当前位置:文档之家› 牡蛎壳纳米羟基磷灰石的制备与表征

牡蛎壳纳米羟基磷灰石的制备与表征

牡蛎壳纳米羟基磷灰石的制备与表征
牡蛎壳纳米羟基磷灰石的制备与表征

?668?厦门大学学报(自然科学版)

HA典型特征峰.PO。3一的£,。振动吸收峰的分化程度

高说明,制得HA结晶度较高,与XRD分析所得出的

结论一致.随着反应时间的延长,C032_的吸收峰逐渐

减弱,有的消失,而PO,3一的吸收峰逐渐变强变锐,说

明CO。2_逐渐被PO。3一置换.在图2b中可见CO。2一的

地消失丽U3及沏直至反应最后仍然保留部分,这即

是因为存在A型、B型两种取代嘲.在图2b中可见

C032一的p3分裂为2个吸收峰l420和1454cm~,

它区别于碳酸盐中的单峰,是CO。2一进入磷灰石结构

的重要标志【9].在人体骨磷灰石中也有CO。2一的存在,

人体中C032一含量为2.3%~8%(质量分数),具体含

量多少取决于个体的年龄,说明水热反应制备的牡蛎

壳HA与人骨组分非常相似.

400035003000250020001500100050p0

6{嘣1

图2牡蛎壳粉末及其水热反应后的FTIR图谱

a.牡蛎壳粉末;b.牡蛎壳粉末220℃.Ca/P摩尔比为

5;6条件下合成产物

Fig.2FTIRspectraofoystershellpowder(a)andsamples(b)

2.3HA的SEM及EDS分析

由牡蛎壳断面SEM图(图3a)可见,牡蛎壳为整齐排列的层状结构,每层之间存在大量孔隙,这种特殊结构使其具有硬度高、抗断裂能力强的特征.将其粉碎过筛后可见断裂的块状结构,内有大量孔隙,孔径约为2"-10pm(图3b).牡蛎壳粉末于140℃水热反应6h后基本保留牡蛎壳粉末的微结构,表面生成片状n.HA结晶体,尺寸约为100一-250nm(图3d).随着反应温度升高,片状n-HA晶体相互簇拥,聚集成花瓣状团簇(图3e).较高的反应温度为n.HA沉积物小颗粒提供了一个高活性的表面,小颗粒通过这种表面彼此相结合,从而聚集成花瓣状团簇.随着反应时间的延长或反应温度的升高,部分片状晶体逐渐变为短柱状或六方长柱状,可见在片状颗粒中间簇生出一些宽约50nm、长约150nm的六方柱体(图3f),在尺寸上与自然

图3牡蛎壳粉末,CaC03及不同条件下水热反应产物的SEM照片

a.牡蛎壳断面;b.牡蛎壳粉末;C.CaC03140℃6h,

d.牡蛎壳粉末140℃6hfe.牡蛎壳粉末220℃6h;

f.牡蛎壳粉末180℃24hc~f的Ca/P摩尔比均为

5:3

Fig.3SEMphotosofoystershellpowderanditssamplesunderdifferentconditionsandCaC03

入骨HA晶体接近.图3e样品的EDS元素分析结果显示,样品中钙磷元素的质量分数分别为38.14%和19.51%,样品ca/P摩尔比为i.5小于理论化学计量比1.67.在水热反应体系中,PO。3一浓度较大,Ca2+浓度相对较小,n-HA晶体在成核和晶体生长过程中出现钙缺位从而形成缺钙型n-HA,导致产物Ca/P摩尔比低,在组成上与人骨HA更相似【l叫.

2.4生物相容性检测

采用MTT检测评价水热转化(220℃,Ca/P摩尔比为5t6,6h)所制备的n—HA的细胞相容性及细胞在材料表面的存活和增殖情况.在活细胞线粒体中,MTT试剂被还原成蓝色的甲瓒,甲瓒生成量与活细胞数量成正比.用酶联免疫检测仪测定其吸光度(oD),从而得到细胞生长情况.小鼠原成骨细胞MC3T3一El与n-HA在体外培养细胞生长情况检测结果如图4所示,可见细胞数量随着时间的延长而增加,细胞相对生长率(RGR)计算公式为;

RGR=(0DE/ODc)Xioo%.

其中0D。和ODc分别是实验组和阴性对照组吸光度平均值.同时根据中国国家标准GB/T16686--

1997材料毒性评分标准列出细胞毒性分级(CTG)(表

羟基磷灰石的制备及表征

羟基磷灰石的制备及表征 一、实验目的 1.掌握纳米羟基磷灰石的制备及原理 2.了解羟基磷灰石的表征方法及生物相容性 二实验原理 羟基磷灰石(hydrrosyapatite,HAP)分子式为Ca10(PO4)6(OH)2是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长,并与骨组织形成牢固的骨性结合。HAP是生物活性陶瓷的代表性材料,生物活性材料是指能够在材料和组织界面上诱导生物或化学反应,使材料与组织之间形成较强的化学键,达到组织修复的目的。HAP在组成上与人体骨的相似性,使HAP与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性,植入体内不仅安全、无毒,还能引导骨生长,即新骨可以从HAP植入体与原骨结合处沿着植入的体表面或内部贯通性空隙攀附生长,材料植入体内后能与骨组织形成良好的化学键结合。HAP主要的生物学应用作骨组织代替材料,磷酸钙类生物陶瓷材料在临床应用中遇到的最大困难之一是材料强度差,尤其是韧性低,且机械可加工性差,导致其在临床应用中受到了极大的限制。为了改善HAP陶瓷的脆性和强度问题,一般会在其中添加ZrO2和碳纤维或是Al2O3和玻璃等物质进行增韧。纳米级羟基磷灰石的制备方法很多,主要分为固相法和液相法两大类。固相法合成在一定条件下(高温、研磨)让磷酸盐与钙盐充分混合发生固相反应,合成HAP粉末。液相法合成是在水液中,一磷酸盐和钙盐为原料,在一定条件下发生化学反应,生成溶解度较小的HAP晶粒,包括化学沉淀法。水热合成法、溶胶-凝胶法、自然烧法、微乳液法、微波法等。 化学沉淀法因具有实验条件要求不高、反应容易控制,适合制备纳米材料等优点从而得到广泛应用。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适量的沉淀剂得到纳米材料的前驱沉淀物,再将此沉淀物结晶进行干燥或煅烧制得相应的纳米材料。金属离子在沉淀过程是不平衡的,需要控制溶液中的沉淀剂的浓度,使沉淀过程缓慢发生,才会使溶液中的沉淀处于平衡状态,使沉淀能均匀的出现在整个溶液中。此法制备纳米HAP大多采用无机钙盐和磷酸盐反应得到。常采用的钙盐有:CaCl2、Ca(OH)2、Ca(NO)2等,常采用的磷酸盐有:K2HPO4、Na3PO4、(NH4)2HPO4、和H3PO4,发生酸碱中和反应反应生成HAP纳米颗粒。沉淀法的影响因素主要有HP值、合成温度、反应原料纯度、反应原料浓度、反应物的混合步骤、沉淀剂的选择和添加速率等。采用化学沉淀法制备HAP纳米颗粒,需要的设备简单,相应的生产的经济成本也较低,很容易实现工业上大批量的生产。但化学沉淀法制备HAP也存在问题,制备所得的纳米HAP颗粒粒径均匀性差,并且团聚现象严重。化学沉淀法制备HAP的主要原理是在含有可溶性钙盐和磷酸盐的水溶液中,加入适量的沉淀剂,在特定条件,使溶液中两种溶剂发生化学反应,形成不溶性的水合氧化物从溶液中析出,再进行加入脱水对得到的溶液进行离心干燥,进而得到HAP纳米粉体。反应方程式如下: 10Ca(OH)2+6H3PO4→Ca10(PO4)6(OH)2+18H2O 三实验设备及材料

纳米羟基磷灰石_HAP_的制备方法及应用 (1)

!""#年第$期(第$$期)佛山陶 瓷!!!!!!! %&&前言 ’()由于其成份与生物机体骨骼的无机成份相近,因而引起了人们的广泛的关注。上世纪#"年代,就有人合成了’()。随着科学技术的进步和人们认识的不断提高,许多研究结果表明,’()是一种无毒、无致癌、无副作用和具有良好生物相容性的生物活性材料;人们还发现’()具有固体碱性能*%+和较强的离子交换能力,因此在催化载体、离子交换领域得到了广泛的应用;同时还能吸附有毒的离子*!+和具有温敏、湿敏效应*#+,因此还是绿色环保材料和智能材料。此外,武汉理工大学生物中心研究发现纳米’()能抑制癌细胞的生长,而对正常的细胞没有副作用,为制备新一代抗癌药物提供了新的途径。 ’()具有许多优良的特性,除与本身特性有关外,还与其制备方法和制备工艺有密切的关系。 !&&’()的晶体结构 羟基磷灰石英文名称’,-./0,12134356分子式为71%" 8)9:;<=9’;!&>简写为’(或’()?>钙磷比71@)AB@#!%C<$(当71@)小于%C<$称为钙亏’()>当71@)大于%C<$称为钙盈’()>当71@)为%C<$称为正常’())>属磷酸钙=D7);陶瓷中的一种生物活性材料。从分子式可以看出,71!E位置=(位;易被%、!、#价和FGG#E等离子替换;*)9:+#H 位置=I位;易被*(J9:+#H、*K9:+#H、*L49:+!H、*L9:+!H、*79#+!H等基团替换;*9’+H位置=M位>通道离子;易被卤素元素替代,并且置换速度非常快;它还可以与含羧基=799’;的氨基酸、蛋白质、有机酸等反应。(、I、M还能相互耦合替代*:+。 D.N5O1P*B+等研究发现’()与氟磷灰石具有同样结构属于六方晶系,空间群为)<#@O。其结构为六角柱体,与Q 轴垂直的面是一个六边形,1、R轴的夹角为%!"",晶胞常数1ARASC:#!!,QA

纳米羟基磷灰石及其复合材料的研究进展_李志宏

医疗卫生装备?2007年第28卷第4期 ChineseMedicalEquipmentJournal?2007Vol.28No.4 纳米羟基磷灰石及其复合材料的研究进展 李志宏 武继民 李瑞欣 许媛媛 张西正 (军事医学科学院卫生装备研究所 天津市 300161) 摘要纳米羟基磷灰石具有良好的生物相容性和生物活性,是较好的生物材料,被广泛应用于骨组织的修复与替代技 术。但是,由于材料本身力学性能较差制约了羟基磷灰石的进一步应用,因此,提高及制备综合性能优越的纳米羟基磷灰石复合生物材料是当今研究的重心和热点。综述了纳米羟基磷灰石制备的主要方法及其复合生物材料的研究进展,并探讨了纳米羟基磷灰石骨修复材料的发展方向。关键词 纳米羟基磷灰石;复合材料;骨修复 Advancesinnano-hydroxyapatiteanditscomposite LIZhi-hong,WUJi-min,LIRui-xin,XUYuan-yuan,ZHANGXi-zheng (InstituteofMedicalEquipment,AcademyofMilitaryMedicalSciences,Tianjin300161,China) AbstractNano-hydroxyapatitehasbeenwidelyusedasreconstructiveandprostheticmaterialforosseoustissue,owingtoitsexcellentbiocompatibilityandtissuebioactivity.Butthepoormechanicalpropertyofhydroxyapatiterestrictsitsfurtherapplication.Inordertoenhancethecomprehensiveperformanceofthematerial,manyresearcheshavebeendedicatedtothesynthesizationofthecompositematerials.Thisarticlereviewsthemainpreparationmethodsofnano-hydroxyapatiteandtheadvancementinresearchofitscomposite.Thedirectionsinthisresearchareaaredescribedaswell.Keywordsnano-hydroxyapatite;compositematerial;bonerepair 作者简介:李志宏,硕士,主要从事高分子材料和生物材料方面的研究; 武继民,博士,硕士生导师,副研究员。 羟基磷灰石(hydroxyapatite,HA或HAP)是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长。其表面具有极性,与机体组织有较强的亲和力,与骨组织形成牢固的骨性结合,是公认性能良好的骨修复替代材料。本文综述了纳米羟基磷灰石复合生物材料的研究进展,并探讨了其可能的发展方向。 1纳米羟基磷灰石的合成 羟基磷灰石超微粉属无机材料,常用制备方法有水热法、 沉淀法、溶胶-凝胶法、微乳液法等。此外,还有等离子体喷涂法、干法、冲击波法等。 1.1水热法 水热法是指在密封压力容器中,以水溶液作反应介质,在 高温、高压下,使通常难溶或不溶的物质溶解且重结晶的一种制备材料的方法。它可以用来生长各种单晶,制备超细、无团聚或少团聚、结晶完好的陶瓷粉体和无机纤维或晶须增强材料。近年来,水热法制备羟基磷灰石也取得了很大的进展。 廖其龙等[1]经水热反应获得了晶粒完整、 粒度在100nm以下的柱状或针状HA晶体,结果表明:随Ca/P比的增加,进入磷灰石结构的CO32-的量增加,引起晶格畸变,晶粒尺寸降低。肖秀峰等[2]研究发现随水热温度的提高和时间的延长,晶体发育越完整,晶粒尺寸越大。郭广生等[3] 研究中发现水热温度和反应时间对HA微晶尺寸变化有较大的影响,高温有利于HA微晶在a轴方向的生长,而延长时间则有利于其在c轴方向的生长。刘晶冰等[4]在较低温度下合成了结晶度较高的棒状羟基磷灰石粉末,同时研究了pH值及温度对产物结构及形貌的 影响。 1.2沉淀法 沉淀法通常是在溶液状态下将不同化学成分的物质混合, 在混合溶液中加入适当的沉淀剂制备超微颗粒的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应的超微颗粒。此法制备纳米HA大多采用无机钙盐和磷酸盐反应得到。 任卫等[5]采用均相共沉淀法和爆发成核法制备出了可长期稳定的、尺度在60~70nm的HA溶胶和纳米粒子。 吕奎龙等[6] 经研究发现:加入形核剂、适当提高反应温度及搅拌速度有 利于制备纯净的羟基磷灰石。李玉峰[7]研究表明:控制反应温度、加料速率,使体系维持一定pH值范围,并适当引入超声波及其它强化条件,可以合成Ca/P比值较为理想、HA相较纯、晶粒度(272.2 ̄544.7)分布好的羟基磷灰石。郭大刚等[8]制得尺寸和形状更接近于人体骨磷灰石结构的HA颗粒,并具有较好的尺寸稳定性,600℃下仍能保持不团聚长大。 1.3溶胶-凝胶法(Sol-Gel) 溶胶凝胶法的基本原理是:将金属醇盐或无机盐水水解, 然后使溶质聚合胶化,再将凝胶干燥、焙烧,最后得到无机材料。其优点是:原料均匀混合;产品粒子化学均匀性好、纯度高、颗粒细;可容纳不溶性组分或不沉淀组分;烘干后凝胶颗粒烧结温度低。 黄志良等[9]用Sol-Gel法制备了不同钙磷摩尔比的HAP和不同CO32-含量的HAP,并系统研究此2类磷灰石的热稳定性。结果表明:Ca和HAP由于存在填隙缺陷结构,表现出较高的热稳定性;在150 ̄800℃范围内CHAP(含有CO32-的HAP)中的CO32-脱除是非平衡态的连续固溶体分解,同时其结晶度增加且晶粒重结晶长大。袁媛等[10]以四水硝酸钙和磷酸三甲酯为 中图分类号:TB383;TB33 文献标识码:A 文章编号:1003-8868(2007)04-0030-02 GENERALREVIEW 综述 30

羟基磷灰石的制备及其表征实验方案

实验方案 课题六 纳米羟基磷灰石的制备与表征 小组成员 段东斑、陆文心、耿明宇 1.背意义景 羟基磷灰石(Hydroxyapatite,简称HA,化学分子式:(Ca10 (PO4)6(OH)2)是人体和动物骨骼的主要无机成份。在人体骨中,HA 大约占60%,它是一种长度为20~40nm,厚1.5~3.0nm 的针状结晶,其周围规则地排列着骨胶原纤维[36]。齿骨的结构也类似于自然骨,但齿骨中HA 的含量高达97%。医学领域长期以来广泛使用的金属和有机高分子等生物医学材料,其成分和自然骨完全不同,用来作为齿骨的代材料(人工骨、人工齿)填补骨缺损材料,其生物相容性和人体适应性尚不令人满意。而羟基磷灰石具有无毒、无刺激性、无致敏性、无致突变性和致癌性,是一种生物相容性材料,可与骨发生化学作用,有很好的骨传导性。因此,近二十年来,研究接近或类似于自然骨成份的无机生物医学材料极其活跃,其中特值得重视的是与骨组织生物相容性最好的HA 活性材料的研究、临床应用。近年来,随着人们对纳米领域的认识与关注,医学界也相继开始了对纳米HA 粒子(或称超细HA 粉)的研究,HA 纳米粒子与普通的HA 相比具有不同的理化性能:如溶解度较高、表面能较大、生物活性更好、具有抑癌作用等,可以作为药物载体用于疾病的治疗,是一种生物相容性良好的治疗材料。 目前,人们已经开发出多种方法来制备纳米HA,如水解法、水热反应法、溶胶一凝胶法及最近发展的微乳液法等,其中化学沉淀法是各种水溶性的化合物经混合、反应生成不溶性的沉淀,然后将沉淀物过滤、洗涤、煅烧处理,得到符合要求的粉体。化学沉淀法因工艺简单、成本低、颗粒小等优点被广泛应用。但是目前对这种方法的研究还处于初级阶段,制备出的纳米粒子粒径不均一,分散性差且有易团聚的现象。为此,我们希望对化学沉淀法制备HA纳米粒子的条件的进行深入研究,分析各种因素对纳米HA晶型与粒径的影响,为HA的工业化生产提供依据。 2.1实验基本原理 目前报道,常用的制备羟基磷灰石粉体的钙的反应物有Ca(NO3)2、Ca(OH)2、CaCl2、CaO、Ca(OC2H5)2等,常用的磷的反应物有(NH4)2HPO4、H3PO4、K2HPO4、Na2HP04和((CH3O)3PO)等。 以硝酸钙和磷酸氢二氨为例,反应方程式为: Ca(N03)2·4H20+6(NH4)2HP04+8NH3·H20=Ca10 (P04)6(OH)2+20NH4N03+6H20 以氢氧化钙和磷酸盐为例,反应方程式为: 10Ca(OH)2+6H3P04= Ca10(PO4)6(OH)2+18H20 不同反应物合成HA的方法有一定差异,但总体而言,化学沉淀法的实质是羟基磷灰石的溶解平衡的逆反应,即 10Ca2++6PO43-+2OH- = Ca10(PO4)6(OH)2 Ksp=2.34*10-59 2.2实验条件的选择与调控。 影响化学沉淀法的工艺参数主要有:Ca/P 摩尔比、pH 值、磷酸的加入速度、反应温

纳米羟基磷灰石综述

纳米羟基磷灰石制备方法及应用 赖荣辉 西南民族大学化学与环境保护工程学院高分子化学与物理 摘要 羟基磷灰石(HA)具有良好的生物相容性和生物活性,被广泛的应用于骨修复和药物载体中。但是其本身容易团聚,而形成较大的晶体,使得其生物学性能下降。合成纳米级的羟基磷灰石,使得羟基磷灰石具有较大的比表面积,而具有较好的生物学性能。本文综述了近年来合成纳米羟基磷灰石的进展和几种主要的合成方法包括:水热法、超声法、溶胶-凝胶法、自燃烧法。并对纳米羟基磷灰石的一些改性方法做了简述。最后还对纳米羟基磷灰石的一些应用做了简述。 关键词:羟基磷灰石;制备方法;生物材料;纳米晶体 0 前言 羟基磷灰石,英文名Hydroxyapatite(HA),其化学式为Ca10(PO4)6(OH)2作为一种现代的纳米生物材料,是动物和人体骨骼和牙齿的主要无机成分,具有良好的生物相容性。故常用作骨修复材料和药物载体[1] 1 纳米羟基磷灰石的合成方法 一、自燃烧法 自燃烧法是一种利用硝酸盐与羧酸反应,在低温下实现原位氧化、自发燃烧、快速合成产物前驱体粉末的方法[2]。王欣宇等[3, 4]通过自燃烧法投制备纳米羟基磷灰石粉,他们结合络合物机理和氧化还原反应机理,以柠檬酸为络合剂并通过其具有还原性与硝酸盐混合均匀后进行充分络合,在加热条件下就会发生氧化还原反应,在较低的温度下就可以燃烧。其反应方程式如下:

C6H8O7 + Ca2+ = C6H6O7Ca + 2H+(l) 5C6H6O7Ca + l8NO3- + l8H+ = 30CO2 +9N2 + 24H2O + 5CaO (2)9Ca(NO3)2+ 5C6H8O7 = 30CO2 + 9N2 +20H2O + 9CaO (3)王欣宇等最后所得的自燃烧法制备纳米羟基磷灰石的最佳条件为n(H2O): n (Ca2+)= 30 ~ 35时,可使自燃烧反应进行,反应时间短。对于该反应体系pH的最佳范围为2 ~ 3。最佳的加热温度为80℃,自燃烧产物粉末煅烧的最佳温度为750℃。采用上述最佳工艺条件制备出的HAP 粉末,经超声分散,分散介质为水,然后用粒度分析仪测定粉末的二次平均粒径为494.6±l0.l nm。可见,虽然他们得到了纳米级的羟基磷灰石,但是其平均粒径对于现在的临床研究来说仍然太大了,并且在自燃烧法的反应过程复杂,过程的煅烧温度750℃过高,不利于控制。 二、水热法 水热法是在特定的密闭容器(高压釜)里,用水溶液作反应介质,通过对反应容器加热,创造一个高温、高压的反应环境,使得通常难溶或不溶的物质溶解并且重结晶,从而得到纳米结构的晶体。其优点是可以通过控制水热条件(温度、反应时间、前驱物形式等)面得到不同的粉体晶粒物相和形貌[5],徐光亮, 聂轶霞[5]等人利用CaCO3和CaHPO4·2H2O按一定的n(Ca)/n(P)混合在高温高压下合成纳米羟基磷灰石,并且通改变反应的条件:前驱物配比、水热反应温度、以用反应时间等来研究羟基磷灰石合成的最佳反应条件。对于水热法,仍存在一些缺点,因为水热反应耍要在一个高温高压的反应条件下进行,过程不易控制。并且,反应时间耍8h以上才能达到最佳反应,反应时间过长。 另,据报道,任强,罗宏杰等[6]人通过低温燃烧/水热法联合法制备了纳米羟基磷灰石。该方法充分发挥了低温燃烧法(LCS)和水热法的优势,具有制备温度低、反应速度快、制备效率高以及粉体的纯度高、粒度小(40 nm~80 nm)且均匀等优点。该次实验主要用Ca(NO)2,(NH4)2HPO4和柠檬酸(C6H8O7H2O),通过羟基磷灰石中的Ca:P=5:3,并根据燃烧化学基本理论来参加反应。该实验的主要环节是反应温度的确定和硝酸钙与磷酸氢二铵和柠檬酸的比例,其最佳比例为Ca(NO3)2·4H2O:(NH4)2HPO4:C6H8O7·H2O=5:3:2.2。实验的具体过程是:

羟基磷灰石研究进展

2010-2011 第2学期《生物医用材料》期中考试 姓名: 学号: 学院: 专业: 班级: 任课老师:

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

化学沉淀法制备纳米羟基磷灰石粉体

化学沉淀法制备纳米羟基磷灰石粉体 1、实验目的: 熟练使用化学沉淀法制备纳米粉体; 2、实验原理 化学沉淀法为制备纳米粉体的常用方法,本实验以Ca(NO3)2、(NH4)2HPO4和NH3·H2O 为原料,制备纳米羟基磷灰石粉体,基本原理如下: (NH4)2HPO4+NH3·H2O (NH4)3PO4+ H2O 3(NH4)3PO4+ NH3·H2O (NH4)10(PO4)3·OH 2(NH4)10(PO4)3·OH+10Ca(NO3)2Ca10(PO4)6(OH)2+20NH4NO3 3、试剂和仪器 Ca(NO3)2·4H2O,分析纯;(NH4)2HPO4,分析纯;氨水,分析纯;无水乙醇,分析纯;蒸馏水,实验室自制。 电动搅拌器;三口瓶;烧杯,分液漏斗,量筒,玻璃棒,天平,抽滤装置等。 4、实验过程 (1)安装实验装置。将三口烧瓶,铁架台,水浴锅,冷凝管,搅拌器等安装成需要的装置形式; (2)配料。按n(Ca)/n(P)=1.67的配比分别称取相应量的Ca(NO3)2·4H2O和(NH4)2HPO4,放入500ml烧杯中,迅速加入250ml蒸馏水,用玻璃棒进行搅拌直至溶解完毕; (3)加料、反应。将硝酸钙溶液加入三口烧瓶中,开动搅拌器进行搅拌,加入一定量氨水,调节pH>12,将(NH4)2HPO4溶液加入250ml分液漏斗中,慢慢滴入三口瓶中,控制时间为1小时,整个过程保持搅拌并在室温下进行; (4)升温反应。(NH4)2HPO4溶液滴加完毕后,使水浴升温至90℃,并保温反应3小时,整个过程保持搅拌; (5)降温冷却。保温3小时完成后,使其降温冷却至室温; (6)抽滤、洗涤。将所得反应物用抽滤装置进行抽滤、洗涤,过程中用蒸馏水不断冲洗,直至溶液p H≈7; (7)干燥。将所得粉体放入真空干燥箱中进行干燥,于80℃保温4小时,120℃保温4小时; (8)研磨、过筛。将干燥后的粉体研磨后过200目筛; (9)煅烧。将过筛后的粉体于800℃保温30分钟进行煅烧处理,得纳米羟基磷灰石粉体。 本实验具体要求: (1)配制 3.0mol/lCa(NO3)2·4H2O溶液250ml,按n(Ca)/n(P)=5:3配置相应浓度的(NH4)2HPO4溶液250ml,要计算出Ca(NO3)2·4H2O和(NH4)2HPO4的具体称量重量; (2)氨水按120ml加入。

纳米羟基磷灰石的结构设计

纳米羟基磷灰石的结构设计 摘要 羟基磷灰石与人体硬组织的化学成分和晶体结构极为相似,具有独特的生物活性和生物相容性,是目前生物材料研究的热点。当尺寸在1~100nm时,羟基磷灰石(HAP)纳米粒子有独特的生物学特性。此外羟基磷灰石粉体在吸附、催化、荧光、半导体、抗癌等领域也有广泛应用。 关键词:纳米材料羟基磷灰石结构设计抗癌 NANO HYDROXY APATITE STRUCTURE DESIGN ABSTRACT Hydroxyapatite is the main inorganic components of bone tissues,has good biocompatibility and biological activity,which is the research hotspot of biologicalmaterials.HAP particles have unique biological properties when their size maintained in nano scale.In addition,HAP also has wide application in adsorption,catalysis,fluorescence,semiconductor,cancer areas. KEYWORDS:nanometer materials hydroxyapatite physical design anticancer

1.1 纳米羟基磷灰石的特点 nHA是一种粒径较一般细胞粒径小,粒径为1~100 nm的超微粒子。当物质小到纳米级后,会具有表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应等特点。这些特性导致其特有的热、磁、光敏感特性和表面稳定性,容易通过外场(电、磁、光)实现对其性能的控制,有利于实现靶向输送、控制释放、保护和稳定被输送物质。同时还具有不易被机体网状内皮细胞清除、有效避免脾滤过效应、通过增加渗透和滞留效应增强靶组织累积等优势。 人体骨中无机结构的基本单元式针状和柱状的磷灰石晶体,呈高度有序的排列,其结晶学C轴平行于胶原纤维方向定向生长,这种结构是一种理想的等强度优化结构,具有优良的生物力学性能。人工合成的羟基磷灰石是一种优良的硬组织替代材料,具有良好的生物亲和性,生物相容性,生物活性和骨传导作用。依据“纳米效应”理论,纳米级的羟基磷灰石其粒子活性更高,更有利于骨组织的整合,骨传导性能,溶解性能和力学性能提高。 1.2 纳米磷灰石的基本特性 1.2.1 HAP粒子的晶体结构 羟基磷灰石的理论组成为Ca10(P04)6(OH)2,为六方晶系,属于L6PC对称型和P63/m空间群,其结构为六角柱体,晶胞参数为a0=b0=0.943~0.938nm,C0=0.688~0.686nm,z=2, α=β=900,γ=1200。晶胞含有l0个Ca2+、6个PO43-,和2个OH-,结构中Ca2+离子分别位于配位数为9的Ca(Ⅰ)位置和配位数为7的Ca(Ⅱ)位置,结构比较复杂,其在(0001)面上的投影如图1.1。

羟基磷灰石HA陶瓷生产实验...doc

羟基磷灰石 (HA) 陶瓷生产实验 1.实验目的 1.1 初步训练方案设计、实验、生产、检验等的能力; 1.2 培养查阅文献、市场调研、搜集和整理资料、设计、项目管理、 科学实验、生产制造、分析问题和解决问题、发表见解的初步能力; 1.3 掌握羟基磷灰石的基本性质、功能和用途,以及几种制备羟基磷 灰石的原理和方法; 1.4 实践利用湿化学法中的沉淀法制备羟基磷灰石粉体; 1.5 熟悉和掌握相关仪器设备的使用。 2.实验原理 羟基磷灰石 [Hydroxyapatite ,HA ;分子式: Ca10 (PO4 )6(OH) 2] 的化学组成和结晶结构类似于人骨骼系统中的磷灰石,优良的生物活性和生物相容性是其最大的优点,人体骨细胞可以在羟基磷灰石上直接形成化学结合,在普通合成的生物材料中添加少量纳米羟基磷灰石可显著改善材料对成骨细胞的粘附和增殖能力,促进新骨形成,因此 适宜于做骨替代物。羟基磷灰石的钙磷摩尔比为 1.67 ,与天然骨相 近。 目前生产羟基磷灰石的方法主要分为湿法合成和干法合成,其中湿法包括溶胶 -凝胶法、沉淀法和水热法三种[3,4,5] 。 2.1 溶胶 - 凝胶法 溶胶 - 凝胶法是近些年来才发展起来的新方法,已经引起了广泛

的关注。找到合适的、能够合成最终的羟基磷灰石的溶胶一凝胶体系 是其合成的关键。其原理是:将醇盐溶解在选定的有机溶剂中,在其 中加蒸馏水使醇盐发生水解、聚合反应后生成溶胶,再将 Ca2+溶胶缓慢滴加到 (PO 4)3-溶胶中,加水变为凝胶,凝胶经老化、洗涤、真空状态下低温干燥,得到干凝胶,再将干凝胶高温煅烧.就得到羟基磷灰石的纳米粉体。该方法的优点为:合成及烧结温度低、可存分子水平上混合钙磷的前驱体,使溶胶具有高度的化学均匀性。缺点是化学过程比较复杂、醇盐原料价格昂贵、有机溶剂毒性大,对环境易造成污染等。 2.2 沉淀法 沉淀法是制备羟基磷灰石粉体最典型的方法。这种方法通常采用把一定浓度的磷酸氢铵和硝酸钙反应或者磷酸与氢氧化钙在一定的 温度下搅拌反应生成羟基磷灰石沉淀,反应过程中使用氨水(NaOH 溶液 1mol/L )调节 pH 值,把沉淀物高温煅烧从而得到羟基磷灰石 粉体。其典型工艺: Ca(NO 3)2与磷酸盐 [(NH 4 )3 PO4、(NH 4 )2 HPO 4、NH 4H2 PO4 ]溶液进行反应,沉淀经过滤、干燥,制成粉末颗粒。 2.3. 水热法 水热法其特点是在特制的密闭的反应器(高压釜)内,水溶液为 反应介质。在高温高压环境中,不受沸点的限制,可以使介质的温度 上升到200-400 ℃,使原来难溶或不溶的物质溶解并重新结品的方法。这种方法通常采用磷酸氢钙等为原料的水溶液体系。在高压釜中制备 HA 粉体。其典型的工艺为:以 CaCl2 [ 或 Ca(NO 3 )2 ]与 NH 4H2 PO4

纳米羟基磷灰石

纳米材料学作业 2005202027 张峰 一.外文综述 1.纳米羟基磷灰石与胶原和聚乙烯醇的复合生物材料[1] 材料的制备 1.合成纳米羟基磷灰石 根据羟基磷灰石中Ca/P摩尔比nCa/Np=1.67,配制Ca(NO3)2·4H2O(80 ml, 0.1 M)溶液和Na3PO4 (48 ml, 0.1 M)溶液,室温下共滴定,不断搅拌混合液。用Na(OH)2调节PH,使PH保持在10。反应得到悬浊液用布氏漏斗过滤后,去离子水清洗,沉淀物80℃隔夜干燥。 2.合成纳米羟基磷灰石/PVA复合物 90℃下配制不同浓度的PVA/去离子水混合液,90℃保持30min。在搅拌的条件下加入1中制备的羟基磷灰石粉体,持续搅拌30min,制得的HAp/PVA凝胶体。用冷冻分相干燥法对该胶体脱水干燥(将胶体降温至-20℃后在升温至20℃,如此反复进行1~4个周期)。 3.合成羟基磷灰石/胶原复合物(HAp/Col) 先在室温下配制30ml、浓度为0.6 mg/ml胶原/水的混合液,持续搅拌2h。之后加入80 ml 0.1M 的Ca(NO3)2·4H2O溶液,再缓慢滴加Na3PO4 (48 ml, 0.1 M)溶液,用Na(OH)2调节PH至10,制得呈凝胶状的HAp/Col复合物。将该凝胶用布氏漏斗过滤,去离子水清洗,室温干燥。4.合成羟基磷灰石/胶原/PVA复合物(HAp/Col/PVA) 室温、搅拌的条件下配制15ml浓度为0.3mg/ml的一型胶原/水混合物,持续搅拌1h后把该混合液倒入等体积的PVA/水的混合液中。将得到的混合物室温搅拌30min,再加入40ml0.1M 的Ca(NO3)2(PH调为10),搅拌,70℃保持24h。之后加入24ml0.1M Na3PO4(PH调为10)。如此,在胶原/PVA上原位合成HAp。然后将反应混合物过滤、冲洗、干燥、检测。 结果与讨论 1.不论是单独合成还是在胶原或PVA或是胶原/PVA纤维上原位合成,所制得的羟基磷灰石都为纳米微粒,其宽为10~30nm,长为40~50nm。 2.羟基磷灰石通过氢键或[OH-]-Ca2+-[-OH]和PVA和胶原结合形成有机-无机杂化体,此外胶原上的羧基也是和羟基磷灰石上的钙离子结合的位点。由于氢键的形成,随着有机相的增加,在有机相原位合成的羟基磷灰石的粒径和结晶度减小。 3.在PVA有机相中引入羟基磷灰石无机相后,复合材料的线性粘弹性大大提高,经低温处理后塑性大幅度增加。 4.复合材料由于胶原的加入、并经脱水处理后强度得到提高,且形成孔径在50~500nm范围内的贯通孔多孔材料。 2.用多糖基羟基磷灰石制备可生物吸收的骨水泥[2] 材料的制备 1.合成纳米羟基磷灰石 用CaCl2和(NH4)2HPO4共沉淀法制备羟基磷灰石纳米晶体。将0.3M(NH4)2HPO4 水溶液缓慢逐滴滴加到0.5M的CaCl2水溶液中。搅拌速度调整为1000rpm,反应温度保持在60℃,用注射器滴加NH4OH的方法调节混合液的PH值,最小为10。反应所得沉淀在相同的搅拌速度下陈化24h,然后过滤,蒸馏水洗4~5次,微波照射15min。微波照射后将最终的沉淀物10,000rpm转速下离心分离10min,去离子水反复冲洗,之后60℃真空干燥。 2.制备复合骨水泥 将适量壳聚糖分散在含2%乙酸的蒸馏水中。37℃,1000rpm搅拌的条件下,将1中反应

水热法制备纳米羟基磷灰石毕业论文

本科生毕业论文(设计) 题目水热法制备纳米羟基磷灰石专业材料物理

水热法制备羟基磷灰石 摘要:羟基磷灰石具有良好的生物相容性能,在许多领域都得到了广泛的应用,其对蛋白质吸附问题更是成为了生物材料领域的一个研究热点。本文采用硝酸钙 (Ca( NO3)2·4H2O)和磷酸铵(( NH4)3PO4·3H2O)为原料,在水热的条件下合成了羟基磷灰石粉体。借助X射线衍射仪( XRD)、透射电镜(TEM)对经过烧结样品的物相和微观形貌进行了分析,研究了水热温度对合成羟基磷灰石粉体的影响,并且用紫外可见光光度计测试其对蛋白质的吸附性能,研究结果表明,在设计的温度范围内,水热温度越高,反应生成的HA粉体结晶度就越高,颗粒越细小,微观性能优良,且制备的HA颗粒对蛋白质的吸附性能更好。 关键词:羟基磷灰石纳米晶体;水热法;生物陶瓷材料;蛋白质吸附

Hydrothermal synthesis of hydroxyapatite Abstract:Hydroxyapatite has been widely used in biomedical field as its good biocompatibility. The protein adsorption attracted increasing attention in the field of HA based biomaterials. In this paper, hydroxyapatite was synthesized by the hydrothermal method using calcium nitrate (Ca(NO3)2) and ammonium phosphate ((NH4)3PO4) as raw materials. The structure and morphology of synthesized HA were characterized by XRD and TEM. The protein adsorption of HA was tested by the UV-VIS spectrophotometer. The results showed that the higher hydrothermal temperature was contributed to higher crystallinity and smaller particles. Nano HA powders which had good crystallinity were synthesized when the concentration of reactants is 0.2mol/L and the hydrothermal temperature is 180℃,which led to better adsorption properties of HA to the bovine serum albumin ( BSA). Key words:Hydroxyapatite ;Hydrothermal;Nano particles;Protein adsorption

羟基磷灰石合成方案

羟基磷灰石合成方案 羟基磷灰石基本信息:羟基磷灰石(Ca 10(PO 4 ) 6 (OH) 2 ,M=1004),熔点:1650℃, 比重:3.16g/cm3,溶解度:0.4ppm,Ca/P:1.67 合成方法:化学共沉淀法 原料:四水合硝酸钙(Ca(NO 3) 2 ·4H 2 O,M=236.15)、磷酸氢二铵((NH 4 ) 2 HPO 4 , M=132.06)和氨水(NH 3·H 2 O,M=35.05)。 反应方程式: 需要设备:搅拌器、恒温水浴锅、酸度计、离心机、pH试纸、烧杯(2L、1L、500ml),量筒(500ml或1L),1L容量瓶(2个),分液漏斗(500ml,2个),玻璃棒,保鲜膜。 实验步骤 1、配制浓度为0.5mol/L硝酸钙和磷酸氢二氨溶液; 2、将恒温水浴锅恒温至50℃,用量筒量取1000ml浓度为0.5mol/L硝酸钙溶液倒入大烧杯中,并将烧杯置于恒温水浴锅中,再用分液漏斗滴加氨水将溶液的pH值调节至10~11; 3、在搅拌器的不停搅拌下,用量筒量取600ml、0.5mol/L磷酸氢二氨溶液,将其装入分液漏斗,然后缓慢加入烧杯中。在滴加的过程中,使用pH酸度仪实时监测并通过滴加氨水来控制其pH值保持在10~11。当磷酸氢二铵溶液滴加完后,用适量的水冲洗漏斗。继续搅拌30分钟,用保鲜膜封闭烧杯口; 4、静置陈化24小时; 5、将反应产物用离心机离心分离。除去上清液,加入蒸馏水,用玻璃棒搅拌均匀后,继续离心3~5分钟:重复步骤多次,直至测得的pH值在7~8之间(一般需要离心4—5次);向沉淀物中加入酒精,再离心清洗2次,最后得到纯净的HA乳状胶体; 5、将HA乳状胶体倒入培养皿中,置于恒温为70℃干燥箱中干燥24小时; 6、将干燥后的HA粉体置于马弗炉中,700℃烧结2小时,得到羟基磷灰石粉末。

化学沉淀法制备羟基磷灰石实验流程及细节节

化学沉淀法制备羟基磷灰石实验流程及细 节 羟基磷灰石 分子式:Ca10(PO4)6(OH)2 简称:HA HAP 熔点:1650℃ 密度:3.16g/cm3 溶解度:0.4mpp 化学沉淀法反应方程式: 7Ca(OH)2+3Ca(H2PO4)2= Ca10(PO4)6(OH)2+12H2O 21.81g 7.719g×4 1、配置3000 ml Ca( OH) 2、1000 ml Ca( H2PO4)2溶液,按照Ca /P为1. 67混合于三角瓶恒 温水浴70℃.搅拌2h小时,放置沉淀24小时。 (1)水浴锅加入热水,提高升温速度,但最高直接加入到65℃ (2)Ca(OH)2=21.81g Ca( H2PO4)2=7.719g×4 (3)当恒温水浴锅温度达到70℃时,将氢氧化钙溶于800ml水中,倒入水浴锅中盛有2000ml蒸馏水的5000ml大烧杯中,再用200ml将小烧杯中剩余氢氧化钙 尽量全部冲洗下去,并加入到大烧杯中。 (4)将3000ml氢氧化钙加入到大烧杯中加热搅拌,搅拌棒搅拌轴线与烧杯轴线尽量重合,防止大烧杯不稳、晃动、试液溅出。 (5)将磷酸二氢钙分四次加入,每一份7.719g溶于200ml倒入大烧杯中,检查小烧杯底部有无杂质,用100ml水将剩余磷酸二氢钙溶解加入大烧杯。时间间隔15 分钟,全部加入后恒温搅拌1小时取出沉淀。加入磷酸二氢钙时,用小烧杯沿 大烧杯壁倒入。 2、放入离心机中离心; 并置于玛瑙罐中以无水乙醇为分散剂,在星型球磨机以350 r / min 球磨2 h,在烘干箱100 ℃干燥24 h。 (1)将大烧杯内的水倒掉,取出沉淀物放入离心管内离心,8ml、转速3200r/min、转9min。四支离心管重量相当的对角线防止,提高转速时要匀速转动旋钮。 (2)9min钟后,关闭离心机,取出离心管。将离心管内水倒掉,用勺子取出离心管内沉淀物放入玛瑙罐中,尽量将离心管内壁刮干净,玛瑙管内玛瑙球数量、形状 等尽量均匀。 (3)玛瑙管两两对角线放入星型球磨机内球磨,卡扣卡紧。星型球磨机以350 r / min 球磨2 h (4)球磨结束后,从玛瑙罐内倒入小烧杯,用纸将口扎紧,放入烘干箱内烘干。3、将得到的烘干块体研磨,过200 目筛子后置于高温炉750 ℃保温1 h得到纳米HA粉 体。将晶化处理的n-HA粉体与Mg粉按不同比例均匀混合,在200 MPa下将混合均匀的含镁HA粉体进行压片,试样直径为10 mm的圆柱形片,其质量为0. 45 g。将压制好的压

羟基磷灰石微型和纳米粒子

羟基磷灰石微型和纳米粒子:成核和生长机制中存在的柠檬酸物种摘要 羟基磷灰石(厦门)颗粒不同形貌均匀沉淀钙/柠檬酸/磷酸溶液在生理温度。小变化的起始溶液PH值的范围7.4―PH值<8.5有可能切换沉淀粒子形态从一个测微bundlelike一个纳米针状形状。的作用,现有的柠檬酸物种螯合钙是在这里讨论的框架内,粒子的成核和生长机制。虽然温度依赖钙柠檬酸络合物(协会)稳定是在这里建议控制游离钙的可用性,从而成核速率,吸附柠檬酸物种的建议控制纳米粒子的稳定性。此外,试图详细柠檬酸的作用在有序聚集磷灰石核导致观察花生和bundlelike微粒形态也提出。 1。简介 主要无机成分的骨头和牙齿是一种钙磷酸盐相类似的组成,合成羟基磷灰石(磷灰石;ca5(PO 4)OH)。这种相似性在此基础上的优良的生物性能的羟基磷灰石材料:骨粘接能力,生物相容性和骨传导性,1]。随着组成,形态羟基磷灰石粒子特性,如形状,大小,和大小分布,发挥重要作用的机械,化工,和生物学特性的羟基磷灰石材料。有极大的兴趣研究中的解决方案结晶途径,无论从技术角度,从一个基本的观点针对了解一些生物矿化过程。它是通常认为,沉淀机制发生如下核/聚集/生长事件序列[ 2]。在按照现行机制,羟基磷灰石颗粒的不同大小和形态可以得到:分散颗粒尺寸范围从纳米到微米,以及不规则、有序聚集体。这些系统的沉淀颗粒的生长情况通常是通过一个聚集的机制,如在案件羟基磷灰石颗粒沉淀钙/柠檬酸/磷酸溶液在―85?丙[ 2 ],增加羟基磷灰石颗粒大小的结果优先从聚集的小前兆单位,典型的纳米核,而不是从正常生长。观察macipe 等人。[ 3],微米羟基磷灰石颗粒取而代之的是具有针状形态和纳米30–长度60纳米如果限制聚集机制在粒子沉淀。该模式中,聚集发生中起着重要的在确定粒子的最终形状和尺寸[ 4 , 5]。形成了一系列的粒子形状,包括针形其次是花生和哑铃形状和最后报告的一个aggregationmediated球晶机制。布施等。[ 6]提出的聚集纳米晶体的分形生长机制的引导下沿电场线解释这种形态演变为形成氟磷灰石缺口领域中存在的胶原蛋白。这样的电场的结果吸附极性胶原分子的表面上的氟磷灰石颗粒,其中一个强有力的(内在)永偶极[ 6]。组装成复杂的小单位形状如花生,哑铃形状,或球样也为其他系统特别添加剂包括光盘中的存在聚(苯乙烯磺酸钠)和十六烷基三甲基溴化铵[ 7],赤铁矿(α- Fe2O 3)在在场的硫酸离子[ 8],和硫酸钡的存在双亲水性嵌段共聚物[ 9],以及聚集将分析纯氧化锌,锰,镧,(哦)3纳米棒定向线性聚成球形球[ 10]。各向异性吸附该添加剂的种类已建议指南粒子聚集成特定形状。这些平行的结果,一个 crystal-growth-mediated机制也有人提议解释形成微米粒子具有monorod,bowknot-like,或花状形态从钙/ED TA/磷酸盐纳米羟基磷灰石颗粒[ 11]。根据作者,优惠哦?吸附离子溶液(>9)上的特定核面及其屏蔽效果似乎指南生长沿优惠方面[ 11 ]。分析结果的报告指出,区别吸附溶液中的离子在特定晶面发挥着根本性的作用在颗粒生长,或者通过聚集或通过常规的晶体生长。这个共同的特征在不同的模式是一个关键问题的解释起源的不同的粒子形状。在目前的工作中,羟基磷灰石颗粒大小不等从纳米到微米获得了钙柠檬酸盐/磷酸盐溶液中的

相关主题
文本预览
相关文档 最新文档