当前位置:文档之家› 多媒体数据的压缩编码

多媒体数据的压缩编码

多媒体数据的压缩编码
多媒体数据的压缩编码

第四章多媒体数据压缩编码技术

考核目的:

考核学生对多媒体数据压缩编码的基本原理和算法、数据压缩编码的分类和方法、多媒体数据压缩编码的国际标准等内容的理解和掌握。

考核的知识点:

什么是多媒体数据压缩、为什么信息能被压缩、常用的压缩编码和算法(统计编码、预测编码、变换编码)、多媒体数据压缩编码的国际标准JPEG、MPEG-1等内容。

考核要求:

掌握:数据压缩编码的方法、常用的压缩编码和算法、JPEG的原理和实现技术。

理解:量化的原理和量化器的设计、MPEG-1的原理和实现技术。

了解:其它的国际标准等。

4.1 多媒体数据压缩编码的重要性和分类

一.多媒体数据压缩编码的重要性

多媒体信息传送面临的最大难题是海量数据存储与传送电视信号数字化后的数据量问题,数据压缩是解决问题的重要途径。

二.多媒体数据压缩的可能性

1.空间冗余

2.时间冗余

3.信息熵冗余

●信息量:指从N个相等的可能事件中选出一个事件所需要的信息度量和含量。

●信息熵:指一团数据所带的信息量,平均信息量就是信息熵(entropy)。

4.结构冗余

图象有非常强的纹理结构。

5.知识冗余

图像的理解与某些基础知识有关。

6.视觉冗余

视觉冗余是非均匀、非线性的。

三.多媒体数据压缩方法的分类

1.按压缩方法分:

(1). 有失真压缩

(2). 无失真压缩

2.编码算法原理分:

(1)预测编码:PCM、DPCM、ADPCM等

(2)变换编码:傅里叶(DFT)、离散余弦(DCT)、离散正弦(DST)等

(3)统计编码:哈夫曼、算术等

(4)静图像编码:方块、逐渐浮现等

(5) 电视编码:幀内预测、幀间编码等

(6) 其他编码:矢量量化、子带编码等

4.2量化

一.量化原理

量化处理是使数据比特率下降的一个强有力的措施。

数据压缩编码中的量化处理,不是指A/D变换后的量化,而是指以PCM码作为输入,经正交变换、差分、或预测处理后,熵编码之前,对正交变换系数、差值或预测误差的量化处理。

量化输入值的动态范围很大,需要以多的比特数表示一个数值,量化输出只能取有限个整数,称作量化级,希望量化后的数值用较少的比特数便可表示。每个量化输入被强行归一到与其接近的某个输出,即量化到某个级。

量化处理总是把一批输入,量化到一个输出级上,所以量化处理是一个多对一的处理过程,是个不可逆过程,量化处理中有信息丢失,或者说,会引起量化误差(量化噪声)。

二.标量量化器的设计

1.量化器的设计要求

●给定量化分层级数,满足量化误差最小。

●限定量化误差,确定分层级数,满足以尽量小的平均比特数,表示量化输出。

三.量化方法:

●标量量化:

对于PCM数据,一个数一个数地进行量化叫标量量化。

分为:均匀量化、非均匀量化和自适应量化。

四.矢量量化

1.矢量量化概念:

对PCM数据分组,每组K个数构成一个K维矢量,然后以矢量为单元,逐个矢量进行量化,称矢量量化。

矢量量化编码方法是有失真编码方法。

4.3 统计编码

一.统计编码原理——信息量和信息熵

1.概念:

(1)信息:是用不确定性的量度定义的。

(2)信息量:从N个相等可能事件中选出一个事件所需要的信息度量或含量。

(3)熵:如果将信源所有可能事件信息量进行平均就得到信息的熵(熵就是平

均信息量)。

(4)信源均含有的平均信息量(熵),就是进行无失真编码的理论极限。

(5)信源中或多或少的含有自然冗余。

(6)信息源X的熵为H(X):

式(4.2)

二.哈夫曼编码

1.变字长编码定理:最佳编码定理

在变字长编码中,对于出现概率大的信息符号,编以短字长的码,对于出现

概率小的信息符号编以长字长的码,如果码字长度严格按照符号概率的大小的

相反顺序排列,则平均码字长一定小于按任何其他符号顺序排列方式得到的码

字长度。

证明:(P108)

2.Huffman编码方法用变字长最佳编码定理

(1). 把信源符号按概率大小顺序排列,设法按逆次序分配码字的长度。

(2). 在分配码字长度时,将出现概率最小的两个符号的概率相加合成一个概率。

(3).把这个合成概率看成是一个新组合符号地概率,重复上述做法直到最后只剩下

两个符号概率为止。

(4). 完成以上概率顺序排列后,再反过来逐步向前进行编码,每一次有三个分支各赋予

一个二进制码,对概率大的赋为零,概率小的赋为1。

3.Huffman 编码步骤

(1)信源符号按概率大小顺序排列,按逆次序分配码字的长度。

(2)出现概率最小的两个符号概率相加合成一个新概率。

(3)将合成概率看成一个新组合符号概率,重复上述做法,直到最后只剩下两个符号概率为止。

(4) 反过来逐步向前编码,每层有两个分支,分别赋予0和1,构成Huffman码字。

总结:

●Huffman 编码构造出的码不唯一

●Huffman 编码字长参差不齐

●Huffman编码在信源编码概率分布不均匀时效率高,

效率比较均匀时,效率低,不用Huffman编码。

●对出现频率较高的码分配短码字;

对出现频率较低的码分配长码字。

三.算术编码

1.原理:

算术编码方法是将被编码的信息表示成实数0和1之间的一个间隔。

信息越长编码表示它的间隙就越小,表示这一间隙所须二进位就越多,

大概率符号出现的概率越大对应于区间愈宽,可用长度较短的码字表示;

小概率符号出现的概率越小对应于层间愈窄,需要长度较长的码字表示。

信息源中连续的符号根据某一模式生成概率的大小来减少间隔。可能出现的符号要比不太可能出现的符号减少范围少,因此只增加了较少的比特位

2.自适应二进制算术编码

(1)编码算法举例

设编码初始化子区间为[0,1] 设大概率MPS, Pe 小概率LPS Qe

Pe=1-Qe

编码时,设置两个专用寄存器(C,A)

初始时:令

C 寄存器的值为子区域的起始位置

A 寄存器的值为子区域的宽度

(该宽度恰好是已输入符号串的概率)

初始化时:C=0 A=1

随着被编码数据源输入,C和A的内容按以下规律修正:

当低概率符号LPS到来时:

C=C

A=AQe

当高概率符号MPS到来时:

C=C+AQe

A=APe=A(1-Qe)

(2)解码算法举例

解码:

按Qe Pe分成两个子区间,判断被解码的码字落在哪个区间,并赋予对应符号:设c’=(0.0101)b 是被解码的值

初始值:A=1 Qe=0.001

当c’落在0-QeA之间,解码符号为 D=0;

C’=C’

A=QeA ;

当c’落在Qe A -A之间,解码符号为D=1;

C’=C’-QeA;

A=A(1-Qe)

算术解码原理图P114

算术编码的特点:

(1). 不需要码表;

(2). 当信源概率比较接近时,建议使用算术编码。

(3). JPEG成员对多幅图进行算术编码效率可以提高5%。

JPEG扩展系统用算术编码代替Huffman。

4.4 预测编码

一.预测编码的基本概念

预测编码是统计冗余数据压缩理论的三个重要分

支之一,用预测编码减少数据时间和空间的相关性。

预测编码基本原理

预测编码方法分类

●线性预测编码:DPCM非线性预测编码

1. DPCM 差分脉冲编码调制

DPCM 编/解码原理图P116

2. ADPCM自适应预测编码

这种编码方法中,量化器的步长和预测器的参数均能根据图象的局部特征作自

适应的调整。

ADPCM分成两类

1).线性自适应预测器

2)非线性自适应预测器

引进几个和临近象素有关的值,入i和di非线性改变预测的数。所以,叫非线性的自适应预测。

采用四点预测

三.帧间预测编码

对于序列图象,把几帧的图象存起来(大规模集成电路技术的发展) 使用帧

间相关性进一步消除图象信号的冗余度,提高压缩比。

●帧间压缩方法:

条件补充法

条件次取样法。

运动补偿

帧间预测

1.条件补充法

条件象素补充法规定:

若帧间各对应象素的亮度差超过阈值,则把这些象素存到缓存区中,

并以恒定传输速度传输,而阈值以下的象素则不传送,在接收端中用上一帧相应的象素代替。在可视电话中用条件补充法传送的象素只占全部象素的6%左右。

2.条件次取样法

条件补充法和内插法相结合叫条件次取样法。

具体做法:在时间轴采用次取样(两个取一个就是次取样)对于未取样的当前场的

某点可以采用隔场的四邻点亮度的均值,作为该点亮度的预测值。

条件补充:S0=1/4(SA+SB+SC+SD)内

插预测值与实际值之差小于阈值后就不传。

3.运动补偿

(1)运动估计有下述三种方法:

●块匹配法: 以象素块为准进行运动估计。

●象素递归法:以象素为准进行递归的运动估计。

●傅立叶变换法

1) 块匹配法

将图象分成M*N个矩形块。

在(M+2Wx)*(N+2Wy)范围内进行搜索以求得最优匹配,从而求得运动矢量估值(dx,dy)

A.匹配算法

●归一化相关函数 NCCF

●均方误差 MSE

●帧间绝对差 MAD

B.搜索方法:

●穷尽搜索法

●二维对数法(TDL)

●三步搜索法(TTS)

●交叉搜索法(CSA)

4.帧间预测,采用 DPCM

(Ymn)N和(Ymn)N-1 变化很小。

统计结果表明:广播电视节目只有10%以内的象素有变化。

Y有2%的变化; UV有千分之十以内的变化。

Xmn-Xmn=emn 只传差值

4.5 变换编码

一. 变换编码的特点

利用预测编码可以去除图象数据的时间和空间的冗余。它的优点是直观、简捷、易于实现,特别是用于硬件实现。但压缩能力有限,DPCM一般只能压缩到2~4bit/像素。

变换编码是进行一种函数变换,映射变换从信号域变换到另一个信号域。

例:有两个相邻采样值X1和X2,每一采样值用3bit编码,因此有8个幅度等级,两个为: 8*8=64种。见P122(b)

变换编码的系统构成:

二.变换种类

?K-L变换

?离散傅立叶变换

?离余弦变换

?WALSH变换

?Har

4.5.2 K-L变换

?它是以统计特性为基础的,也称为特征向量变换。

?最优的正交变换:特征向量矩阵向量指向数据变化最大的方向。

?缺点:计算过程复杂,变换速度慢。

一.协方差矩阵

(4.18)

(4.22)

(4.23)

二.离散K-L变换表达式

特征值和特征向量定义:设A是n阶方矩,如果有数入和n维非零向量x,使得: AX=入x

则称:入为A的特征值;

x为A对应于特征值入的特征向量。

(4.29)

(4.32)

(4.38)

结论:

●Y向量的平均向量为0,直流分量为0。

●Y的协方差矩阵:协方差等于0

方差对角线按减序排列

4.5.3 离散余弦变换(DCT变换)

一. 二维离散傅立叶变换正变换(4.56)

逆变换(4.57)

4、6 视频图像压缩编码的国际标准:

●JPEG标准

●H.261标准

●MPEG标准

1. 1986年成立了联合图片专家组。

JPEG—Joint Photographic Experts Group

主要制定静态图像帧内压缩编码

2. CCITT 第XV研究所

1984年成立了可视电话编码专家组。

1988年,提出了H.261标准视频编码器的建议。

满足ISDN日益增长的需要可适用于可视电视和视频电话会议。

3. 1988年成立了 MPEG-MOVING PICTURE EXPERT GROUP 。

4.6.1 JPEG标准压缩编码算法及其实现技术

JPEG 标准定义了两种基本压缩算法:

(1). 基于DCT变换有失真的压缩算法。

(2). 基于空间预测编码DPCM的无失真压缩算法。

一. 无失真的预测编码

无失真编码器

(1). 预测器

(2). 熵编码器

二. 基于DCT 的有失真压缩编码

●两种不同性能的层次

基本系统

增强系统

●自适应算法编码框图:

P136-4.25

P136-4.26

1. 离散余弦变换(DCT)

JPEG采用8*8二维离散余弦变换。

DCT分成8*8小块。

8*8 FDCT 和 IDCT表达式如下:

P136-(4.58)、(4.59)

2.量化:

均衡量化器其量化间隔是等长的

非均衡量化器其量化间隔是不等长的

自适应量化器其量化间隔是随传送数据而变

为了达到压缩的目的,对DCT系数进行量化处理,JPEG利用线性均匀量化器,多到

一的映射产生误差。

F Q(u,v) = Integer Round ( F(u,v)/Q(u,v))

Q(u,v)是量化器步长,随位量和彩色分量不同。

F Q(u,v)= F Q (u,v)*Q(u,v)

●量化特性P137-4.27

●量度量化表

●色度量化表

3.熵编码

对于DC和AC行程码,再作基于统计特性的熵编码。

分两步进行:

1)把DC码和AC行程码转换成中间符号序列。

2)对这些符号序列赋以变长的码字。

(1)中间格式由两个符号组成:

符号1,行程,尺寸(分组)

符号2,幅值

(2)可变长熵变码

63个AC系数表示符号1

符号2

零行程长度超过15,有多个符号1

块结束 EOB 只有符号1 (00)

P140-表4.5

例题:

设某亮度子块的序列如下zz(k)K 0 1 2 3 4 5-7 8 9-30 31 32-63 系数 12 5 -2 0 2 0 1 0 -1 0

按JPEG基本系统编码给出该子块的编码。

符号2的编码规则:

正数

负数

结论:

1. 零不需编码。

2. 正数编码为原码,且高位为“1”(码长为最高位为1)。

3. 负数为该数绝对值的反码,且高位为“0” (码长同其绝对值码长一致)。

在由程序实现时,负数的编码只须“负数=负数-1”,然后直接取低位。

4.6.2 MPEG压缩编码标准

一.引言

1988-1992 提出标准化方案。1991年11月提出草案,1992年通过 ISO/SEC 11172 JPEG 和MPEG同属于一个工作组。

1993年11月通过 ISO/IEC 13818 1995年5月15日正式通过。

1.MPEG-1和MPEG-2特点:

1)MPEG-1:

三百多线*′三百多线,适合家庭或终端用,标准不太高,演播级。

传输率1.5M bit/s

MPEG-2:

最高两千多线*两千多线,可适合HDTV ,共有15个标准,我国采用了四个。

传输率1.5 M bit/s -100 M bit/s

2.MPEG标准包括四个部分:

MPEG系统

MPEG视频

MPEG音频

MPEG测试(检测)

二.MPEG数据流结构

数据流

视频流(运动序列)有:序列头、一组或多组图像序列、序列尾。

1.序列头

序列头码 32bit

水平大小 12bit

垂直大小 12bit

像素的长宽比4bit

图像速率(传输率)4bit

位码率 4bit

结束码 32bit

2.一组或多组图像序列

●图像组:由一系列图像组成,这些图像可以从运动序列中随机抽取。图像:一个图像(静止

图像)由三个部分组成

一个亮度信号Y

两个色差信号UV

●图像切片:一个或多个宏块组成。切片中宏块的顺序由左到右,由上到下,如果有误差跳

到下一个切片位置,使用越多的切片,误差的隐蔽性就越好。

●宏块:一个宏块由四个亮度块,两个色度块组成 ( U一个,V一个)。

一个16*16亮度信息,8*8色度信息。

●块:8*8亮度,8*8色度

MPEG视频位流分层图结构P157图4.37

三. 帧间编码技术

MPEG将图像分成三种类型:

1.I 图像(Intra Picture)

I图像( I帧)就是静态图像,用JPEG帧内压缩的方法得到,压缩比适度。

2.P 图像(Predicted Picture)预测图

P图像( P帧)由最近的I 帧或P帧经过预测编码得到。称为前向预测,可以作为下一个B或P 参照图像。

3.B 图像(Bidirectional Picture)双向预测图

B图像(B帧)可以使用前一个和后一个图像作参考图像,也可以使用前后

两个参考图像。(双向预测)

帧间编码

前向编码

后向编码

双向预测帧.运动视频流的组成

四.运动补偿技术

主要用于消除P.B图像在时间上的冗余,提高压缩效率是在宏块一级。1.四种类型的宏块

I 块帧内宏块

F 块前向预测宏块

B 块后向预测宏块 A 块平均宏块(内插宏块、双向预测宏块

2.三种类型的图像:

I图像

B图像

P图像

3.求运动矢量要解决两个问题

1)匹配算法:

归一化函数(4.15)

均方误差(4.16)

帧间绝对差(4.17)

2)搜索方法

穷尽搜索法 MAD

二维对数法 TDL 采用MSE均方误差

三步搜索法 9个点/步 MSE均方误差

采用绕参考点逐渐向外生长的方式:

五. 帧内编码技术

帧内编码技术与JPEG相同。

4.6.3 MPEG-2国际标准

1.MPEG-2与MPEG-1的区别:

可支持多种采样格式: 逐行,隔行。

支持恒速率和变速率两种格式。

支持对比特流的编辑。

MPEG -2是MPEG -1的扩展,丰富,完善。

MPEG-2从1.5M—100M分成了很多的Profile,具有可扩充性(Scalable).

2.MPEG II 视频数据流采用分层编码技术:

每个视频节目接不同的空间分辨率和帧速率;MPEG采用可扩展性编码的办法

逐步嵌入若干层结构,解码时可以得到不同时间、空间分辨率的视频信号。

3.MPEG2提供四种工具:

1) 空间可扩展性

金字塔编码技术

低通滤波器基本层比特流 STV

预测层 HDTV

2)时间可扩充性

可以跨过某些帧,形成基本图象与MPEG-1兼容。

隔行 15帧/秒

逐行 60帧/秒

3)信噪比可扩展性

量化

第一次量化

第二次量化

4:2:0 4:2:2

4)数据划分

优先级不同的比特流

(1). 头信息,运动矢量,量化参数,低频DCT 系数放到高优先级

(2). 将高频DCT级数转到低优先级

4.6.4 MPEG-4标准介绍

1.MPEG-4主要特点:

(1)MPEG-4的编码是基于对象的,这样就便于操作和控制对象;

可以实现许多基于内容的交互性功能,主要用于基于内容的多媒体数据存取、游戏或多媒体家庭编辑、网上购物和电子商店、远程监控、医疗和教学等。

(2)MPEG-4 在扩展性上具有很好的灵活性,可进行时域和空域的扩展(兼容MPEG-2 扩展功能);

主要用于互联网和无线网等窄带的视频通讯、多质量视频服务和多媒体数据库预览等服务。(3)MPEG-4的编码具有鲁棒性和纠错功能。

主要用于在移动通信的易错通讯环境下实现安全的低码率编码和传输,采用再同步、数据恢复、错误隐藏等三种策略。

2.MPEG-4 编码方法

1) MPEG-4中的数据结构类

有四个层次的数据结构,以类的形式定义:

●VS(Video Session):是包含其它三个类的一个类,一个完整的视频序列可以由几个VS

组成。

●VO(Video Object):是场景中的某个物体,它是有生命期的,由时间上连续的许多帧构

成。

●VOL(Video Object Layer):VO的三种属性信息编码于这个类中,这个类的引入主要用来

扩展VO的时域或空域分辨率。

●VOP(Video Object Plane):可以看作是VO在某一时刻的表象,即某一帧VO。

以上四个类的关系可以用下图表示:

MPEG-4中形状编码 P167图4.51

VOP侦编码类型P167图4.52

VM中的数据结构类分级图P168图4.54

3.MPEG-4 在视频编码技术方面的改进

(1) MPEG-4采用基于对象的编码、基于模型的编码等第二代编码技术,提高编码效率;(2) Sprite 编码技术应用;

Sprite编码方法分为三种:

1)静态Sprite编码 (Off-line)

Sprite在编码之前生成,解码时使用指定的运动参数直接将sprite变形(Warp)得到重构的VOP,原始VOP和重构的VOP之间的残差并不编码。

2)Sprite编码 (On-line)

在编码过程中动态生成Sprite,对于利用Sprite参考后的残差进行编码。

3)局运动补偿(GMC)

在编码过程中不生成Sprite,只是将前一帧当成Sprite, 对于利用Sprite参考后的残差进行编码。

4. MPEG-4 现状

(1)MPEG-4标准从1993年开始制定;

(2)MPEG-4标准1.0已于1999年1月正式公布,标准2.0版本的FDIS也在1999年12月MPEG大会通过;

(3)MPEG-4的某些领域的扩展工作仍在进行。

4.6.5 MPEG-7标准介绍

1.MPEG-7产生背景

2.MPEG-7目标

3.MPEG-7的应用领域

图像压缩编码方法

图像压缩编码方法综述 概述: 近年来, 随着数字化信息时代的到来和多媒体计算机技术的发展, 使得人 们所面对的各种数据量剧增, 数据压缩技术的研究受到人们越来越多的重视。 图像压缩编码就是在满足一定保真度和图像质量的前提下,对图像数据进行变换、编码和压缩,去除多余的数据以减少表示数字图像时需要的数据量,便于 图像的存储和传输。即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。 图像压缩编码原理: 图像数据的压缩机理来自两个方面:一是利用图像中存在大量冗余度可供压缩;二是利用人眼的视觉特性。 图像数据的冗余度又可以分为空间冗余、时间冗余、结构冗余、知识冗余 和视觉冗余几个方面。 空间冗余:在一幅图像中规则的物体和规则的背景具有很强的相关性。 时间冗余:电视图像序列中相邻两幅图像之间有较大的相关性。 结构冗余和知识冗余:图像从大面积上看常存在有纹理结构,称之为结构 冗余。 视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像 的变化并不都能察觉出来。 人眼的视觉特性: 亮度辨别阈值:当景物的亮度在背景亮度基础上增加很少时,人眼是辨别 不出的,只有当亮度增加到某一数值时,人眼才能感觉其亮度有变化。人眼刚 刚能察觉的亮度变化值称为亮度辨别阈值。 视觉阈值:视觉阈值是指干扰或失真刚好可以被察觉的门限值,低于它就 察觉不出来,高于它才看得出来,这是一个统计值。 空间分辨力:空间分辨力是指对一幅图像相邻像素的灰度和细节的分辨力,视觉对于不同图像内容的分辨力不同。 掩盖效应:“掩盖效应”是指人眼对图像中量化误差的敏感程度,与图像 信号变化的剧烈程度有关。 图像压缩编码的分类: 根据编码过程中是否存在信息损耗可将图像编码分为: 无损压缩:又称为可逆编码(Reversible Coding),解压缩时可完全回复原始数据而不引起任何失真; 有损压缩:又称不可逆压缩(Non-Reversible Coding),不能完全恢复原始数据,一定的失真换来可观的压缩比。 根据编码原理可以将图像编码分为: 熵编码:熵编码是编码过程中按熵原理不丢失任何信息的编码。熵编码基

《数据压缩与编码》课程教学大纲1

《数据压缩与编码》课程教学大纲 课程类型:专业限选课课程代码: 课程学时: 46学分: 2 适用专业:电子信息工程专业 开课时间: 三年级二学期开课单位: 电气与电子工程学院 大纲执笔人: 吴德林大纲审定人:杨宁 一、课程性质、任务: 人类社会已进入信息时代,网络是信息时代的重要产物,大量数据的存贮、处理特别是传输,是影响网络系统效率的重要因素之一,数据压缩技术对提高网络通信能力和效率提供了有力的支持。课程的目的在于学习数据通信基本原理和了解数据通信网络。 通过本课程的学习,学生能够掌握数据压缩的基本知识、基本方法;掌握数据压缩技术及经典算法,包括信源的数字化方法、基本的统计编码方法、预测编码的理论与实现方法、HUFFMAN方法、算术编码方法、字典压缩技术、文本压缩技术、图像压缩技术;理解和实验基本图像JPEG压缩编码或EZW/SPIHT压缩编码。 二、课程教学内容 1)教学内容、目标与学时分配 (一)理论教学部分

2、实验要求指:必做或选做 2) 教学重点与难点 1、重点:数据压缩的基本概念、数据压缩的常用方法与算法,数据编码技术、图像压缩技术以及视频压缩技术。。 2、难点:视频压缩与小波分析技术 三、课程各教学环节的基本要求 1)课堂讲授: 多媒体、PPT课件 2)实验(实训、实习):

3)作业: 问答题,计算题 4)课程设计: 5)考试 5.1 考试方法:(考试;考查;闭卷;开卷;其它方法) 闭卷考试 5.2 各章考题权重 第一章 5% 第二章 10% 第三章 10% 第四章 20% 第五章 20% 第六章. 20% 第七章 10% 第八章 5% 5.3 考试题型与比例 Eg:填空:20% ;判断题:10% ;单项选择:20% ;问答题:40%;分析题:10% 四、本课程与其他课程的联系 先修课程: 微机原理与程序设计、C 语言程序设计、数据结构、算法设计与分析。 五、建议教材及教学参考书 教材:吴乐南著:《数据压缩(第3版)》,电子工业出版社,2012年 参考书:魏江力.JPEG2000图像压缩基础、标准和实践.电子工业出版社,2004

视频压缩编码方法简介—AVI

视频压缩编码方法简介—AVI AVI(Audio Video Interleave)是一种音频视像交插记录的数字视频文件格式。1992年初Microsoft公司推出了AVI技术及其应用软件VFW(Video for Windows)。在AVI文件中,运动图像和伴音数据是以交织的方式存储,并独立于硬件设备。这种按交替方式组织音频和视像数据的方式可使得读取视频数据流时能更有效地从存储媒介得到连续的信息。构成一个AVI文件的主要参数包括视像参数、伴音参数和压缩参数等: 1、视像参数 (1)、视窗尺寸(Video size):根据不同的应用要求,AVI的视窗大小或分辨率可按4:3的比例或随意调整:大到全屏640×480,小到160×120甚至更低。窗口越大,视频文件的数据量越大。 (2)、帧率(Frames per second):帧率也可以调整,而且与数据量成正比。不同的帧率会产生不同的画面连续效果。 2、伴音参数:在AVI文件中,视像和伴音是分别存储的,因此可以把一段视频中的视像与另一段视频中的伴音组合在一起。AVI 文件与WAV文件密切相关,因为WAV文件是AVI文件中伴音信号的来源。伴音的基本参数也即WAV文件格式的参数,除此以外,AVI文件还包括与音频有关的其他参数: (1)、视像与伴音的交织参数(Interlace Audio Every X Frames)AVI格式中每X帧交织存储的音频信号,也即伴音和视像交替的频率X是可调参数,X的最小值是一帧,即每个视频帧与音频数据交织组织,这是CD-ROM上使用的默认值。交织参数越小,回放AVI文件时

读到内存中的数据流越少,回放越容易连续。因此,如果AVI文件的存储平台的数据传输率较大,则交错参数可设置得高一些。当AVI文件存储在硬盘上时,也即从硬盘上读AVI文件进行播放时,可以使用大一些的交织频率,如几帧,甚至1秒。 (2)、同步控制(Synchronization) 在AVI文件中,视像和伴音是同步得很好的。但在MPC中回放AVI文件时则有可能出现视像和伴音不同步的现象。 (3)、压缩参数:在采集原始模拟视频时可以用不压缩的方式,这样可以获得最优秀的图像质量。编辑后应根据应用环境环择合适的压缩参数。 3、 AVI数字视频的特点 (1)、提供无硬件视频回放功能:AVI格式和VFW软件虽然是为当前的MPC设计的,但它也可以不断提高以适应MPC的发展。根据AVI格式的参数,其视窗的大小和帧率可以根据播放环境的硬件能力和处理速度进行调整。在低档MPC机上或在网络上播放时,VFW的视窗可以很小,色彩数和帧率可以很低;而在Pentium级系统上,对于64K色、320×240的压缩视频数据可实现每秒25帧的回放速率。这样,VFW就可以适用于不同的硬件平台,使用户可以在普通的MPC上进行数字视频信息的编辑和重放,而不需要昂贵的专门硬件设备。 (2)、实现同步控制和实时播放:通过同步控制参数,AVI可以通过自调整来适应重放环境,如果MPC的处理能力不够高,而AVI文件的数据率又较大,在WINDOWS环境下播放该AVI文件时,播放器可

常用工具软件 多媒体数据压缩及编码技术

常用工具软件多媒体数据压缩及编码技术 在计算机获取原始的声音、图形图像以及视频影像时,其数据量是十分庞大的。如果数据不进行压缩处理,存放该数据文件时将十分困难,并且即使存储下来也是比较浪费存储介质的。例如,一张600MB的光盘也只能存储几十秒的真彩视频影像。 因此,用户需要对所获取的声音、图形图像以及视频影像数据进行压缩。其压缩主要包含下列两种方法。 ●无损压缩 多媒体原始信源数据存在大量的冗余,如动态视频图像帧内像素之间的空间相关性和帧与帧之间的时间相关性都很大,故而原始信源数据有很多的冗余,采用去掉冗余的压缩方法。 ●有损压缩 利用人的视觉对于边缘急剧变化不敏感和对图像的亮度信息敏感、对颜色分辨率弱的特点以及听觉只能听到20Hz~20KHz等特征实现数据压缩,舍弃一些非主要的细节,从而使由压缩数据恢复的图像、声音仍有令人满意的质量的方法。 数据压缩技术的研究已经有许多年了,从PCM编码理论开始,到现在的ADPCM、JPEG、MPEG-1、MPEG-2、H.261等,已经产生了多种针对不同用途的压缩算法、实现手段和相关的数字硬件及软件。目前,被国际社会广泛认可和应用的通用压缩编码标准大致有如下4种。 ●H.261编码 由CCITT(国际电报电话咨询委员会)通过的用于音频视频服务的视频编码解码器(也称Px64标准),它使用两种类型的压缩:一帧中的有损压缩(基于DCT)和用于帧间压缩的无损编码,并在此基础上使编码器采用带有运动估计的DCT和DPCM(差分脉冲编码调制)的混合方式。这种标准与JPEG及MPEG标准间有明显的相似性,但关键区别是它是为动态使用设计的,并提供完全包含的组织和高水平的交互控制。 ●JPEG编码 JPEG(全称是Joint Photogragh Coding Experts Group(联合照片专家组))是一种基于DCT 的静止图像压缩和解压缩算法,它由ISO(国际标准化组织)和CCITT(国际电报电话咨询委员会)共同制定,并在1992年后被广泛采纳后成为国际标准。 它是把冗长的图像信号和其它类型的静止图像去掉,甚至可以减小到原图像的百分之一(压缩比100:1)。但是在这个级别上,图像的质量并不好;压缩比为20:1时,能看到图像稍微有点变化;当压缩比大于20:1时,一般来说图像质量开始变坏。 ●MPEG编码 MPEG是Moving Pictures Experts Group(动态图像专家组)的英文缩写,实际上是指一组由ITU和ISO制定发布的视频、音频、数据的压缩标准。它采用的是一种减少图像冗余信息的压缩算法,它提供的压缩比可以高达200:1,同时图像和音响的质量也非常高。现在通常有三个版本:MPEG-1、MPEG-2、MPEG-4以适用于不同带宽和数字影像质量的要求。它的三个最显著优点就是兼容性好、压缩比高(最高可达200:1)、数据失真小。 ●DVI编码 DVI视频图像的压缩算法的性能与MPEG-1相当,即图像质量可达到VHS的水平,压缩后的图像数据率约为1.5Mb/s。为了扩大DVI技术的应用,Intel公司最近又推出了DVI算法的软件解码算法,称为Indeo技术,它能将为压缩的数字视频文件压缩为五分之一到十分之一。

图像压缩编码实验报告

图像压缩编码实验报告 一、实验目的 1.了解有关数字图像压缩的基本概念,了解几种常用的图像压缩编码方式; 2.进一步熟悉JPEG编码与离散余弦变换(DCT)变换的原理及含义; 3.掌握编程实现离散余弦变换(DCT)变换及JPEG编码的方法; 4.对重建图像的质量进行评价。 二、实验原理 1、图像压缩基本概念及原理 图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类: (1)无损压缩编码种类 哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev编码。(2)有损压缩编码种类 预测编码,DPCM,运动补偿; 频率域方法:正交变换编码(如DCT),子带编码; 空间域方法:统计分块编码; 模型方法:分形编码,模型基编码; 基于重要性:滤波,子采样,比特分配,向量量化; (3)混合编码 JBIG,,JPEG,MPEG等技术标准。 2、JPEG 压缩编码原理 JPEG是一个应用广泛的静态图像数据压缩标准,其中包含两种压缩算法(DCT和DPCM),并考虑了人眼的视觉特性,在量化和无损压缩编码方面综合权衡,达到较大的压缩比(25:1以上)。JPEG既适用于灰度图像也适用于彩色图像。其中最常用的是基于DCT变换的顺序式模式,又称为基本系统。JPEG 的压缩编码大致

信源编码(数据压缩)课程课后题与答案(第二章)

信源编码 Assignment of CH2 1、(a)画出一般通信系统结构的组成框图,并详细说明各部分的作用或功能; 信源信源编码信道编码调制 噪声信道传输 , 信宿信源解码信道解码解调 图1、一般数字通信系统框图 各部分功能: 1、信源和信宿:信源的作用是把消息转换成原始的电信号;信宿的作用是 把复原的电信号转换成相应的消息。 . 2、信源编码和信源解码:一是进行模/数转换,二是进行数据压缩,即设法降低信号的数码率;信源解码是信源编码的逆过程。 3、信道编码和信道解码:用于提高信道可靠性、减小噪声对信号传输的影响;信道解码是信道编码的反变换。 4、调制和解调:将信息调制为携带信息、适应在信道中传输的信号。数字 " 解调是数字调制的逆变换。 5、信道:通信的通道,是信号传输的媒介。 (b)画出一般接收机和发射机的组成框图,并分别说明信源编解码器和信道编 解码器的作用; … 高频振荡器高频放大调制高频功放天线

" 音频功放 信 号 图2、一般发射机框图(无线广播调幅发射机为例)

天线 信号放大器混频器解调器音频放大器 信 号 本地振荡器 图3、一般接收机框图(无线广播调幅发射机为例) 信源编解码器作用:它通过对信源的压缩、扰乱、加密等一系列处理,力求 用最少的数码最安全地传输最大的信息量。信源编解码主要解决传输的有效性问题。 信道编解码器作用:使数字信息在传输过程中不出错或少出错,而且做到自 动检错和尽量纠错。信道编解码主要解决传输的可靠性问题。 (c)信源编码器和解码器一般由几部分组成,画出其组成图并给以解释。 信源编码器 时频分析量化熵编码 信道传输 时频分析反量化熵解码 信源解码器 图 4、信源编解码器框图 时频分析部分:信源编码器对信源传送来的信号进行一定方法的时域频域分析,建立一个能够表达信号规律性的数学模型,从而得知信号中的相关性和多余度,分析出信号数据中可以剔除或减少的部分(比如人感知不到的高频率音频信号或者看不见的色彩信号等等),以决定对后续数据的比特分配、编码速率等处理问题。 量化部分:根据时频分析的结果,为了更加简洁地表达利用该模型的参数, 减少精度,采取相应量化方法对信号进行量化,减小信号的多余度和不相关性,

图像压缩编码的方法概述

图像压缩编码的方法概述摘要:在图像压缩的领域,存在各种各样的压缩方法。不 同的压缩编码方法在压缩比、压缩速度等方面各不相同。本文从压缩方法分类、压缩原理等方面分析了人工神经网络压缩、正交变换等压缩编码方法的实现与效果。 关键词:图像压缩;编码;方法 图像压缩编码一般可以大致分为三个步骤。输入的原始图像首先需要经过映射变换,之后还需经过量化器以及熵编码器的处理最终成为码流输出。 一、图像压缩方法的分类 1.按照原始信息和压缩解码后的信息的相近程度分为以下两类:(1)无失真编码又称无损编码。它要求经过编解码处理后恢复出的图像和原图完全一样,编码过程不丢失任何信息。如果对已量化的信号进行编码,必须注意到量化所产生的失真是不可逆的。所以我们这里所说的无失真是对已量化的信号而言的。特点在于信息无失真,但压缩比有限。(2)限失真编码中会损失部分信息,但此种方法以忽略人的视觉不敏感的次要信息的方法来得到高的压缩比。图像的失真怎么度量,至今没有一个很好的评判标准。在由人眼主观判读的情况下,唯有人眼是对图像质量的最有利评判者。但是人眼视觉机理到现在为止仍为被完全掌握,所以我们很难得到一个和主观评价十分相符的客观标准。目前用的最多的仍是均方误差。这个失真度量标准并不好,之所以广泛应用,是因为方便。

2.按照图像压缩的方法原理可分为以下三类:(1)在图像编码过程中映射变换模块所做的工作是对编码图像进行预测,之后将预测差输出供量化编码,而在接受端将量化的预测差与预测值相加以恢复原图,则这种编码方法称为预测编码。预测编码中,我们只对新的信息进行编码。并且是利用去除邻近像素之间的相关性和冗余性的方法来达到压缩的目的。(2)若压缩编码中的映射变换模块用某种形式的正交变换来代替,则我们把这种方式的编码方法称为变换编码。在变换编码中常用的变换方法有很多,我们主要用到的有离散余弦变换(DCT),离散傅立叶变换(DFT)和离散小波变换(DWT)等。(3)混合编码,LZW算法以及近些年来的一些新的压缩编码方法,最主要的有分形编码算法、小波变换压缩算法、基于模型的压缩算法等。 3.按照压缩对象来分,我们可将图像压缩方法分为静止图像压缩和运动图像压缩。它们所采用的压缩编码标准有所不同,对于静止图像压缩而言,采用的是JPEG、JPEG2000标准;而对运动的图像进行压缩时,我们则采用的是、、、MPEG-1、MPEG-2、MPEG-4、MPEG-7等。 二、常用的图像压缩方法 图像压缩方法至研究开始至今,已经有将近70年的发展了,随着科技的不断发展和人们越来越高的期望和要求,使得图像压缩技术也在不断的发展着,不断的进步着,各种各样的方法层出不穷,争对不同的要求我们可以选择不同的方法对图像进行压缩,以达到

栅格数据存储压缩编码方法

栅格数据存储压缩编码方法 栅格数据存储压缩编码方法主要有:(1).链式编码(2).行程编码(3).块式编码(4).四叉树编码 (1).链式编码:由某一原点开始并按某些基本方向确定的单位矢量链。基本方向可定义为:东=0,南=3,西=2,北=1等,还应确定某一点为原点。(2).行程编码:只在各行(或列)数据的代码发生变化时依次记录该代码以及相同代码重复的个数,即按(属性值,重复个数)编码 (3).块式编码:块式编码是将行程编码扩大到二维的情况,把多边形范围划分成由像元组成的正方形,然后对各个正方形进行编码。 (4).四叉树编码而块状结构则用四叉树来描述,将图像区域按四个大小相同的象限四等分,每个象限又可根据一定规则判断是否继续等分为次一层的四个象限,无论分割到哪一层象限,只要子象限上仅含一种属性代码或符合既定要求的少数几种属性时,则停止继续分割。否则就一直分割到单个像元为止。而块状结构则用四叉树来描述。按照象限递归分割的原则所分图像区域的栅格阵列应为 2n×2n(n为分割的层数)的形式。下面就着重介绍四叉树编码。 四叉树编码又称为四分树、四元树编码。它是一种更有效地压编数据的方法。它将2n×2n像元阵列的区域,逐步分解为包含单一类型的方形区域,最小的方形区域为一个栅格像元。图像区域划分的原则是将区域分为大小相同的象限,而每一个象限又可根据一定规则判断是否继续等分为次一层的四个象限。其终止判据是,不管是哪一层上的象限,只要划分到仅代表一种地物或符合既定要求的几种地物时,则不再继续划分否则一直分到单个栅格像元为止。 所谓四叉树结构,即把整个2n×2n像元组成的阵列当作树的根结点,n 为极限分割次数,n+1为四分树的最大高度或最大层数。每个结点有分别代表西北、东北、西南、东南四个象限的四个分支。四个分支中要么是树叶,要么是树叉。树叉、树叶用方框表示,它说明该四分之一范围全属多边形范围(黑色)或全不属多边形范围(空心四方块),因此不再划分这些分枝;树用圆圈表示,它说明该四分之一范围内,部分在多边形内,另一部分在多边形外,因而继续划分,直到变成树叶为止。 为了在计算机中既能以最小的冗余存储与图像对应的四叉树,又能方便地完成各种图形操作,专家们已提出多种编码方式。下面介绍美国马里兰大学地理信

数据压缩

一、名词解释 1、数据压缩:以最小的数码表示信源所发的信号,减少容纳给定消息集合或数据采样集合的信号空间。 2、数据压缩比:将压缩前每个信源符号(取样)的编码位数(mlog)与压缩后平均每符号的编码位数(l)之比,定义为数据压缩比。 3、均匀量化:把输入信号的取值域按等距离分割的量化称为均匀量化。 4、最优量化(MMSE准则):使均方误差最小的编码器设计方法称为最小均方误差(MMSE)设计。以波形编码器的输入样值与波形解码器的输出样值之差的均方 误差作为信号质量的客观评判标准和MMSE的设计准则。(能使量化误差最小的所谓最佳量化器,应该是非均匀的。) 5、信息熵定义:信息量的概率平均值,即随机变量的数学期望值,叫做信息熵或者简称熵。 6、统计编码定义:主要利用消息或消息序列出现概率的分布特性,注重寻找概率与码字长度间的最优匹配,叫做统计编码或概率匹配编码,统称熵编码。 7、变长编码:与等长编码相对应,对一个消息集合中的不同消息,也可以用不同长度码字来表示,这就叫做不等长编码或变长编码。 8、非续长码:若W中任一码字都不是另一个码字的字头,换句换说,任何一个码字都不是由另一个码字加上若干码元所构成,则W称为非续长码、异字头码或前缀码。 9、游程长度:是指字符(或信号采样值)构成的数据流中各字符重复出现而形成字符串的长度。 10、电视图像的取向:我国彩色电视制式采用逐行倒相的PAL-D制。 11、HVS的时间掩蔽特性:指随着时间变化频率的提高,人眼对细节分辨能力下降的特性。 12、HVS的空间掩蔽特性:指随着空间变化频率的提高,人眼对细节分辨能力下降的特性。 13、HVS的亮度掩蔽特性:指在背景较亮或较暗时,人眼对亮度不敏感的特性。 14、CIF格式:是常用的标准图像格式。是一种规范Y、Cb、Cr色差分量视频信号的像素分辨率的标准格式。像素。 15、SIF格式:是一种用于数字视频的存储和传输的视频格式。 16、压扩量化:由于低电平信号出现概率大、量化噪声小;高电平信号虽然量化噪声变大,但因为出现概率小,总的量化噪声还是变小了,从而提高量化信噪比。这种方法叫做压缩扩张量化。(压扩量化用一个非线性函数变换先将信号“压缩”后再均匀量化,它和非线性量化器完全等效。) 17、信号压缩系统的复杂度:指实现编解码算法所需的硬件设备量,典型地可用算法的运算量及需要的存储量来度量。 18、离散信源:被假设为由一系列随机变量所代表,往往用随机出现的符号表示,称输出这些符号集的源为信源,如果取值于某一离散集合,就叫做离散信源。 19、互信息量:对两个离散随机时间集X和Y,事件yj的出现给出关于xi的信息量,即为互信息量。 20、联合熵:两个变量X和 Y 的联合熵定义为:

图像压缩编码的方法概述

图像压缩编码的方法概述 摘要:在图像压缩的领域,存在各种各样的压缩方法。不同的压缩编码方法在压缩比、压缩速度等方面各不相同。本文从压缩方法分类、压缩原理等方面分析了人工神经网络压缩、正交变换等压缩编码方法的实现与效果。 关键词:图像压缩;编码;方法 图像压缩编码一般可以大致分为三个步骤。输入的原始图像首先需要经过映射变换,之后还需经过量化器以及熵编码器的处理最终成为码流输出。 一、图像压缩方法的分类 1.按照原始信息和压缩解码后的信息的相近程度分为 以下两类:(1)无失真编码又称无损编码。它要求经过编解码处理后恢复出的图像和原图完全一样,编码过程不丢失任何信息。如果对已量化的信号进行编码,必须注意到量化所产生的失真是不可逆的。所以我们这里所说的无失真是对已量化的信号而言的。特点在于信息无失真,但压缩比有限。(2)限失真编码中会损失部分信息,但此种方法以忽略人的视觉不敏感的次要信息的方法来得到高的压缩比。图像的失真怎么度量,至今没有一个很好的评判标准。在由人眼主观判读的情况下,唯有人眼是对图像质量的最有利评判者。

但是人眼视觉机理到现在为止仍为被完全掌握,所以我们很难得到一个和主观评价十分相符的客观标准。目前用的最多的仍是均方误差。这个失真度量标准并不好,之所以广泛应用,是因为方便。 2.按照图像压缩的方法原理可分为以下三类:(1)在图像编码过程中映射变换模块所做的工作是对编码图像进行 预测,之后将预测差输出供量化编码,而在接受端将量化的预测差与预测值相加以恢复原图,则这种编码方法称为预测编码。预测编码中,我们只对新的信息进行编码。并且是利用去除邻近像素之间的相关性和冗余性的方法来达到压缩 的目的。(2)若压缩编码中的映射变换模块用某种形式的正交变换来代替,则我们把这种方式的编码方法称为变换编码。在变换编码中常用的变换方法有很多,我们主要用到的有离散余弦变换(DCT),离散傅立叶变换(DFT)和离散小波变 换(DWT)等。(3)混合编码,LZW算法以及近些年来的一些新的压缩编码方法,最主要的有分形编码算法、小波变换压缩算法、基于模型的压缩算法等。 3.按照压缩对象来分,我们可将图像压缩方法分为静止图像压缩和运动图像压缩。它们所采用的压缩编码标准有所不同,对于静止图像压缩而言,采用的是JPEG、JPEG2000 标准;而对运动的图像进行压缩时,我们则采用的是H.261、H.263、H.264、MPEG-1、MPEG-2、MPEG-4、MPEG-7等。

huffman编码译码实现文件的压缩与解压

数据结构 课程设计 题目名称:huffman编码与解码实现文件的压缩与解压专业年级: 组长: 小组成员: 指导教师: 二〇一二年十二月二十六日

目录 一、目标任务与问题分析 (2) 1.1目标任务 (2) 1.2问题分析 (2) 二、算法分析 (2) 2.1构造huffman树 (2) 2.1.1 字符的统计 (2) 2.1.2 huffman树节点的设计 (2) 2.2构造huffman编码 (3) 2.2.1 huffman编码的设计 (3) 2.3 压缩文件与解压文件的实现 (3) 三、执行效果 (4) 3.1界面 (4) 3.2每个字符的编码 (4) 3.3操作部分 (5) 3.4文件效果 (6) 四、源程序 (7) 五、参考文献 (16)

huffman编码与解码实现文件的压缩与解压 一、目标任务与问题分析 1.1目标任务 采用hu ffm an编码思想实现文件的压缩和解压功能,可以将任意文件压缩,压缩后也可以解压出来。这样即节约了存储空间,也不会破坏文件的完整性。 1.2问题分析 本问题首先应该是利用哈夫曼思想,对需要压缩的文件中的个字符进行频率统计,为了能对任意的文件进行处理,应该所有的文件以二进制的方式进行处理,即对文件(不管包含的是字母还是汉字)采取一个个的字节处理,然后根据统计的频率结果构造哈夫曼树,然后对每个字符进行哈夫曼编码,然后逐一对被压缩的文件的每个字符构建的新的哈夫曼编码存入新的文件中即得到的压缩文件。解压过程则利用相应的哈夫曼树及压缩文件中的二进制码将编码序列译码,对文件进行解压,得到解压文件。 二、算法分析 2.1构造huffman树 要利用哈夫曼编码对文本文件进行压缩,首先必须知道期字符相应的哈夫曼编码。为了得到文件中字符的频率,一般的做法是扫描整个文本进行统计,编写程序统计文件中各个字符出现的频率。由于一个字符的范围在[0-255]之间,即共256个状态,所以可以直接用256个哈夫曼树节点即数组(后面有节点的定义)空间来存储整个文件的信息,节点中包括对应字符信息,其中包括频率。 2.1.1 字符的统计 用结构体huffchar来存放文件字符的信息。其中有文件中不同字符出现的种类Count、字符data。 struct huffchar{ //存放读入字符的类; int Count;//字符出现的个数; char data;//字符; }; 函数实现: bool char_judge(char c)//判断字符出现的函数; void char_add(char c)//添加新出现的字符; void read_file_count() //文件的读取 2.1.2 huffman树节点的设计 用结构体huff_tree来存储结点信息,其中有成员频率weight、父亲节点parent、左儿子节点lchild、右儿子节点rchild。

多媒体数据压缩编码的国际标准

多媒体数据压缩编码的国际标准 国际标准化协会( ISO),国际电子学委员会(IEC),国际电信协会(ITU)等国际组织,于90年代领导制定了三个重要的多媒体国际标准,①JPEG标准,②H.261标准;③MPEG 标准。 我们在概述中只对这三个标准的制定做简单的介绍: 静态图像压缩编码的国际标准(JPEG)联合图像专家小组,多年来一直致力于标准化工作,他们开发研制出,连续色调、多级灰度、静止图像的数字图像压缩编码方法。这个压缩编码方法称为JPEG算法。JPEG算法被确定为JPEG国际标准,它是国际上,彩色、灰度、静止图像的第一个国际标准。JPEG标准是一个适用范围广泛的通用标准。它不仅适于静图像的压缩;电视图像序列的帧内图像的压缩编码,也常采用JPEG压缩标准。 在JPEG编码中用到了我们已学过的变换编码、预测编码和熵编码等原理和方法。这一章前面几节讲的内容是这一部分的基础。因此我们把重点放在JPEG的编码算法的具体实现上。 JPEG 标准定义了两种基本压缩算法:一是:基于DCT 变换有失真的压缩算法。二是:基于空间预测编码DPCM的无失真压缩算法。 我们将重点讲述基于DCT变换有失真的压缩算法。

1.基于离散余弦变换(DCT)的有失真压缩编码 (1)基于DCT的有失真编码处理过程图 基于DCT解码器处理步骤 首先来看"基于DCT的编码器处理步骤"图。从这幅图我们可以看出JPEG编码的处理过程,从总的来说是这样的:对于一幅图像首先将其分成许多个"8×8"的小块,也就是每个小块有8×8=64个像素;分成多少个小块要看图像的分辨率,分辨率高,分的块就多,分辨率小,分的块就少。然后对(每一个)8×8的块进行DCT变换(二维),经过DCT变换后就得到频域的64个离散余弦变换系数,得到64个离散余弦变换系数后,要对这64个系数进行量化,量化是根据"表说明"也就是量化表进行的,量化表是JPEG组织根据人的眼睛视觉特性规定好的,直接用量化表去除得到的64个系数就是量化,量化后得到的仍是一个(8×8)64的系数,而这一系数已是低频集中在左上角的一个8×8的系数了。最后再利用熵编码表对其进行熵编码,熵编码后的到的就是已压缩的图像数据。这是一个总的过程,我把刚才说的归纳如下:(2)基于DCT的有失真编码处理总过程:

视频压缩编码方法简介—AVI

视频压缩编码方法简介—A V I A VI(Audio Video Interleave)是一种音频视像交插记录的数字视频文件格式。1992年初Microsoft公司推出了A VI技术及其应用软件VFW(Video for Windows)。在A VI文件中,运动图像和伴音数据是以交织的方式存储,并独立于硬件设备。这种按交替方式组织音频和视像数据的方式可使得读取视频数据流时能更有效地从存储媒介得到连续的信息。构成一个A VI文件的主要参数包括视像参数、伴音参数和压缩参数等。 1.视像参数 (1)视窗尺寸(Video size)。根据不同的应用要求,A VI的视窗大小或分辨率可按4:3的比例或随意调整,大到全屏640×480,小到160×120甚至更低。窗口越大,视频文件的数据量越大。 (2)帧率(Frames per second)。帧率也可以调整,而且与数据量成正比。不同的帧率会产生不同的画面连续效果。 2.伴音参数。在A VI文件中,视像和伴音是分别存储的,因此可以把一段视频中的视像与另一段视频中的伴音组合在一起。A VI文件与WA V文件密切相关,因为WA V文件是A VI文件中伴音信号的来源。伴音的基本参数也即WA V文件格式的参数,除此以外,A VI文件还包括与音频有关的其他参数。 (1)视像与伴音的交织参数(Interlace Audio Every X Frames)。A VI格式中每X帧交织存储的音频信号,也即伴音和视像交替的频率X是可调参数,X的最小值是一帧,即每个视频帧与音频数据交织组织,这是CD-ROM上使用的默认值。交织参数越小,回放A VI文件时读到内存中的数据流越少,回放越容易连续。因此,如果A VI文件的存储平台的数据传输率较大,则交错参数可设置得高一些。当A VI文件存储在硬盘上时,也即从硬盘上读A VI文件进行播放时,可以使用大一些的交织频率,如几帧,甚至1秒。 (2)同步控制(Synchronization)。在A VI文件中,视像和伴音是同步得很好的。但在MPC中回放A VI文件时则有可能出现视像和伴音不同步的现象。 (3)压缩参数。在采集原始模拟视频时可以用不压缩的方式,这样可以获得最优秀的图像质量。编辑后应根据应用环境选择合适的压缩参数。 3.A VI数字视频的特点 (1)提供无硬件视频回放功能。A VI格式和VFW软件虽然是为当前的MPC设计的,但它也可以不断提高以适应MPC的发展。根据A VI格式的参数,其视窗的大小和帧率可以根据播放环境的硬件能力和处理速度进行调整。在低档MPC机上或在网络上播放时,VFW的视窗可以很小,色彩数和帧率可以很低;而在Pentium级系统上,对于64K色、320×240的压缩视频数据可实现每秒25帧的回放速率。这样,VFW就可以适用于不同的硬件平台,使用户可以在普通的MPC上进行数字视频信息的编辑和重放,而不需要昂贵的专门硬件设备。 (2)实现同步控制和实时播放。通过同步控制参数,A VI可以通过自调整来适应重放环境,如果MPC 的处理能力不够高,而A VI文件的数据率又较大,在WINDOWS环境下播放该A VI文件时,播放器可以通过丢掉某些帧,调整A VI的实际播放数据率来达到视频、音频同步的效果。 (3)可以高效地播放存储在硬盘和光盘上的A VI文件。由于A VI数据的交叉存储,VFW播放A VI数据时只需占用有限的内存空间,因为播放程序可以一边读取硬盘或光盘上的视频数据一边播放,而无需预先把容量很大的视频数据加载到内存中。在播放A VI视频数据时,只需在指定的时间内访问少量的视频图像和部分音频数据。这种方式不仅可以提高系统的工作效率,同时也可以实现迅速地加载和快速地启动播放程序,减少播放A VI视频数据时用户的等待时间。 (4)提供了开放的A VI数字视频文件结构。A VI文件结构不仅解决了音频和视频的同步问题,而且具有通用和开放的特点。它可以在任何Windows环境下工作,而且还具有扩展环境的功能。用户可以开发自己的A VI视频文件,在Windows环境下可随时调用。 (5)A VI文件可以再编辑。A VI一般采用帧内有损压缩,可以用一般的视频编辑软件如Adobe Premiere 或MediaStudio进行再编辑和处理。

数据压缩与编码技术

数据压缩与编码技术 ①多媒体数据压缩编码的种类 多媒体数据压缩方法根据不同的依据可产生不同的分类。通常根据压缩前后有无质量损失分为有失真(损)压缩编码和无失真(损)压缩编码。 无损压缩:利用信息相关性进行的数据压缩并不损失原信息的内容。是一种可逆压缩,即经过文件压缩后可以将原有的信息完整保留的一种数据压缩方式,如RLE压缩,huffman 压缩、算术压缩和字典压缩。 有损压缩:经压缩后不能将原来的文件信息完全保留的压缩,是不可逆压缩。如静态图像的JPEG压缩和动态图像的MPEG压缩等。有损压缩丢失的是对用户来说并不重要的、不敏感的、可以忽略的数据。 无论是有损压缩还是无损压缩,其作用都是将一个文件的数据容量减小,又基本保持原来文件的信息内容。压缩的反过程-----解压缩,将信息还原或基本还原。 压缩编码的方法有几十种之多,如预测编码、变换编码、量化与向量编码、信息熵编码、子带编码、结构编码、基于知识的编码等。其中比较常用的编码方法有预测编码、变换编码和统计编码。没有哪一种压缩算法绝对好,压缩效率高的算法,其具体的运算过程相对就复杂,即需要更长的时间进行转化编码操作。 图1.3 音频信号的压缩方法 ②多媒体数据压缩编码的国际标准 国际电活电报咨询委员会CCITT和ISO联合定的数字化图像压缩国际标淮,主要有三个标准:用于计算机静止图像压缩的JPEG、用于活动图像压缩的MPEG数字压缩技术和用于会议电视系统的H.261压缩编码。 (1)J PEG标准 联合图像专家小组,多年来一直致力于标准化工作,他们开发研制出,连续色调、多级灰度、静止图像的数字图像压缩编码方法。这个压缩编码方法称为JPEG(Joint Photographic Experts Group)算法。JPEG算法被确定为JPEG国际标准,它是国际上,彩色、灰度、静止图像的第一个国际标准。JPEG标准是一个适用范围广泛的通用标准。它不仅适于静图像的压缩;电视图像序列的帧内图像的压缩编码,也常采用JPEG压缩标准。采用JPEG标准可以得到不同压缩比的图像,在使图像质量得到保证的情况下,可以从每个像素24bit减到每个像素1bit甚至更小。

第讲多媒体数据的压缩与编码

第2讲多媒体数据的压缩与编码 一级学科课程基础课 主讲:于俊清 2 内容提要 ?压缩的必要性和可能性?压缩与编码的分类?PCM 与预测编码?无损压缩编码?变换编码 ?JPEG ?MPEG 3§2. 1 压缩的必要性和可能性 ?从目前计算机的软硬件和通信网络的发展水平及发展趋势来看,可以断言: ?在将来很长的一段时期内,数字化的媒体信息数据以压缩形式存储和传播仍将是唯一的选择 4 压缩的必要性 ?信息时代的重要特征是信息的数字化,数字化带来了“信息爆炸” ?数字音频和视频信号的数据量之大是非常惊人?举例说明 5 举例一:音频 ?双通道立体声数字音乐光盘(CD-DA ),采样频率为44.1kHz ,采样精度16位/样本?1秒钟的数据量 ?44.1*103*16*2/8=0.176MB/S=1378.1kbps ?一个650MB 的CD-ROM ,可存61.55分钟,约1小时的音乐 ?MP3压缩后,压缩比约为15:1 ?1秒钟的数据量为96kbps ?声音质量接近于数字音乐光盘 6 举例二:标清电视 ?标准清晰度SDTV 格式,PAL 制式,每帧数据量? ?720*576*3=1.19MB ?每秒数据量(比特率) ? 1.19*25=29.75MB/S ?一片650M 的CD-ROM 可存帧数 ?650/5.93=546帧/片 ?一片CD-ROM 节目时间 ?650/29.75)=21.84秒/片

7 举例三:高清电视 ?全高清电视图像HDTV 格式,PAL 制式,每帧数据量? ?1920*1080*3=5.93MB ?每秒数据量(比特率) ? 5.93*25=148.3MB/S ?一片650M 的CD-ROM 可存帧数 ?650/5.93=109.6帧/片 ?一片CD-ROM 节目时间 ?650/148.3)=4.38秒/片 8 举例四:超高清电视(4K ) ?超高清电视图像UltraHDTV 格式,PAL 制式,每帧数据量? ?3840*2160*3=23.73MB(高清视频的4倍) ?每秒数据量(比特率) ?23.73*25=593.26MB/S ?一片650M 的CD-ROM 可存帧数 ?650/23.73=27.39帧/片 ?一片CD-ROM 节目时间 ?650/593.26)=1.1秒/片 9 举例五:卫星 ?一个陆地卫星(LandSat-3)的例子 ?水平、垂直分辨率分别为2340和3240,四波段、采样精度7位) ?一幅图像的数据量 ?2340*3240*7*4=212Mbit ?按每天30幅计 ?每天数据量为212*30=6.36Gbit ?每年的数据量高达2300Gbit 10 数据压缩的可能性 ?人们研究发现,多媒体数据中存在着大量的冗余 ?通过去除冗余数据可以使原始数据极大地减少,从而解决多媒体数据量巨大的问题 ?数据压缩就是研究如何利用数据的冗余性来减少数据量的方法 ?数据压缩研究的起点 ?研究数据的冗余性 11 (1)空间冗余 ?静态图像存在的最主要的一种数据冗余?同一景物表面上各采样点的颜色之间往往存在着空间连贯性 ?通过改变物体表面像素颜色的存储方式来利用空间连贯性,达到减少数据量的目的

数据压缩试题库

第一章 填空题: 1、信源编码主要解决传输的问题,信道编码主要解决传输的问题。 2、数据压缩的信号空间包括、、。 3、数据压缩按其压缩后是否产生失真可划分为 和两大类。 第二章 填空题: 1、脉冲编码调制包括、、三个步骤。 2、连续信号的多种离散表示法中,我们最常用的取样方法是。 3、若要将取样信号准确地恢复成原信号,取样频率必须满足定理。 4、黑白电视信号的带宽大约为5MHz,若按256级量化,则按奈奎斯特准则取样时的数据速率为。如果电视节目按25帧/s发送,则存储一帧黑白电视节目数据需内存容量。 5、量化器可分为和两大类。 6、量化器的工作特性可分为、、三个区域。 6、按照处理方法是否线性来判断,我们认为量化过程本身是。 7、我国数字电话网中压扩量化的对数函数采用曲线。 8、信号质量的主观度量方法中最常用的判决方法是。 9、对信号压缩系统的性能评价应从几个性能指标上综合评价,这些性能指标包括、、、。 简答题: 1、量化误差和噪声的本质区别是什么? 2、简述压扩量化的工作过程? 3、数据压缩中的“二次量化”是指什么?它和模数转换时的量化有什么区别? 证明题:

1、试导出以均方误差最小定义的最佳量化方法中量化判决电平k d 和量化输出电平k y 的表达式。 2、证明M-L 量化器的最小量化误差为:{}{}∑-=+≤<-=1 012 2min J k k k k d x d p y x E ε 第三章 填空题: 1、离散无记忆平稳信源的冗余度隐含在 。 2、对于联合信源,其冗余度除了各自本身的冗余度外还隐含在 。 3、离散有记忆信源的的理论极限是 。 4、在限失真编码理论中,使限失真条件下比特数最少的编码称为 。 问答题: 1、什么是平均自信息量(信息熵),平均条件自信息量(条件熵)以及平均互信息量?它们之间有什么关系? 2、简述率失真函数的基本含义,并指出它对信源编码的指导意义。 3、什么是最大离散熵?它对数据压缩有什么指导意义? 证明题: 2、证明 ()()|H Y X H Y ≤,并简述它对数据压缩的意义。 3、证明:()()()Y |X H X H Y X I -=;。 第四章 填空题: 1、统计编码主要是利用消息或消息序列 的分布特性,注重寻找 的最优匹配。 2、长度为L 1,L 2,…,L n 的m 进制唯一可译码存在的充分必要条件是 。

多媒体数据压缩编码的国际标准

第四章多媒体数据压缩编码技术 考核目的: 考核学生对多媒体数据压缩编码的基本原理和算法、数据压缩编码的分类和方法、多媒体数据压缩编码的国际标准等内容的理解和掌握。 考核的知识点: 什么是多媒体数据压缩、为什么信息能被压缩、常用的压缩编码和算法(统计编码、预测编码、变换编码)、多媒体数据压缩编码的国际标准JPEG、MPEG-1等内容。 考核要求: 掌握:数据压缩编码的方法、常用的压缩编码和算法、JPEG的原理和实现技术。 理解:量化的原理和量化器的设计、MPEG-1的原理和实现技术。 了解:其它的国际标准等。 4.1 多媒体数据压缩编码的重要性和分类 一.多媒体数据压缩编码的重要性 多媒体信息传送面临的最大难题是海量数据存储与传送电视信号数字化后的数据量问题,数据压缩是解决问题的重要途径。 二.多媒体数据压缩的可能性 1.空间冗余 2.时间冗余 3.信息熵冗余 ●信息量:指从N个相等的可能事件中选出一个事件所需要的信息度量和含量。 ●信息熵:指一团数据所带的信息量,平均信息量就是信息熵(entropy)。 4.结构冗余 图象有非常强的纹理结构。 5.知识冗余 图像的理解与某些基础知识有关。 6.视觉冗余 视觉冗余是非均匀、非线性的。 三.多媒体数据压缩方法的分类

1.按压缩方法分: (1). 有失真压缩 (2). 无失真压缩 2.编码算法原理分: (1)预测编码:PCM、DPCM、ADPCM等 (2)变换编码:傅里叶(DFT)、离散余弦(DCT)、离散正弦(DST)等 (3)统计编码:哈夫曼、算术等 (4)静图像编码:方块、逐渐浮现等 (5) 电视编码:幀内预测、幀间编码等 (6) 其他编码:矢量量化、子带编码等 4.2量化 一.量化原理 量化处理是使数据比特率下降的一个强有力的措施。 数据压缩编码中的量化处理,不是指A/D变换后的量化,而是指以PCM码作为输入,经正交变换、差分、或预测处理后,熵编码之前,对正交变换系数、差值或预测误差的量化处理。 量化输入值的动态范围很大,需要以多的比特数表示一个数值,量化输出只能取有限个整数,称作量化级,希望量化后的数值用较少的比特数便可表示。每个量化输入被强行归一到与其接近的某个输出,即量化到某个级。 量化处理总是把一批输入,量化到一个输出级上,所以量化处理是一个多对一的处理过程,是个不可逆过程,量化处理中有信息丢失,或者说,会引起量化误差(量化噪声)。 二.标量量化器的设计 1.量化器的设计要求 ●给定量化分层级数,满足量化误差最小。 ●限定量化误差,确定分层级数,满足以尽量小的平均比特数,表示量化输出。 三.量化方法: ●标量量化: 对于PCM数据,一个数一个数地进行量化叫标量量化。 分为:均匀量化、非均匀量化和自适应量化。 四.矢量量化

相关主题
相关文档 最新文档