1 C.-1 D.±1 答案:C 解题思路: 试题难度:三颗星知识点:交集及其运算 5.已知全集,集合,则( )

A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:补集及其运算 6.若集合,集合,则( ) A.) B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:补集及其运算 7.设集合,,则满足的集合有( ) A.1个 B.2个 C.3个 D.4个

答案:B 解题思路: 试题难度:三颗星知识点:交集及其运算 8.满足,且的集合M有( ) A.1个 B.2个 C.3个 D.4个 答案:B 解题思路: 试题难度:三颗星知识点:子集与真子集 9.若,则满足条件的集合共有( )个. A.1 B.2 C.3 D.4 答案:D 解题思路:

试题难度:三颗星知识点:并集及其运算 10.如图,U是全集,A,B,C是U的3个子集,则阴影部分所表示的集合是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:Venn图表达集合的关系及运算 11.已知全集,,那么下列结论中不成立的是( ) A. B. C. D. 答案:D 解题思路:

高一数学集合典型例题、经典例题

《集合》常考题型 题型一、集合元素的意义+互异性 例.设集合 {0} 例.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________ 解:∵A∩B={2,5},∴5∈A. ∴a 3-2a 2-a +7=5解得a =±1或a =2. ①若a =-1,则B ={1,2,5,4},则A∩B={2,4,5},与已知矛盾,舍去. ②若a =1,则B ={1,4,1,12}不成立,舍去. ③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}. 题型二、空集的特殊性 例.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且BA , 则实数m 的取值范围为_____________ 例.已知集合{}R x x ax x A ∈=++=,012,{} 0≥=x x B ,且φ=B A I , 求实数a 的取值范围。 解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=ΦI ; ②当0a ≠时,{|0}A x x ≥=ΦQ I ,A ∴=Φ或关于x 的方程2 10ax x ++=的根均为负数. (1)当A =Φ时,关于x 的方程210ax x ++=无实数根, 140a ?=-<,所以14a > . (2)当关于x 的方程210ax x ++=的根均为负数时, 12121401010a x x a x x a ???=-≥??+=-?? 140a a ?≤?????>?104a <≤. 综上所述,实数a 的取值范围为{0}a a ≥. 题型三、集和的运算 例.设集合S ={x |x >5或x <-1},T ={x |a

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

子集、全集、补集·基础练习

子集、全集、补集·基础练习 (一)选择题 1{0}{012}{0}{01.在以下五个写法中:①∈,,②③,,≠ ?? 2}{120} 01{x|x {12}}???,,④∈⑤∈,写法正确的个数有 [ ] A .1个 B .2个 C .3个 D .4个 2A ={(x y)| y x =1}B ={(x y)|y =x}.集合,与,的关系是 [ ] A A = B B A B C A B D A B ....≠≠ ??? 3{01}M {01234}.满足条件,,,,,的不同集合的个数≠ ??M 是 [ ] A .8 B .7 C .6 D .5 4I =R A ={x|x 32}a =1 23 .全集,>,则- [ ] A a C A B a C A C {a}C A D {a}A I I I ....∈≠ ?/?? (二)填空题 1.设I={0,1,2,3,4,5},A={0,1,3,5},B={0, 1}从“∈、、、”中选择适当的符号填空.??? ①0________A ②{0}________B ③C I A________C I B ④⑤⑥1 C B C A A B I I ? 2M ={x|x 1=0}N ={x|ax 1=0}N M a 2.设-,-,若,则的值为?

________. 3.已知A={x|x=(2n +1)π, n ∈Z},B={y|y=(4k ±1)π,k ∈Z},那么A 与B 的关系为________. 4M ={(x y)|mx ny =4}{(21)(25)}M .设,+且,,-,,则?=m ________,n=________. 5A ={x|4x p 0}B ={x|x 1x 2}A B .设+<,<-或>,若使,则?P 的取值范围是________. (三)解答题 1A ={13a}B ={1a a 1}A B 2.已知集合,,,,-+且,求? a 的值. 2.已知集合A={x ∈R|x 2+3x +3=0},B={y ∈B|y 2-5y +6=0}, A P B P ??≠ ,求满足条件的集合. 3.已知集合A={x|x=a 2+1,a ∈N},B={x|x=b 2-4b +5,b ∈N},求证:A=B . 参考答案 (一)选择题 B(=)A B 1.①集合与集合之间应用,或而不是属于关系.②空集是任何非空集合的真子集.③两集合相等时也可以写成的形式.④中不含任何元素.⑤此集合的元素是集合而不是数字.故② ???? 和③是正确的) 210.注意与这两个式子是不同的,前者只有≠时才B(y x =y=x x 有意义,故A 中少一个点(0,0),因此A B) 3.C(M 中必须含有0、1,另外再在2、3、4中任取1个、2个或3个,这样集合M 的个数为3+3+1=7个) 注:此题也可以理解为求{2,3,4}集合的非空子集个数为23-1=7个 (二)填空题 1 .①∈②③④⑤⑥????? 2. ±1或0(忽略空集是学生常犯的错误,本题应考虑两方面:①

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q }, 其中a 0≠,A=B,求q 的值. 例2 设A={x∣2 x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2 a +4a -2,2-a },且A B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数

为…………………………………………………………………………( ) (A ) 1 (B )0 (C )1或0 (D ) 1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合 {}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( ) A.(0,2),(1,1) B.{(0,2),(1,1)} C. {1,2} D.{}2≤y y 集合与方程 例1、已知 {}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范 围。 例2、已知集合 (){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和, 如果φ≠B A ,求实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若 φ=B A ,求实数a 的值。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

1.2 子集、全集、补集(练习)(解析版)

1.2 子集、全集、补集 【基础练习】 1. 已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形}, 则( ) A .A B ? B . C B ? C . D C ? D .A D ? 【答案】B 【解析】因为菱形是平行四边形的特殊情形,所以D A ?,矩形与正方形是平行四边形的特殊情形,所以B A ? C A ?,正方形是矩形,所以C B ?. 故选B . 2.集合2{|440}x x x -+=的子集个数为( ) A .4 B .2 C .1 D .0 【答案】B 【解析】由题意,求得{}2{|440}2x x x -+==,即可求解集合子集的个数,得到答案. 3.满足{}{}1123A ??, ,的集合A 的个数是( ) A .2 B .3 C .4 D .8 【答案】C 【解析】由条件{}1A ??{1,2,3},根据集合的子集的概念与运算,即可求解. 4.设集合{}12M x x =-≤<,{}0N x x k =-≤,若M N ,则k 的取值范围是( ) A .k 2≤ B .k ≥-1 C .1k >- D .2k ≥ 【答案】D 【解析】由M N ?,则说明集合M 是集合N 的子集,即集合M 中任意元素都是集合N 中的元素,即2k ≥即可. 5(多选题)已知集合(){},0,0,,M x y x y xy x y = +<>∈R ,(){},0,0,,N x y x y x y =<<∈R ,那么( ) A .M N ? B .M N ? C .M N D .M N 【答案】ABC 【解析】若0x <,0y <,则0x y +<,0xy >,故N M ?.

相关主题
文本预览
相关文档 最新文档