当前位置:文档之家› 初中数学竞赛讲座——数论部分1(进位制)

初中数学竞赛讲座——数论部分1(进位制)

初中数学竞赛讲座——数论部分1(进位制)
初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制

一、基础知识:

1.我们通常接触的整数都是―十进制‖整数,十进制计数法就是用0,1,2…9十个数码,采用―逢十进一‖的法则进行计数的方法。例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:

1999=1×1000+9×100+9×10+9

底数为10的各整数次幂,恰好是十进制数的各个位数:

100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1

位上的数)

故1999=1×103+9×102+9×101+9×100

二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。例如二进制中的111记为(111)2

111=1×22+1×2+1=7

60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1

所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。

具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。 例如:0.25

0.25*2 = 0.5 ------------整数部分:0 0.5*2 = 1.0 ------------整数部分:1

所以十进制数0.25转为二进制数即为 0.01 所以十进制数 60.25 转为二进制数即为 (11100.01)2 二、典型问题:

例1 证明:形如abcabc 的六位数总能被7、11、13整除。 证明:将已知的六位数写成十进制表达形式,得

c b a c b a abcabc +?+?+?+?+?=10101010102345

)110()1010()1010(3

4

2

5

+?++?++?=c b a 100110010100100?+?+?=c b a )10100(1001c b a ++?= )10100(13117c b a ++??=

a b c a b c ∴总能被7,11,13整除。

【变式】试证明:任何一个四位正整数,如果四个数字和是9的倍数,那么这个四位数必能被9整除。并

把它推广到n 位正整数,也有同样的结论。 证明:设一个四位数为103a +102b +10c +d ,根据题意得

a+b+c+d =9k (k 为正整数),∴d =9k -a -b -c ,代入原四位数,得 103a +102b +10c +9k -a -b -c =(103-1)a +(102-1)b +9c +9k =9(111a +11b +c +k) ∵111a +11b +c +k 是整数,

∴四位数103a +102b +10c +d 能9被整除

推广到n 位正整数:n 位正整数记作10n -

1a 1+10n-2a 2+…+10a n-1+a n (1)

∵a 1+a 2+…+a n-1+a n =9k(k 是正整数) ∴a n =9k -a 1-a 2-…-a n-1 代入(1)得

原数=10n -

1a 1+10n-2a 2+…+10a n-1+9k -a 1-a 2-…-a n-1

=(10n-1-1)a 1+(10n-2-1)a 2+…+9a n-1+9k

∵10n-1-1,10n-2-1,…10-1分别表示-1999n

,-2999n

,…,9

∴原数=9( -1111n 个

a 1+

-2111n 个

a 2+…+a n +k ) ∴这个n 位正整数必能被9整除

【注】能被2、3、5、7、11、13、17、19整除的数的特征 (1)能被2整除的数的特征是个位上是偶数,

(2)能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的

倍感)

(3)能被5整除的数个位上的数为0或5, (4)能被7整除的数的特征

若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数, 则原数能被7整除。如果数字仍然太大不能直接观察出来,就重复此过程。 (5)能被11整除的数的特征

把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。 例如:判断491678能不能被11整除。

奇位数字的和9+6+8=23 偶位数位的和4+1+7=12

23-12=11

因此,491678能被11整除。这种方法叫―奇偶位差法‖。 (6)能被13整除的数的特征

把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果数字仍然太大不能直接观察出来,就重复此过程。

例如:判断1284322能不能被13整除。

128432+2×4=128440 12844+0×4=12844 1284+4×4=1300 1300÷13=100

所以,1284322能被13整除。

(7)能被17整除的数的特征

把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果数字仍然太大不能直接观察出来,就重复此过程。

例如:判断1675282能不能被17整除。

例5 已知abcd 是一个四位数,且999 =-dcba abcd ,问―‖代表几?

解:将abcd 及dcba 用十进制表示出来,并求差,得

)1111010111(9d c b a dcba abcd --+=-。

可见,两数之差为9的倍数,从而999也应是9的倍数,故

+9+9+9也是9的倍数,得―

‖代表

9或0,由题意知0舍去,所以

代表9。

由题意,得410n

A ?+=4(104)A + 所以39A=4(104)n ?-=149996n -?

个9

故11343332n A -=?

个3

故13332n -

个3

必能被13整除,不难发现33332是满足条件的最小值,从而A 的最小值是10256,所以N 的

最小值是410256。

例9.已知一个四位数的各位数字的和与这个四位数相加等于1995,试求这个四位数。 解:设所求四位数是abcd ,由题意得 1995=++++abcd d c b a 。

19952111011001=+++∴d c b a 。 ①

此时必有a =1(请读者想一想为什么?)

∴101b +11c +2d =994 ②

此时必有b =9(请读者想一想为什么?)

85211=+∴d c 。 ③ 对于③式,若c =8或9,则左边都大于85;若c ≤6,则左边都小于85,所以只有c =7。 将c =7代入③,得 d =4。 故所求四位数是1974。

说明:解答整数问题,常常需要从首位或末位数字入手去进行分析,本例在确定a ,b ,c ,d 的值时,我们都是采用了首位数字分析法。

例11.试证明:当abc 是37的倍数时,bca 也是37的倍数。 证明:a c b bca c b a abc ++=++=10100,10100 , a c b a b c a 999)10100(10-++=∴ a abc 372710?-?=。

故当abc 是37的倍数时,bca 也一定是37的倍数。

例12.有一种室内游戏,魔术师要求某参赛者想好一个三位数abc ,然后,魔术师再要求他记下五个数acb 、

bac 、bca 、cab 、cba ,并把这五个数加起来求出和N ,只要讲出N 的大小,魔术师就能说出原数abc

是什么。如果N=3194,请你确定abc 。

解:由题意,得3194=++++cba cab bca bac acb 。两边加上abc ,得 a b c c b a +=++3194)(222, abc c b a ++?=++∴8614222)(222。 86+∴abc 是222的倍数,且14>++c b a 。

设n abc 22286=+,考虑到abc 是三位数,依次取n=1,2,3,4,分别得出abc 的可能值为136,358,802,结合a +b +c>14,知358=abc 。

例13.一个正整数十位上的数字比个位数大2,将这个数的各位数字的顺序颠倒过来,再加上原数,其和是8877,求这个正整数。

解:∵顺序颠倒过来后,两个数的和是8877, ∴可知它们都是四位数 设原四位数的千位、百位、十位上的数字分别为a,b,c 则个位数是c -2, 根据两个数的和是8877试用列竖式讨论答案

a b c (c -2) 从个位看 (c -2)+a =7或17 +) (c -2) c b a 从千位看a +(c -2)=8 (没进入万位)

8 8 7 7 可知 (c -2)+a =7 即c+a =9 (1) 从十位上看b+c =7或17

从百位上看c+b =8 (进入千位) 可知 c+b =17 (2) (2)+(1)得 b-a =8 ∵0

∴ a =1, b =9, c =8, c -2=6 答这个正整数是1986

例14.有一个若干位的正整数,它的前两位数学相同,且它与它的反序数(011a a a a n n ???-与

n n a a a a a 1210-???互为反序数,其中0,00≠≠n a a )之和为10879,求原数。

分析:首先需要确定原数是几位数,若原数是五位数,则它最小是???11,已大于10879,与已知条件不符;若原数是三位数,则原数与它的反序数之和最大是2×999=1998,还小于10879,亦与已知条件不符,故原数必为四位数。

解:由已知可推得原数为四位数,又根据它的前两位数字相同,可设原数为aabc ,其中1≥a ,1≥c ,则它的反序数为cbaa ,由题意,得

10879=+cbaa aabc ,

10879)101010()101010(2323=+++++++∴a a b c c b a a , 10879)(110)(1001=+++∴b a c a , ①

比较①式两边的末位数,得

a+c =9。 ② 将②代入①,得 a+b =17。 ,89171717=-≥-≥-=b b a 且1≥c , 8=∴a 只有。

分别代入①②,得 c =1,b =9。 故原数为8891。

例15.一个正整数N 的各位数不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为―拷贝数‖,试求所有的三位―拷贝数‖。 解:设N 为所求的三位―拷贝数‖,它的各位数字分别为a,b,c (a,b,c,不全相等),将其数码重新排列后,连同原数共得到6个三位数:abc ,acb ,bac ,bca ,cab ,cba 。设其中最大数为abc ,则最小数为cba ,根据―拷贝数‖的定义,得 a b c N =-cba

)10100()10100(a b a c b a ++-++= )(99c a -=。

0可知N 为99的整数倍,这样的三位数可能是198,297,396,495,594,693,792,891,990。这9个数中,只有594-459=495。

故495是唯一的三位―拷贝数‖。

例16.甲、乙、丙3个人的年龄满足下列4个条件: ⑴甲的年龄是一个两位数; ⑵把甲的年龄的两位数字对调就是乙的年龄; ⑶甲的年龄与乙的年龄的差的

3

1

就是丙的年龄; ⑷乙的年龄是丙的年龄的15倍。

分析:本题可根据条件⑴设出甲的年龄,再由⑵、⑶两个条件把乙和丙的年龄用甲的年龄的代数式表示出来,然后由条件⑷列出方程。 解:由条件⑴,设甲的年龄为)1(≥>b a ab 由⑵知乙的年龄为ba ,由⑶知丙的年龄为)(3

1

ba ab -,根据条件⑷,得 )(3

1

15ba ab ba -?

= 即 ba ab ?=?65, )10(6)10(5a b b a +=+∴, b a 54=∴。

a ∴是5的倍数,

b 是4的倍数。

1≥>b a ∴只有a =5,b =4。

故甲、乙、丙的年龄分别是54,45,3。

例17.某人驾驶汽车从甲地出发到乙地需1小时,继续行驶1小时45分到达丙地。汽车速度一定,甲、乙两地路程是ab 千米,乙、丙两地路程是ba 千米,现在知道从甲地经乙地到丙地的路程不少于100千米,试问从甲到乙地的路程是多少千米? 解:速度一定,路程与时间成正比知

4

3

11

=ba ab , ba ab 47=∴, )10(4)10(7a b b a +=+∴, a b 2=∴。

又 )10()10(a b b a ba ab +++=+

=11(a +b )=11(a +2a )=33a ≥100, 4≥∴a 。 又 102<=a b , 5<∴a 。

8,4==∴b a 。 48=∴ab 。

故从甲地到乙地的路程是48千米。

例18.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .(2006年全国初中数学竞赛)

解:设原来电话号码的六位数为abcdef ,则经过两次升位后电话号码的八位数为

bcdef a 82.根据题意,有81×abcdef =bcdef a 82.

记f e d c b x +?+?+?+?=10101010234,于是 x a x a +?+?=+??6

5

5

1010208811081, 解得x =1250×(208-71a ) .

因为0≤x <5

10,所以0≤1250×(208-71a )<5

10,故

a <71128≤71

208

. 因为a 为整数,所以a=2.于是x =1250×(208-71×2)=82500. 所以,小明家原来的电话号码为282500.

例19.对于某些正整数n ,数2n 和5n 在十进制表示下首位数字相同,求所有这样的首位数字。 设a 是数2n 和5n 的相同首位数字,由于2n 和5n 的末尾数字都不为0,故存在正整数k,l ,使得

102(1)10k n k a a ?<<+? 105(1)10l n l a a ?<<+?

将上述两式相乘,得:

的各位数字之和为:____________ 17865

提示:因为积9?a?b的各位数字和与商9

10

a b

??

的各位数字和相等

而9

10

a b

??

=19851985

985

[(101)][(101)] 1099

?-?-

=

21985198548(101)(101)99?---=219851985444888?- 个个=1984198444435556 个个

所以该数的各位数字之和为1984(45)(36)?+++=17865

9.一辆新汽车出厂以后,为了试验汽车的性能,两位司机轮流驾驶,每小时行驶55千米,不停地行驶了一整天,停下来以后,看看手表,行驶时间是整整n 小时,n 是个整数;看看里程表,出发时是个三位数,停止时,三位数恰好颠倒了顺序。 (1)汽车行驶了几小时?

(2)设出发时里程表上的三位数是abc ,若a b c ++不超过7,求这个三位数abc 。

解:(1)abc =100a +10b +c ,cba =100c +10b +a ,汽车行驶路程为(100a +10b +c )-(100c +10b +a )=99c -99a 又99(c-a )=55n ,即9(c-a )=5n ,

等式左边必须包含5的因数,右边必须包含9的因数,也就是说,c-a 应是5的倍数,n 应是9的倍数,因为c 和a 都小于10,因此c-a =5,故汽车行驶了9小时。

(2)由于a b c ++不超过7,得c =6,a =1,b =0,所以汽车出发时,里程表上是106,到达目的地时,里程表上是601。

10.求所有能被11整除的三位数,使其满足除得的商正好等于被除数中各位数字的平方和。 解:设所求三位数是abc ,则

22211

abc

a b c =++ 所以100a +10b +c=22

2

111111a b c ++ 所以2

2

2

10011111110a a b c b c -=+-- 所以(10011)(1110)(111)a a b b c c -=-+-

根据讨论a ,b ,c 的取值,其中a 不能是9,b ,c 取较小的数,经试验得abc =803或550

11.N 是由5个不同的非零数字组成的5位数,且N 等于这个5个数字中任取3个不同的数字构成的所有三位数的和,求所有的这种5位数N 。 解:设N=abcde ,由题意,得11112()a b c d e ?++++=abcde 所以11112|abcde ?,又9|11112? 所以9|abcde , 9|a b c d e ++++

设9(a b c d e k k ++++=是正整数),则abcde =11988k

注意到N 是由5个不同的非零数字组成的5位数,所以15935a b c d e k ≤++++=≤,所以2,3k = 若k=2,则abcde =23976,但2+3+9+7+6=27,矛盾; 若k=3,则abcde =35964,3+5+9+6+4=27,符合,故N=35964

12.如果一个正整数各位数字之和与各位数字之积的和恰好等于这个正整数,我们称它为“幸运数”。试求出所有幸运数的和。

解:设n 位正整数为12n N a a a = ,则1n 2n 32123n 2n 1n N=1010101010n a a a a a a -----+++?+++(其中

12,,,n a a a 是N 各位上数字)

若N 是“幸运数”,

则1n 2n 32123n 2n 1n N=1010101010n a a a a a a -----+++?+++=1212()n n a a a a a a ++++??? 整理得1n 2n 32123n 2n 1(101)(101)(101)(101)(101)n a a a a a ------+-+-+?+-+-=12n a a a ??? 即1231(999-)0n n a a a a A -+=

个9

① 其中n 2n 323n 1(101)(101)(101)A a a a ---=-+-+?+-是非负数。 当3n ≥时,1

19999n n -->

个9

23n a a a ≥ ,故①不成立。

因此没有3位和3位以上的―幸运数‖。 当n=2时,由①式得,12(9)0a a -= 因为10a ≠,所以290a -=,所以29a =

因此,末位数字9的两位数是―幸运数‖,它们是19,29,39,49,59,69,79,89,99,其和为531. 可以验证一位数都不是―幸运数‖。

初中数学竞赛讲座之数论初步(一)

初中数学竞赛讲座之数论初步(一) 整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)|(a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N

②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N ⑧.13||41n n a a a --a a a |?13|N 推论:三个连续的整数的积能被6整除. 例题: 1.设一个五位数d a c b a ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|d a c b a ∴ 11|a +c +d -b -a 即11|c +3 ∴ c =8 1≤a ≤9,且a ∈Z 2.设72|b 673a ,试求a ,b 的值. 解:72=8×9,且(8,9)=1 ∴ 8|b 673 a ,且9| b 673a ∴ 8|b 73 ? b =6 且 9|a +6+7+3+6 即9|22+a ∴ a =5 3.设n 为自然数,A =3237n -632n -855n +235n ,

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

初一数学竞赛系列讲座9

初一数学竞赛系列讲座(9) 应用题(一) 一、一、知识要点 1、 1、 应用题是中学数学的重要内容之一,它着重培养学生理解问题、分析问题和解决问 题的能力,解应用题最主要的方法是列方程或方程组。 2、 2、 列方程(组)解应用题的一般步骤是: (1) (1) 弄清题意和题目中的数量关系,用字母表示题目中的一个未知数; (2) (2) 找出能够表示应用题全部含义的一个相等关系; (3) (3) 根据这个相等关系列出方程; (4) (4) 解这个方程,求出未知数的值; (5) (5) 写出答案(包括单位名称)。 3、行程类问题 行程类问题讨论速度、时间和路程之间的相互关系。它们满足如下基本关系式: 速度?时间=路程 4、数字类问题 数字类问题常用十进制来表示数,然后通过相等关系列出方程。 解数字类问题应注意数字间固有的关系,如:连续整数,一般设中间数为x ,则相邻两 数分别为x-1、x+1;连续奇(偶)数,一般设中间数为x ,则相邻两数分别为x-2、x+2。 二、二、例题精讲 例1 从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶 20千米,下坡时每小时行驶35千米,。车从甲地开往乙地需9小时,乙地开往甲地需21 7小时,问:甲、乙两地间的公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?(第五届华杯赛复赛题) 分析 本题用方程来解简单自然。 解 设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,根据题意得方程组 ?????=+=+(2) 2172035(1) 93520y x y x 解这个方程组有很多种方法。例如代入消元法、加减消元法等。由于方程组系数比较特殊(第 一个方程中x 的系数201恰好是第二个方程中y 的系数,而y 的系数351 也恰好是第二个方程中x 的系数),也可以采用如下的解法: (1)+(2)得 (x+y)( 201+351)=9+217

全国初中数学联赛初二卷及详解

全国初中数学联赛初二卷及详解

————————————————————————————————作者:————————————————————————————————日期:

2017年全国初中数学联合竞赛试题 初二卷 第一试 一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b c a b ++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1, 1110135 a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2 的值为( ). A.125 B.120 C.100 D.81 3.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.1 4.已知正整数a,b,c 满足a 2 -6b-3c+9=0,-6a+b 2 +c=0,则a 2 +b 2 +c 2 的值为( ). A.424 B.430 C.441 D.460 5.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A. 1023 B.103 3 C.32 D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ). A.56 B.58 C.60 D.62 二、填空题:(本题满分 28 分,每小题 7 分) 7.使得等式3 11a a ++=成立的实数a 的值为________. 8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 9.设a,b 是两个互质的正整数,且3 8ab p a b =+为质数.则p 的值为________.

初中数学竞赛讲座6

第六讲整式的运算 吴忠市第一中学韩瑞峰 一、知识要点 1、整式的概念:单项式,多项式,一元多项式; 2、整式的加减:合并同类项; 3、整式的乘除: (1)记号f(x),f(a); (2)多项式长除法; (3)余数定理:多项式f(x)除以(x-a)所得的余数r等于f(a); (4)因数定理:(x-a)|f(x)?f(a)=0。 二、例题示范 1、整式的加减 例1、已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值。 提示:只有同类项才能合并为一个单项式。 例2、已知A=3x2n-8x n+ax n+1-bx n-1,B=2x n+1-ax n-3x2n+2bx n-1,A-B中x n+1项的系数为3,x n-1项的系数为-12,求3A-2B。 例3、已知a-b=5,ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值。 提示:先化简,再求值。 例4、化简:x-2x+3x-4x+5x-…+2001x-2002x。 例5、已知x=2002,化简|4x2-5x+9|-4|x2+2x+2|+3x+7。 提示:先去掉绝对值,再化简求值。 例6、5个数-1, -2, -3,1,2中,设其各个数之和为n1,任选两数之积的和为n2,任选三个数之积的和为n3,任选四个数之积的和为n4,5个数之积为n5,求n1+n2+n3+n4+n5的值。 例7、王老板承包了一个养鱼场,第一年产鱼m千克,预计第二年产鱼量增长率为200%,以后每年的增长率都是前一年增长率的一半。 (1)写出第五年的预计产鱼量;

初中数学竞赛专题培训(4):代数式的化简与求值

初中数学竞赛专题培训第四讲分式的化简与求值 分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值. 例1 化简分式: 分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多. =[(2a+1)-(a-3)-(3a+2)+(2a-2)] 说明本题的关键是正确地将假分式写成整式与真分式之和的形式. 例2 求分式 当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b), 可将分式分步通分,每一步只通分左边两项. 例3 若abc=1 ,求 分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法. 解法1 因为abc=1,所以a,b,c都不为零. 解法2 因为abc=1,所以a≠0,b≠0,c≠0. 例4 化简分式:

分析与解 三个分式一齐通分运算量大,可先将每个分式的分 母分解因式,然后再化简. 说明 互消掉的一对相反数,这种化简的方法叫“拆项相消”法, 它是分式化简中常用的技巧. 例5 化简计算(式中a ,b ,c 两两不相等): 似的,对于这个分式,显然分母可以分解因式为(a -b)(a -c),而分子又恰好凑成(a -b)+(a -c),因此有下面的解法. 解 说明 本例也是采取“拆项相消”法,所不同的是利用 例6 已知:x+y+z=3a(a ≠0,且x ,y ,z 不全相等),求 分析 本题字母多,分式复杂.若把条件写成 (x -a)+(y -a)+(z -a)=0,那么题目只与x -a ,y -a ,z -a 有关,为简化计算,可用换元法求解. 解 令x -a=u ,y -a=v ,z -a=w ,则分式变为 u 2+v 2+w 2 +2(uv+vw+wu)=0. 由于x ,y ,z 不全相等,所以u ,v ,w 不全为零,所以u 2 +v 2 +w 2 ≠0,从而有 说明 从本例中可以看出,换元法可以减少字母个数,使运算 过程简化. 例7 化简分式: 适当变形,化简分式后再计算求值. (x -4)2 =3,即x 2 -8x+13=0. 原式分子=(x 4 -8x 3 +13x 2 )+(2x 3 -16x 2 +26x)+(x 2 -8x+13)+10 =x 2 (x 2 -8x+13)+2x(x 2 -8x+13)+(x 2 -8x+13)+10

初一数学竞赛系列讲座解一次方程(组)与一次不等式(组)教师版

初一数学竞赛系列讲座 解一次方程(组)与一次不等式(组) 一、知识要点 1.一次方程组 解一次方程组的基本思想是“消元”,常用方法有“代入消元法”和“加减消元法” 2.不定方程 不定方程(组)是指未知数的个数多于方程个数的方程(组)。它的解往往有无穷多个,不能唯一确定,对于不定方程(组),我们常常限定只求整数解或正整数解。 定理:若整系数不定方程ax+by=c (a 、b 互质)有一组整数解为x 0,y 0,则此方程的全部整数 解可表示为:???-=+=)k ( 00为任意整数这里ka y y kb x x 3.一元一次不等式 只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式,叫做一元一次不等式。 它的标准形式:ax+b <0或ax+b >0(a ≠0) 解不等式的根据是不等式的同解原理。 4.不等式的基本性质和同解原理 不等式的基本性质 (1)反身性 如果a >b ,那么b <a (2)传递性 如果a >b ,b >c ,那么a >c (3)平移性 如果a >b ,那么a+c >b+c (4)伸缩性 如果a >b ,c >0,那么ac >bc 如果a >b ,c <0,那么ac <bc 不等式的同解原理1:不等式的两边都加上(或减去)同一个数或同一个整式,所得的不等式与原不等式是同解不等式。 不等式的同解原理2:不等式的两边都乘以(或除以)同一个正数,所得的不等式与原不等式是同解不等式。 不等式的同解原理3:不等式的两边都乘以(或除以)同一个负数,并把不等号改变方向后,所得的不等式与原不等式是同解不等式。 5.解一元一次不等式的步骤 (1)去分母(根据不等式性质2或3); (2)去括号(根据整式运算法则); (3)移项(根据不等式基本性质1); (4)合并同类项(根据整式的运算法则); (5)将x 项系数化为1(根据不等式性质2或3); 6.不等式组及其解集 几个一元一次不等式合在一起,就成了一元一次不等式组;几个一元一次不等式解集的公共部分,叫做由它们组成的一元一次不等式组的解集。 7.解一元一次不等式组的方法和步骤:

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

初中数学竞赛专题培训 -生活中的数学(2)

初中数学竞赛专题培训第三十讲生活中的数学(四)──买鱼的学问 鱼是人们喜欢吃的一种高蛋白食物,所以谁都希望买到物美价廉的鱼.假定现在商店里出售某种鱼以大小论价,大鱼A每斤1.5元,小鱼B每斤1元.如果大鱼的高度为13厘米,小鱼的高度为10厘米(图2-171),那么买哪种鱼更便宜呢? 有人可能觉得大鱼A和小鱼B高度之比为13∶10,差不了许多,而小鱼的价格却比大鱼便宜许多,因此,买小鱼比较合算.这种想法是合理的吗?我们还是用数学来加以分析吧! 在平面几何中,我们已经知道以下定理. 定理1 相似形周长的比等于相似比. 定理2 相似形面积的比等于相似比的平方. 例1 已知:△ABC∽△A′B′C′,并且AB=2c,BC=2a,AC=2b,A′B′=3c, B′C′=3a,A′C′=3b.求证:△ABC和△A′B′C′周长的比是2∶3(图2-172). 证△ABC的周长是 2a+2b+2c=2(a+b+c), △A′B′C′的周长是 3a+3b+3c=3(a+b+c), 所以△ABC和△A′B′C′的周长的比是 2(a+b+c)∶3(a+b+c)=2∶3. 例2 图2-173是两个相似矩形,如果它们的相似比是3∶4,求证:它们面积的比是32∶42. 证矩形ABCD的面积是3a·3b=32ab,矩形A′B′C′D′的面积是4a·4b=42ab,所以矩形ABCD和矩形A′B′C′D′的面积之比是 32ab∶42ab=32∶42. 从定理1和定理2,我们自然会想到:相似的两个立体的体积之比与它们的相似比有什么关系呢?为此,我们看下面的例子. 例3 图2-174是两个相似的长方体,它们的相似比为3∶5,求它们的体积之比. 解长方体(a)的体积是3a·3b·3c=33abc, 长方体(b)的体积是5a·5b·5c=53abc, 所以长方体(a)与长方体(b)的体积的比是 33abc∶53abc=33∶53 例4 图2-175是两个相似圆柱,它们的相似比为2∶3,求它们的体积之比. 解小圆柱的体积是 (2a)2π·2b=23a2bπ,大圆柱的体积是 (3a)2π·3b=33a2bπ,所以小圆柱与大圆柱的体积之比为23∶33. 定理3 相似形的体积之比,等于它的相似比的立方.

初一数学竞赛讲座.

初一数学竞赛讲座(三) 数字、数位及数谜问题 一、 知识要点 1、整数的十进位数码表示 一般地,任何一个n 位的自然数都可以表示成: 122321*********a a a a a n n n n +?+?++?+?---Λ 其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0. 对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n Λ- 2、正整数指数幂的末两位数字 (1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末 位数字就是a n 的末位数字。 (2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末 位数字与m q 的末位数字相同。 3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条 件的整数是多少的问题,这类问题称为数迷问题。这类问题不需 要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜” 的方法求解,是一种有趣的数学游戏。 二、 例题精讲 例1、有一个四位数,已知其十位数字减去2等于个位数字,其 个位数字加上2等于其百位数字,把这个四位数的四个数字反着 次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序 数的关系列式来解决问题。 解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得: (a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988 ∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988 比较等式两边首、末两位数字,得 a+d=8,于是b+c18 又∵c-2=d ,d+2=b ,∴b-c=0 从而解得:a=1,b=9,c=9,d=7 故所求的四位数为1997 评注:将整数用十进位数码表示,有助于将已知条件转化为等式, 从而解决问题。 例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新 排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正 好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。 分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差 后分析求出所有三位“新生数”的可能值,再进行筛选确定。 解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为 cba 。由“新生数”的定义,得 N=()()()c a a b c c b a cba abc -=++-++=-991010010100

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

初一数学竞赛讲座特殊的正整数

初一数学竞赛讲座特殊 的正整数 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

初一数学竞赛讲座(二) 特殊的正整数 一、 知识要点 1、完全平方数及其性质 定义1 如果一个数是一个整数的平方,则称这个数是完全平方数。如:1、4、9、…等都是完全平方数,完全平方数有下列性质: 性质1 任何完全平方数的个位数只能是0,1,4,5,6,9中的一个。 性质2 奇完全平方数的十位数一定是偶数。 性质3 偶完全平方数是4的倍数。 性质4 完全平方数有奇数个不同的正约数。 性质5 完全平方数与完全平方数的积仍是完全平方数,完全平方数与非完全平方数的积是非完全平方数。 2、质数与合数 定义2 一个大于1的整数a,如果只有1和a 这两个约数,那么a 叫做质数。 定义3 一个大于1的整数a,如果只有1和a 这两个约数外,还有其他正约数,那么a 叫做合 数。 1既不是质数也不是合数。 3、质数与合数的有关性质 (1) 质数有无数多个 (2) 2是唯一的既是质数,又是偶数的整数,即是唯一的偶质数。大于2的质数必为奇数。 (3) 若质数p ?a ?b ,则必有p ?a 或p ?b 。 (4) 若正整数a 、b 的积是质数p ,则必有a=p 或b=p. (5) 唯一分解定理:任何整数n(n>1)可以唯一地分解为:k a k a a p p p n 2121=,

其中p 1

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

初中数学竞赛竞赛讲座(数字、数位及数谜问题)

竞赛讲座(数字、数位及数谜问题) 一、 知识要点 1、整数的十进位数码表示 一般地,任何一个n 位的自然数都可以表示成: 122321*********a a a a a n n n n +?+?++?+?--- 其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0. 对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=1 21a a a a n n - 2、正整数指数幂的末两位数字 (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。 (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。 3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。 二、 例题精讲 例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。 分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。 解:设所求的四位数为a ?103+b ?102+c ?10+d ,依题意得: (a ?103+b ?102+c ?10+d)+( d ?103+c ?102+b ?10+a)=9988 ∴ (a+d) ?103+(b+c) ?102+(b+c) ?10+ (a+d)=9988 比较等式两边首、末两位数字,得 a+d=8,于是b+c18 又∵c-2=d ,d+2=b ,∴b-c=0 从而解得:a=1,b=9,c=9,d=7 故所求的四位数为1997 评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。 例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。 分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定。 解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba 。由“新生数”的定义,得

初中数学竞赛专题培训(7):根式及其运算

初中数学竞赛专题培训第七讲根式及其运算 二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析. 二次根式的性质: 二次根式的运算法则: 设a,b,c,d,m是有理数,且m不是完全平方数,则当且 仅 当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式. 例1 化简: 法是配方去掉根号,所以 因为x-2<0,1-x<0,所以 原式=2-x+x-1=1. =a-b-a+b-a+b=b-a. 说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简. 例2 化简: 分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.

解法1 配方法. 配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则 解法2 待定系数法. 例4 化简: (2)这是多重复合二次根式,可从里往外逐步化简. 分析被开方数中含有三个不同的根式,且系数都是2,可以 看成 解设 两边平方得 ②×③×④得 (xyz)2=5×7×35=352. 因为x,y,z均非负,所以xyz≥0,所以 xyz=35.⑤ ⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以 解设原式=x,则

解法1 利用(a+b)3=a3+b3+3ab(a+b)来解. 将方程左端因式分解有 (x-4)(x2+4x+10)=0. 因为 x2+4x+10=(x+2)2+6>0, 所以x-4=0,x=4.所以原式=4. 解法2 说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法. 例8 化简: 解(1) 本小题也可用换元法来化简. 解用换元法. 解直接代入较繁,观察x,y的特征有 所以

相关主题
文本预览
相关文档 最新文档