当前位置:文档之家› 向量、数列、不等式

向量、数列、不等式

向量、数列、不等式
向量、数列、不等式

i =1 WHILE i <7 i =i +1 S =2* i -1 i =i+2 WEND PRINT S,i END 概率统计

1.阅读如下程序框图,则输出的k 的值( )

A .4

B .5

C .

2.右上方的程序框图输出的数值为 ( )

A .62

B .126

C .254

D .510

3.下列各数中,最小的数是

A.111 111(2)

B.105(8)

C.200(6)

D.75

4.某产品的广告费用x 与销售额y 的统计数

根据上表可得回归方程??y bx a =+中的b 为9.4,据此模型预报广告费用为6万元

时销售额为

A .63.6万元

B .65.5万元

C .67.7万元

D .72.0万元

5. (如图)为了从甲乙

两人中选一人参加

数学竞赛,数学老师将二人最近6次数学测试的分数进行统计,甲乙两人的平均成绩分是

x 甲、x 乙,则下列说法正确的是( )

A. x 甲>x 乙,乙成绩稳定,选乙参加比赛

B.

x 甲>x 乙,甲成绩稳定,选甲参加比赛 C. x 甲

D.

x 甲

6.某流程如右图所示,现输入如下四个函数,则可以输出的函数是 A .2

()f x x = B .1

()f x x =

C .()ln 26f x x x =+-

D .()sin f x x =

7.从甲,乙,丙三人中任选两名代表,甲被选中的概率 ( ) A .21 B .31 C .3

2 D . 1

8.运行如左上图的程序

后,输出的结果为()

A .13,7

B .7,4

C .9,7

D .9,5 9.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事( ) A 、至少有一个黑球与都是黑球 B 、至少有一个黑球与至少有一个红球

C 、恰好有一个黑球与恰好有两个黑球

D 、至少有一个黑球与都是红球

10.用秦九韶算法计算多项式+=63)(x x f

1876542345+++++x x x x x 当4.0=x 时的值时,需要做乘法和加法的次数分别是 A. 6 , 6 B. 5 , 6 C. 5 , 5 D. 6 , 5 11.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分

层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为 ( ) A .30 B .25 C .20 D .15 12.有如下四个游戏盘,撒一粒黄豆,若落在阴影部分,就可以中奖,若希望中奖的机会最大,则应该选择的游戏是( )

13.向面积为S 的△ABC 内任投一点P ,则△PBC 的面积小于S/2的概率是_____ 14. 广告法对插播广告时间有规定,某人对

某台的电视节目作了长期的统计后得出结论,他任意时间打开电视机看该台节目,看不到广告的概率为约9/10,那么该台每小时约有________分钟广告。 15.袋中有大小相同的红、绿两种颜色的球各1个,每次从中任取一球,记下颜色,有放回地抽取3次,求:(1)“3次抽的都是红球”的概率;(2)“3次恰有两次抽的是

绿球”的概率;(3)“3次抽的球颜色不全

相同”的概率.

16.①设点M (x,y )在1≤x ,1≤y 时按均匀分布出现,试求满足(1)0≥+y x 的 概率;(2)1<+y x 的概率;(3)122≥+y x 的概率。

②小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐。求晚报在晚餐开始之前被送到的概率。

17.为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图的部分频率分布直方图,观察图形的信息,回答下列问题: (1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.

平面向量

1.将向量,的起点放在一起,则从的终点到的终点的向量是( )

A .+ B. — C .— D. 2.在四边形ABCD 中,若+= ,则四边形ABCD 的形状一定是 ( ) A .平行四边形 B.菱形 C.矩形 D. 正方形 3.如果a ,b 是两个单位向量,则下列结论中正确的是 ( )

A.a =b

B.1?a b =

C.2

2

≠a b D.=a b

4.AB BC AD +-=

A 、AD

B 、CD

C 、DB

D 、DC 5.已知正方形ABCD 的边长为1,

AB =

a ,BC =

b ,AC =

c ,则++a b c

等于( )

6.下列各组的两个向量,平行的是

A.a

=(-1,3),b =(4,6) B.a

=(1,-2),b

=(7,14)

C.a

=(2,3),b =(3,2)

D.a

=(-3,2),b =(6,-4)

7.若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不可能是( )

A.(12,5)

B.(-2,9)

C.(3,7)

D.(-4,-1)

8. 已知: ,BC ),(32121e e e e AB -=+=

212 e +=,则下列关系一定成立的是

A.A ,B ,C 三点共线

B.A ,B ,D 三点共线

C.C ,A ,D 三点共线

D.B ,C ,D 三点共线 9.已知(6,0)a = ,(5,5)b =-

,则a 与b

的夹角为

A 、045

B 、060

C 、0135

D 、0

120

10. 已知1OA =

,OB =

0OA OB ?= ,点C 在AOB ∠内,且30o

AOC ∠=,设

OC mOA nOB =+ (,)m n R ∈,则m

n

等于 A .13 B .3 C

D

11.设O 是平行四边形ABCD 的两条对角

线的交点,下列向量组:(1)AD 与AB

(2)DA 与BC

;(3)CA 与DC ;(4)OD 与OB

,其中可作为这个平行四边形所在平

面表示它的所有向量的基底的向量组可以是________________。

12.已知向量a (1,5)=,b (3,2)=-,则向 量a 在b 方向上的投影为 . 13.已知)8,7(A ,)5,3(B ,则向量AB

方向 上的单位向量坐标是________。

14.已知3a = ,4b = ,a 与b

的夹角为

4

, (3)(2)a b a b -?+ =__________. 15.已知3=a ,4=b ,且向量a ,b 不 共线,若向量+a k b 与向量-a k b 互相 垂直,则实数k 的值为 .

16.梯形ABCD

//=

, M 、N 分别是AB DC ,的中点,已知=

a ,=

b ,试用a 、b 表示,DC BC

和.MN

17. 已知平面向量a =(1,x ),b =(2x +3,-x ).

(1)若a ⊥b

,求x 的值.

(2)若a ∥b ,求|a -b |.

数列

1.已知等差数列{}n a 满足244a a +=,

3510a a +=,

则它的前10项的和10S =( ) A .138 B .135 C .95 D .23

2.若等差数列{}n a 的前5项和525S =,且

23a =,则7a =( )

A .12 B.13 C.14 D.15

3. 已知等差数列{a n }中,a 2=6,a 5=15.若b n =a 2n ,则数列{b n }的前5项和等于( ) A .30 B 。45 C 。90 D 。186

4.设{})(N n a n ∈是等差数列,S n 是其前n 项的和,且S 5S 8,则下列结论错 误的是( )

A .d<0 B.a 7=0

C.S 9>S 5

D.S 6和S 7均为S n 的最大值.

5.在数列{}n a 中,5

42

n a n =-, 212n a a a an bn ++???+=+,*n N ∈,其 中a 、b 为常数,则ab =( )

A.-1

B.0

C.-2

D.1 6. 已知{a n }是等比数列,2512,4

a a ==,则公比q=( ) A.2

1

-

B.-2

C.2

D.

2

1 7. 记等差数列{}n a 的前n 项和为n S ,若24S =,420S =,

则该数列的公差d =( ) A .2 B .3 C .6 D .7

8. 设等比数列{}n a 的公比2q =,前n 项

和为n S ,则

4

2

S a =( ) A. 2 B. 4 C.152 D. 17

2

9. 若数列}{n a 的前n 项的和32n n S =-,

那么这个数列的通项公式为( )

A.1

3()

2

n n a -=

B.1

13()

2n n a -=? C.32n a n =-

D.11,1

23,2

n n n a n -=?=??≥? 10. 等差数列{a n }的前n 项和记为S n ,若3711a a a ++为一个确定的常数,则下列各数中也是常数的是( )

A.S 6

B.S 11

C.S 12

D.S 13

11.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。

12数列{n a }是等差数列47a =,则7s =__ 13.两个等差数列{}{},,n n b a

,327......2121++=++++++n n b b b a a a n n 则5

5

b a =____.

14.在等比数列{}n a 中, 若,75,393==a a 则10a =___________. 15.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ?=_____.

16. 求下列数列的前n 项和

⑴1

21,341,581,716

1

,… (2) 21,43,85

,167,…

(3) 211?,321?,431?,5

41?,…

(4))0()4(),3(),2(),1(4

32≠----a a a a a 17.等差数列{n a }的前n 项和记为S n .已知

.50,302010==a a (1)求通项n a ;(2)若S n =242,求n.

18.在等比数列{}n a 的前n 项和中,1a 最小,且128,66121==+-n n a a a a ,前n 项和

126=n S ,求n 和公比q

A B N

M

D

C

19.已知{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{

n

S n

}前n 项和。求T n .

20.数列{a n }的前n 项和记为S n , 1

1=a

()111,211n n a a S n +==+≥

(1)求{a n }的通项公式;

(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n

不等式

1.如果b a >那么,下列不等式中正确的是

A.b a >

B.2

2b a > C.||||a b > D.b a >

2.已知c b a ,,满足,a b c <<且0 C.0)(<-a b c C.2

2

ab cb < D.0)(<-c a ac 3.设,

26,37,2-=-==

c b a 则c b a ,,的大小顺序是( )

A .c b a >> B.b c a >> C.b a c >>. D.a c b >> 4 . 下列结论正确的是( )

A .当2lg 1lg ,10≥+≠>x

x x x 时且 B .21,0≥+>x

x x 时当

C .x

x x 1,2+≥时当的最小值为2 D .当x x x 1,20-≤<时无最大值 5.不等式2

125

52>--x x 的解集是 6.不等式21

lg 1lg ++bx ax 的解

集是????

??<<-3121x x 则不等式

022>+-bx ax 的解集是

8.已知一元二次方程

0222=++-m mx x 的两根的平方和大

于2,则m 的取值范围是 9.已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为(1,3),且若方程06)(=+a x f 有两个相等的根,则

)(x f 的解析式是 10.关于x 的不等式

0)1()12(2≥-++-m x m mx 的解集非空,m 的取值范围 。

11.已知不等式

03)1(4)54(22>+---+x m x m m 对一切实数x 恒成立,参数m 的取值范围 。 12.直线012=-+y x 右上方的平面区域

可用不等式 表示。 13.写出以A (1,0),B (-1,0),C (0,1)为顶点的ABC ?内部区域所对应的不等试组

14.不等式组??

?

??≤≤≤-≥+-2001022y x y x 所表示平面区

域的面积是 15.坐标原点和点(2,2)在直线

0=-+a y x 的同侧,则a 的取值范围是

16.若y x ,满足约束条件??

?

??≥+≤≤222y x y x

(1)y x z 2+=的取值范围是 (2)若),(y x P 是上述不等式对应平面区域

内的点,O

的取值范围是

17.已知+

∈R b a ,,将ab ,2

2

2b a +,

b a 112+

,2b a +按从小到大的顺序排列为

18.已知R b a ∈,,且3=+b a ,那么b a 33+的最小值是 19.已知12,

0,022

=+≥≥a b b a ,则21b a +的最大值是

20.若正数b a ,满足3++=b a ab ,则ab 取值范围是

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

(浙江专用)2020高考数学二轮复习 专题三 数列与不等式 第3讲 数列的综合问题学案

第3讲 数列的综合问题 [考情考向分析] 1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.与数列有关的不等式的证明问题是高考考查的一个热点,也是一个难点,主要涉及到的方法有作差法、放缩法、数学归纳法等. 热点一 利用S n ,a n 的关系式求a n 1.数列{a n }中,a n 与S n 的关系 a n =??? ?? S 1,n =1,S n -S n -1,n ≥2. 2.求数列通项的常用方法 (1)公式法:利用等差(比)数列求通项公式. (2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n . (3)在已知数列{a n }中,满足 a n +1 a n =f (n ),且f (1)·f (2)·…·f (n )可求,则可用累乘法求数列的通项a n . (4)将递推关系进行变换,转化为常见数列(等差、等比数列). 例1 (2018·浙江)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足 b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n . (1)求q 的值; (2)求数列{b n }的通项公式. 解 (1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4, 所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8. 由a 3+a 5=20,得8? ?? ??q +1q =20, 解得q =2或q =1 2. 因为q >1,所以q =2. (2)设c n =(b n +1-b n )a n ,数列{c n }的前n 项和为S n . 由c n =? ?? ?? S 1,n =1, S n -S n -1,n ≥2,解得c n =4n -1(n ∈N * ). 由(1)可得a n =2 n -1 , 所以b n +1-b n =(4n -1)×? ?? ??12n -1 ,

证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]

证明数列不等式之放缩技巧以及不等式缩放在数列中应用 大全 证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时, (2) 12 n n n +<. 证法一:令)6(2) 2(≥+=n n n c n n , 则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683 1.644 n c c ?≤==< 于是当6n ≥时, 2 (2) 1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时, 66(62)483 12644 ?+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2) 1.2 k k k +< 则当n =k +1时, 1(1)(3)(2)(1)(3)(1)(3) 1.222(2)(2)2k k k k k k k k k k k k k k ++++++++=?<<++g 由(1)、(2)所述,当n ≥6时,2 (1) 12 n n +<. 二、借助数列递推关系 例2.已知12-=n n a .证明: ()23111123 n n N a a a *++++<∈L . 证明:n n n n n a a 1 21121212211211111?=-?=-<-=+++Θ , ∴3 2])21(1[321)21(...12111112122132<-?=?++?+<+++= -+n n n a a a a a a S Λ. 例3. 已知函数f(x)=52168x x +-,设正项数列{}n a 满足1a =l ,()1n n a f a +=. (1) 试比较n a 与 5 4 的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1 n i i b =∑.证明:当n ≥2时,S n <14(2n -1). 分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。 解:(1) 因为10,0,n n a a +>>所以1680,0 2.n n a a -><<

数列不等式的证明方法

数列型不等式的证明 数列型不等式问题在近年逐渐成为高考热点,数列型不等式问题常被设置为高考压轴题,能力要求较高。因其仍然是不等式问题,可用处理不等式的方法:基本不等式法;比较法;放缩法,函数单调性法等都是常用的方法;但数列型不等式与自然数有关,因而还有一种行之有效的方法:数学归纳法。 1、重要不等式法 若数列不等式形如下式,可用均值不等式法求证。 (1)),(222R b a ab b a ∈≥+; (2) ),(2 +∈≥+R b a ab b a (3) ),,,(2121321+∈???????????≥+??????+++R x x x x x x n n x x x x n n n n 2、比较法 比较法是证明不等式的基本方法,可以作差比较也可以作商比较,是一种易于掌握的方法。 3、放缩法 常用的放缩结论: ①、 ,111)1(11)1(11112k k k k k k k k k --=-<<+=+-其中(2≥k ) ②、 ;)12)(12(1)12(12+->-n n n ;)12)(32(1)12(12--<-n n n ) 22(21 )12(12+<+n n n ③、 1 211 2-+< < ++k k k k k 用放缩法解题的途径一般有两条,一是先求和再放缩,二是先放缩再求和。 (1)、先求和再放缩 一般先分析数列的通项公式,如果此数列的前n 项和能直接求和或通过变形后可以求和,则采用先求和再放缩的方法证明不等式。数列求和的方法较多,我们在数列求和的专题中有具体的讲解,主要用的有公式法、裂项法、倒序相加法、分组求和法等方法。 例1、已知函数)(x f 对任意实数q p ,都满足)()()(q f p f q p f ?=+,且3 1 )1(=f , (1)当+∈N n 时,求)(n f 的表达式;(2)设))((+∈=N n n nf a n ,n T 是其前n 项和,试证明4 3

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

数列中的不等式的证明

数列中的不等式的证明 证明数列中的不等式的一般方法: 1.数学归纳法: ①直接应用数学归纳法:这是由于数学归纳法可以用来证明与正整数相关的命题,当然也包括与正整数 相关的不等式(即数列不等式); ②加强命题后应用数学归纳法:直接应用数学归纳法并不能证明所有数列不等式,有些数列不等式必须 经加强后才能应用数学归纳法证出. 2.放缩法: ①单项放缩:将数列中的每一项(通项)进行相同的放缩; ②裂项放缩:将数列中的每一项裂开放缩成某两项之差; ③并项放缩:将数列中的两项合并放缩成一项; ④舍(添)项放缩:将数列中的某些项舍去或添加; ⑤排项放缩:将数列中的项进行排序(即确定数列的单调性),从而求出数列中项的最值,达到证明不 等式的目的,能用排项放缩证明的数列不等式必能直接应用数学归纳法证明,反之亦然; ⑥利用基本不等式放缩:例如平均数不等式也可在数列不等式的证明中起作用. 一、直接应用数学归纳法证明 1.已知函数ax x x f +-=3 )(在)1,0(上是增函数. )1(求实数a 的取值集合A (2)当a 中取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+且)1,0(1∈=b a ,b 为常数,试比较n n a a 与1+的大小 (3)在(2)的条件下,问是否存在正实数c 使10<-n n a a (3)}{12-n a 递增. 4.(2004.辽宁理科高考第21题) 已知函数223)(x ax x f -=的最大值不大于6 1,又当.8 1)(,]21,41[≥∈x f x 时 (1)求a 的值; (2)设.1 1.),(,21011+<∈=<<++n a N n a f a a n n n 证明 5.(2005.重庆理科高考第22题)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a n n n 且. (1)用数学归纳法证明:)2(2≥≥n a n ; (2) 已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….

数列型不等式的证明.docx

数列型不等式证明的常用方法 一. 放缩法 数列型不等式证明是前见年高考中的一个热点,在多 省试题中常常作为压轴题出现。放缩法是数列不等式证明的 一个重要方法,它具有很强的技巧性的特点,学生往往无从 下手,下面总结放缩法证明的一些常用技巧, 例如 归一技巧、 抓大放小技巧、回头追溯技巧、利用函数性质技巧 ,仅供参 考 . 1 归一技巧 归一技巧,指的是将不容易求和的和式中的所有项或 若干项全部转化为 同一项 ,或是将和式的通项中的一部分转 化为 同一个式子 (或数值),既达到放缩的目的,使新的和 式容易求和 . 归一技巧有 整体归一、分段归一。 例如 1 1 1 1 设 n 是正整数,求证 n 1 n 2 1. 2 2n 1 1 1 【证明】 n 1 n 2 L 2n 1 1 1 1 1 . 2n 2n 2n 2n 2 14444244443 个 1 n 2n 1 1 L 1 另外: n 1 n 2 2n 1 1 1 1 n n n n 1 . 144424443 n 个 1 n 1 1 【说明】在这个证明中,第一次我们把 n 1 、 n 2 、

1 1 L 2n 这些含 n 的式子都 “归一” 为 2n ,此时式子同时变小, 1 1 L 1 1 顺利把不易求和的 n 1 n 2 2n 变成了 n 个 2n 的 和,既将式子缩小,同时也使缩小后的式子非常容易求和, 这就是 “归一” 所达到的效果。 而不等式右边的证明也类似 . 1.1 整体归一 放缩法中,如果通过将所有项转化为同一项而达到放缩目的的,称之为“整体归一” . 例 1. 数列 a n 的各项均为正数, S n 为其前 n 项和,对于任 意 n N * ,总有 a n , S n ,a n 2 成等差数列 . ( Ⅰ ) 求数列 a n 的通项公式; ( Ⅱ ) 设数列 b n 的前 n 项和为 T n ,且 b n ln n x ,求证:对 2 a n 任意实数 x 1, e ( e 是常数, e = )和任意正整数 n , 总有 T n 2 ; (Ⅰ)解:由已知:对于 n N * ,总有 2S n a n a n 2 ①成立 ∴ 2S n 1 a n 1 a n 1 2 (n ≥ 2 )② ① -- ②得 2a n a n a n 2 a n 1 a n 1 2 ∴ a n a n 1 a n a n 1 a n a n 1 ∵ a n , a n 1 均为正数, ∴ a n a n 1 1 (n ≥ 2) ∴数列 a n 是公差为 1 的等差数列

基本不等式(很全面)

基本不等式 【知识框架】 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则22 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab +≤ +≤≤+

6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 【题型归纳】 题型一:利用基本不等式证明不等式 题目1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 题目2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 题目3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥

高考专题数列与不等式放缩法

高考专题——放缩法 一、基本方法 1.“添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() [变式训练]已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 2. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分 母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 3. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 13 12 11<…+ ++ + 。 例5. 已知* N n ∈且)1n (n 3221a n +++?+?= ,求证:2 )1(2)1(2 +< <+n a n n n 对所有正整数n 都成立。 4. 公式放缩 利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。 例6. 已知函数1212)(+-=x x x f ,证明:对于* N n ∈且3≥n 都有1 )(+>n n n f 。 例7. 已知2x 1)x (f +=,求证:当a b ≠时f a f b a b ()()-<-。

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

数列与不等式专题练习[1]

数列与不等式专题练习 一、选择题 1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66 B .99 C .144 D .297 2.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 3.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .2 1 4.已知一等比数列的前三项依次为33,22,++x x x ,那么2113 -是此数列的第( )项 A .2 B .4 C .6 D .8 5.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A .513 B .512 C .510 D .8 225 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10- 7.设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) A .1 B .1- C .2 D . 21 8.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( ) A .1 B .0或32 C .32 D .5log 2 9.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( ) A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)2 51,251(++- 10.在ABC ?中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以 13为第三项, 9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对 11.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( ) A .等差数列 B .等比数列 C .等差数列或等比数列 D .都不对 12.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( ) A .12 B .10 C .31log 5+ D .32log 5+

数列型不等式放缩技巧

数列型不等式放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一 利用重要不等式放缩 1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证.2 )1(2)1(2 +<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k Λ=+= 2121)1(+ =++<+ ++= +<∑=n n n k S n k n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里 n a a n a a a a a a n n n n n n 2 2111111++≤ ++≤≤++ΛΛΛΛ 其中,3,2=n 等的各式及其变式公式均可供选用。 例 2 已知函数bx a x f 211)(?+= ,若5 4)1(= f ,且)(x f 在[0,1]上的最小值为21,求证:.21 2 1)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题) 简析 )221 1()()1()0(2 2114111414)(?->++?≠?->+-=+=n f f x x f x x x x Λ .21 2 1)21211(41)2211()2211(1 12-+=+++-=?-++?-++-n n n n n ΛΛ 例3 已知b a ,为正数,且11 1=+b a ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .(88年全国联赛题) 简析 由 111=+b a 得b a ab +=,又42)11)((≥++=++a b b a b a b a ,故4≥+=b a ab ,而n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(, 令n n n b a b a n f --+=)()(,则)(n f =111 1 ----++++n n n r r n r n n n ab C b a C b a C ΛΛ,因为i n n i n C C -=,倒序相加得 )(2n f =)()()(111 111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ΛΛ, 而12 1 1 1 1 2422+------=?≥≥+==+==+n n n n n n r n r r r n n n b a b a ab b a b a ab b a ΛΛ,则 )(2n f =))(22())((1 1r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ?-≥)22(n 12+n ,所以 )(n f ?-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a . 例4 求证),1(2 2 1321N n n n C C C C n n n n n n ∈>?>++++-Λ. 简析 不等式左边=++++n n n n n C C C C Λ32112222112-++++=-n n Λ n n n 122221-?????>Λ=2 1 2 -?n n ,原结论成立. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n Λ 简析 本题可以利用的有用结论主要有: 法1 利用假分数的一个性质)0,0(>>>++>m a b m a m b a b 可得 >-??122563412n n Λ=+??n n 212674523Λ)12(212654321+?-??n n n Λ

数列与不等式知识点及练习

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝 对值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①;②(4)造等差、等比数列求通项:;②;③;④.第一节通项公式常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知为数列{}n a 的前项和,求下列数列{}n a 的通项公式: ⑴ ; ⑵.总结:任何一个数列,它的前项和n S 与通项n a 都存在关系:???≥-==-)2() 1(11n S S n S a n n n 若1a 适合n a ,则把它们 统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,,求数列{}n a 的通项公式; ⑵已知为数列{}n a 的前项和,,,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“”; 迭乘法适用于求递推关系形如““;⑵迭加法、迭乘法公式:① ② . 题型3 构造等比数列求通项 例3已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“” 适用于待定系数法或特征根法: ①令;② 在中令,;③由得,. 例4已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“”通过适当变形可转化为: “”或“求解. 数列求和的常用方法

专题3.3 数列与函数、不等式相结合问题(解析版)

一.方法综述 数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略 类型一数列中的恒成立问题 【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为() A.B. C.D. 【答案】A 【解析】 由题意得,则,等差数列的公差, . 由, 得, 则不等式恒成立等价于恒成立, 而, 问题等价于对任意的,恒成立. 设,, 则,即,

解得或. 故选:A. 【指点迷津】对于数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是由等差数列通项公式可得,进而由递推关系可得 ,借助裂项相消法得到,又 ,问题等价于对任意 的 , 恒成立. 【举一反三】已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2 142,n n S S n n n N -++=≥∈,若 对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是( ) A .()3,5 B .()4,6 C .[)3,5 D .[)4,6 【答案】A 类型二 数列中的最值问题 【例2】【浙江省湖州三校2019年高考模拟】已知数列满足 , ,则使 的正整数的最小值是( ) A .2018 B .2019 C .2020 D .2021

相关主题
文本预览
相关文档 最新文档