当前位置:文档之家› 直角坐标系解决立体几何问题

直角坐标系解决立体几何问题

直角坐标系解决立体几何问题
直角坐标系解决立体几何问题

在立体几何中引入向量之前,求角与距离是一个难点,在新课标中,从向量的角度来研究空间的点、线、面的关系,我们只要通过两个向量的数量积运算、运用向量的模、平面的法向量就可以解决常见的角与距离的问题。而且,运用向量来解题思路简单、步骤清楚,对学生来说轻松了很多。

重点:用空间向量数量积及夹角公式求异面直线所成角。 难点:建立恰当的空间直角坐标系

关键:几何问题转换为代数问题及正确写出空间向量的坐标。 Ⅰ、空间直角坐标系的建立

空间向量的数量积公式(两种形式)、夹角公式和空间向量的数量积的几何性质。(用媒体分步显示下列内容) 1. 向量的数量积公式(包括向量的夹角公式):

若与的夹角为θ(0≤θ≤π),且={x 1,y 1,z 1},={x 2,y 2,z 2},则 ⑴ a ·b =|a ||b |cos θ 或 a ·b = x 1x 2+y 1y 2+z 1z 2 ⑵若a 与b 非零向量 cos θ

=

22

22

22

21

21

21

212121x z z y y x x z

y x z y ++?++++

2. 向量的数量积的几何性质:

⑴两个非零向量与垂直的充要条件是·=0

⑵两个非零向量a 与b 平行的充要条件是a ·b =±|a ||b | 利用空间向量知识求异面直线所成角的一般步骤: (1)根据图形建立合理的空间直角坐标系; (2)确定关键点的坐标; (3)求空间向量的夹角; (4)得出异面直线的所成角。

D 1

x

y o

. M

x

y

o

. M

平面直角坐标系

空间直角坐标系

z

用向量解决角的问题 ①两条异面直线a 、b 间夹角

在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,

则cos |cos ,|AB CD θ=<>u u u r u u u

r =。

注意,由于两向量的夹角范围为[]??180,0,而异面直线所成角的范围为

()?<

例1:在长方体ABCD-A 1B 1C 1D 1中,AB=BC=4,AA 1=6, 求异面直线DA 1与AC 1的所成角;

分析:在此题的解答中,设计如下问题贯穿整个过程以期共同解高。

问题1:此题在立体几何中我们应该如何解决?

(异面直线平移相交,求相交直线的交角) 问题2:利用空间向量求解,对几何体如何处理?

(求向量DA 1与AC 1的数量积,当然应先建立空间直角坐标系) 问题3:如何建立空间直角坐标系?并说明理由。

(以DA 为X 轴,以DC 为Y 轴,以DD 1为Z 轴) 问题4:建立空间直角坐标系后,各相关点的坐标是多少?

(请学生个别回答)

例2.直棱柱ABCD-A 1B 1C 1D 1,底面是边长 为4的菱形,且∠DAB=60°,AA 1=6,AC 与BC 交于E ,A 1C 1与B 1D 1交于E 1, (1)求:DA 1与AC 1的所成角; (2)若F 是AE 1的中点,

求:B 1E 与FD 1的所成角;

②直线a 与平面α所成的角θ(如图11-)

可转化成用向量→

a 与平面α的法向量→

n 的夹角ω表示,由向量平移得:若

平面α的法向量→

n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.由α⊥→n 可知,要求得法向量→

n ,只需在平面α上找出两

个不共线向量→

a 、→

b ,最后通过解方程组?????=?=?→→→→0

0n b n a 得到→n .

例4、 在直三棱柱111C B A ABC -中,底面是等腰直角三角形,?=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ?的重 心G ,求直线B A 1与平面ABD 所成角正弦值.

例8.三棱柱111B A O OAB -,平面⊥11O OBB 平面OAB ,?=∠601OB O ,

?=∠90AOB 且21==OO OB ,3=OA ,求:二面角O AB O --1的余弦值大小.

x

图1-2

图1-1

图1-3

B 1

例9. 如图,在底面是直角梯形的四棱锥S —

A BCD 中,AD//BC ,∠A BC=900,

S A ⊥面A BCD ,S A =21,A B=BC=1,A D=2

1

。求侧面SCD 与面SB A 所成的二面

角的余弦值大小。

用向量解决距离问题

①两点B A ,间距离||AB

由?→

??→??→

??=AB AB AB 2

可算出;

若→

?→

?+=b a AB ,则由数量积得→

→→→?→

??+??

?

??+??? ??=b a b a AB 22

2

2

若已知两点坐标,则可直接用两点间距离公式. ②点P 到直线AB 的距离

过点P 作直线AB 的垂线PD ,垂足为D ,则由AB PD ⊥且点D B A ,,共线得

AB AD AB PD λ==?,0,解出D 点后再求||PD 。

例1、直角坐标系中的三点()3,1,0A ,()

0,0,3B ,()0,2,0C ,求点A 到直线BC

的距离。

解:过A 作BC AH ⊥,垂足为H 设?→

??→

?=BC BH λ,∵()

0,2,3-=?→

?BC

∴()()

0,2,30,2,3λλλ-=-=?→?BH ,则H 点坐标为(

0,2,33λλ-

∴=

?→?AH (

)

3,12,33---λλ,又∵0=??→

??→?BC AH ,

∴02433=-++-λλ,75=λ,∴???

? ??-=?→?3,73,732AH ,7

24

=?→?AH ③异面直线a 、b 的距离

可先设a 、b 的公垂线段EF (a E ∈、b F ∈),再由垂直向量性质得??

???=?=??→

?

→?→?

→00

EF b EF a ,从而得到E 、F 的坐标,最后算出所求?→

?EF .

例2、正方体1111D C B A ABCD -的边长为1,求异面直线C A 1、BD 的距离?

分析:从正方体条件得,运用坐标向量的方法较好. 建立直角坐标系,设EF 是所求的公垂线,令?→

??→?=BD BE λ、

?→

??→

?=C A k F A 11,则()0,1,1-=?→

?λBE 、E 的坐标为()0,,1λλ-,

同理()k k k F -1,,,再由0=??→??→?BD EF 、01=??→

??→?C A EF ,算得

21=λ、32=k ,最后算出?→?EF 、6

6=?→?EF . 这个方法不但能求出直线上的点的坐标,也能求出空间向量的表示式,是向量运用中常用的一个小技巧. ④点P 到平面α的距离h

先设平面α的斜线为PA ()α∈A ,再求α的法向量→

n ,运用向量平移,不

难得到推论“h 等于?→?PA 在法向量→n 上的射影→

?→

??

n

n PA

最后由此算出所求距离.

例3、正四棱柱1111D C B A ABCD -,1=AB ,

21=AA ,E 是1CC 的中点,求点1D 到平面BDE 的距离分析:如图建立直角坐标系,得各点坐标,

设平面BDE 的法向量为),,(z y x n =→

由??

???=?=??→

?→?→?→0

0DB n DE n ,得???=+=+00y x z y ;令1=y ,得法向量)1,1,1(--=→n ∴?→?E D 1在→

n 上的投影为3

3

21=

?

?→

?n

n E D ,∴点1D 到平面BDE 的距离为332.

此类题目,是在立体几何学习中的必须解决的重点题和难题,传统的解题方法很多,也很复杂。运用平面法向量的知识,能直接算出所求距离,避免繁复的逻辑推理。

④两平行平面,αβ之间的距离

由平行平面间的距离定义知道,平面α上任意一点A 到β的距离就是α到β的距离,因此,我们也可把α到β的距离转化为A 到β的距离,运用求点与面距离的方法来求。

1、(2011年高考陕西卷理科16)(本小题满分12分) 如图:在,ABC ∠V 0

中,ABC=60,∠0

BAC=90

AD BC 是上的高,沿AD 把ABD V 折起,

使∠0

BDC=90(Ⅰ)证明:平面⊥ADB BDC 平面;

(Ⅱ)设E BC DB u u r u u u r

为的中点,求AE 与夹角的余弦值。

2、(2011年高考北京卷理科16)(本小题共14分)

如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面

ABCD 是菱形,2,60AB BAD =∠=o .

(Ⅰ)求证:BD ⊥平面;PAC (Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.

3、(2011年高考全国新课标卷理科18) (本小题满分12分)

如图,四棱锥P—ABCD中,底面ABCD为平行四

边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(Ⅰ)证明:PA⊥BD;

(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

分析:(1)要证明线线垂直只要证明线面垂直或者用向量去证明;(2)求二面角的余弦只需建立适当的坐标系,有空间向量来完成。

平面直角坐标系教案(DOC)

7.1平面直角坐标系 7.1.1有序数对 教学三维目标 知识与技能: 1.理解有序数对的意义。 2.能用有序数对表示实际生活中物体的位置 过程与方法: 1.学生经历有序数对的学习过程,培养学生的概括能力,发展学生的数感。 2. 体会具体-抽象-具体的数学学习过程 情感态度与价值观: 1.通过在游戏中学习有序数对,培养学生合作交流意识和探索精神. 2.经历用有序数对表示位置的过程,体验数、符号是描述现实世界的重要手段 . 教学重点:有序数对及平面内确定点的方法. 教学难点:利用有序数对表示平面内的点. 教学课型:新授课 教学课时:1课时 教学方法:启发、讨论、交流 教学准备:三角尺粉笔多媒体 教学过程: 一、问题与情境 情景引入:游戏“找朋友” 问题: (1)只给一个数据如“第3列”你能确定好朋友的位置吗? (2)给两个数据如“第3列第2排”你能确定好朋友的位置吗?为什么?(3)你认为需要几个数据能确定一个位置?

二、合作探究 1.【提出问题】 请在教室找到如下表用数对表示的同学位置: 发现:在教室里排数与列数的先后顺序没有约 定的情况下,不能确定参加数学问题讨论的同学 假设约定“列数在前,排数在后”,你能找到参加数学问题讨论的同学的座位吗? 思考: (1)(2,4)和(4,2)在同一个位置吗? (2)如果约定“排数在前,列数在后”,刚才那些同学对应的有序数对会变化吗? 2. 【师生归纳】 思考:在生活中还有用有序数对表示一个位置的例子吗? 3. 【例题讲解】 例1:如图,甲处表示2街与5巷的十字路口,乙处表示5街5巷的十字路口,如果用(2,5)表示甲处的位置,那么(2,5)→(3,5)→(4,5)→(5,5)→(5,4)→(5,3)→(5,2)表示从甲处到乙处的一种路线,请你用有序数对写出几种从甲处到乙处的路线。 3街4街5街6街2巷 1巷 1街2街6巷 5巷 4巷 3巷 变式练习:设计一个容易用有序数对描述的图形,并用自己的语言描述这个图形 有序数对: 我们把有顺序的两个数a 与b 组成的数对,叫做有序数对。 记作(a ,b )

(易错题精选)初中数学函数之平面直角坐标系难题汇编附答案

(易错题精选)初中数学函数之平面直角坐标系难题汇编附答案 一、选择题 1.如图,小手盖住的点的坐标可能为( ) A.(-1,1) B.(-1,-1) C.(1,1) D.(1,-1) 【答案】D 【解析】 【详解】 解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D符合此特征, 故选:D 2.若点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标是( ) A.(-2,3) B.(-2,-3) C.(2,-3) D.(2,3) 【答案】B 【解析】【分析】根据点P到x轴的距离为3,则这一点的纵坐标是3或-3,到y轴的距离为2,那么它的横坐标是2或-2,再根据点P所处的象限即可确定点P的坐标. 【详解】∵点P到x轴的距离为3, ∴点的纵坐标是3或-3, ∵点P到y轴的距离为2, ∴点的横坐标是2或-2, 又∵点P在第三象限, ∴点P的坐标为:(-2,-3), 故选B. 【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离. 3.在平面直角坐标系内,若点P(3﹣m,m﹣1)在第二象限,那么m的取值范围是 () A.m>1 B.m>3 C.m<1 D.1<m<3 【答案】B 【解析】 【分析】

由第二象限点的横坐标为负数、纵坐标为正数得出关于m 的不等式组,解之可得答案. 【详解】 ∵点P (3﹣m ,m ﹣1)在第二象限, ∴3-010m m ??-?<① >② , 解不等式①,得:m >3, 解不等式②,得:m >1, 则m >3, 故选:B . 【点睛】 本题主要考查象限内点的坐标符号特点及解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 4.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( ) A .()1,4 B .()5,0 C .()7,4 D .()8,3 【答案】C 【解析】 【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可. 【详解】 如图, 经过6次反弹后动点回到出发点(0,3), ∵2018÷6=336…2,

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 (1) 线面平行: l ∥α? a ⊥u? a ·u =0? a 1a 3+ b 1b 3+c 1c 3= 0 (2) 线面垂直: l ⊥α? a ∥u? a =ku? a 1=ka 3,b 1= kb 3,c 1=kc 3 (3) 面面平行: α∥β? u ∥v? u =kv? a 3=ka 4,b 3=kb 4,c 3=kc 4 (4) 面面垂直: α⊥β? u ⊥v? u ·v = 0? a 3a 4+b 3b 4+c 3c 4=0 例 1、如图所示,在底面是矩形的四棱锥 P-ABCD 中, PA ⊥底面 ABCD , 的中点, PA =AB =1, BC =2. (1) 求证: EF ∥平面 PAB ; (2) 求证:平面 PAD ⊥平面 PDC. [证明] 以 A 为原点, AB ,AD ,AP 所在直线分别为 x 轴,y 轴,z 轴,建立 空 A(0,0,0),B(1,0,0),C(1,2,0), D(0,2,0),P(0,0,1),所以 E 12,1,12 , uuur uuur uuur 1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0), uuur ∥AB ,即 EF ∥AB. 又 AB? 平面 PAB , EF? 平面 PAB ,所以 EF ∥平面 PAB. uuur uuur uuur uuur (2)因为 AP ·DC =(0,0,1) (1,0·,0)= 0, AD ·DC =(0,2,0) (1,0·,0)=0, uuur uuur uuur uuur 所以 AP ⊥ DC , AD ⊥ DC ,即 AP ⊥DC ,AD ⊥DC. 又 AP ∩ AD = A ,AP? 平面 PAD ,AD? 平面 PAD ,所以 DC ⊥平面 PAD.因为 DC? 平面 PDC , 直线 l 的方向向量为 a =(a 1,b 1,c 1).平面 α, β的法向量 u = (a 3,b 3,c 3), v =(a 4,b 4,c 4) 1 uuur 1 uuur F 0 , 1, 2 ,EF = -2, 0, 0 ,PB = (1,0, uuur uuur E , F 分别是 PC , PD 间直角坐标系如图所示,则 DC =(1,0,0), AB =(1,0,0). uuur 1uuur uuur (1)因为 EF =- 2AB ,所以 EF

七年级平面直角坐标系动点规律问题(经典难题)

平面直角坐标系动点问题 (一)找规律 1.如图1,一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) 图1 A .(4,0) B .(5,0) C .(0,5) D .(5,5) 图2 2、如图2,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( ) A 、(13,13) B 、(﹣13,﹣13) C 、(14,14) D 、(﹣14,﹣14) 3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…的规律排列,根据这个规律,第2019个点的横坐标为 . 4.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。 图3 (1)填写下列各点的坐标:1A (____,____),3A (____,____),12A (____,____); (2)写出点n A 4的坐标(n 是正整数); (3)指出蚂蚁从点100A 到101A 的移动方向.

5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是 . 6、观察下列有规律的点的坐标: 依此规律,A 11的坐标为 ,A 12的坐标为 . 7、以0为原点,正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系,一个机器人从原点O 点出发,向正东方向走3米到达A 1点,再向正北方向走6米到达A 2,再向正西方向走9米到达A 3,再向正南方向走12米到达A 4,再向正东方向走15米到达A 5,按此规律走下去,当机器人走到A 6时,A 6的坐标是 . 8、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2019次,点P 依次落在点 201921,,,P P P 的位置,则点2019P 的横坐标为 . 9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2019次跳动至点P 2019的坐标是 . 图4 图5 10、如图5,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2019的坐标为 .

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

七年级下册数学培优训练 平面直角坐标系综合问题(压轴题)

培优训练三:平面直角坐标系(压轴题) 一、坐标与面积: 【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5). (1)求△ABC的面积; (2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积; (3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由. 【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD. 图2 (1)如图1,直接写出图中相等的线段,平行的线段; (2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标;(3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标;

(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由; 【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积; (2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACP ABC S S =V V ; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQ ABC S S =V V . 【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B .

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

平面直角坐标系教案(1)

平面直角坐标系教案(1) 【教学目标】 1、认识平面直角坐标系,了解点与坐标的对应关系; 2、在给定的直角坐标系中,能由点的位置写出点的坐标(坐标都为整数); 3、渗透数形结合的思想; 4、通过介绍数学家的故事,渗透理想和情感的教育. 【重点难点】 重点:认识平面直角坐标系。 难点:根据点的位置写出点的坐标。 【教学准备】 教师:收集有关法国数学家笛卡儿的有关资料(也可以将有关的直角坐标系制作成课件)。【教学过程】 一、情境导入 1、在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置如图1所示,你能根据图示确切地描述他们三个人的位置关系吗? 在学生进行叙述后,教师可以抓住以什么为“基准”,并借助于数轴来处理这个问题,从而进入课题. 设计意图:学生可以以其中的一人为基准进行描述,其目的是为数轴上的点的坐标的确定做准备。 2、如果我们画一条数轴,取小红的位置为原点,取向右的方向为正方向,取两盏路灯间的距离为一个单位长度,那么小华的位置(A)就可以用-3来表示,小明的位置(B)就可以用6来表示(如图2).此时,我们说点A在数轴上的坐标是-3,点B在数轴上的坐标是6.这样数轴上的点的位置与坐标之间就建立了对应关系.

设计意图:将数轴上点的坐标的概念学习置于具体的问题情境中。 问题:(1)在上述情境中,如果小兵位于小明左侧的第二盏路灯处,你能说出小兵在数轴上对应的点的坐标吗? (2)如果小兵站在一个长方形的操场上,你用什么方法可以确定小兵的位置? (3)如果小兵站在一个大操场上,你用什么方法可以确定小兵的位置? 设计意图:三个问题的安排有一定的层次性,为下一步引出平面直角坐标系作铺垫。 二、探究新知 1、平面直角坐标系的引入 对于上述第(2)个问题,我们可以用图3来表 示:这时,小兵(P)的位置就可以用两个数来表 示.如点P离AB边1 cm,离AD边1. 5 cm,如 果1 cm代表20 m,那么小兵离AB边20 m,离AD 边30 m. 对于上述第(3)个问题,我们是否也可以借助 于这样的一些线来确定小兵的位置呢?我们在小兵所在的平面内画上一些方格线(如图4),利用上节课所学的知识,就可以解决这个问题了. (然后由学生回答这个问题的解决过程) 受上述方法的启发,为了确定平面内点的位置,我们可以画一些纵横交错的直线,便于标记每一条直线的顺序,我们又可以以其中的两条为基准(如图5).

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

七下培优训练平面直角坐标系综合问题压轴题

七下培优训练平面直角坐标系综合问题压轴题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

培优训练三:平面直角坐标系(压轴题) 一、坐标与面积: 【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,). (1)求△ABC 的面积; (2)如果在第二象限内有一点P (a ,),试用a 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等若存在,求出点P 的坐标,若不存在,请说明理由. 【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD . (1)如图1,直接写出图中相等的线段,平行的线段; (2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标; (3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C 、D 的坐标; (4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由; 【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3, 0). (1)求△ABC 的面积; (2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到 △A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACP ABC S S =; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQ ABC S S =. 【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足 2(2)20a b ++-=,过C 作CB ⊥x 轴于B . (1)求三角形ABC 的面积;

坐标法解立体几何解答题

坐标法解立体几何解答题 教学目的:1、熟练掌握空间向量的有关知识; 2、能灵活运用坐标法解决立体几何解答题的有关问题; 3、进一步提高学生的空间想象能力和运算能力。 教学重点:1、建立适当的空间直角坐标系; 2、正确写出点的坐标; 3、求平面的法向量; 4、灵活运用坐标法解决空间角、空间距离等问题 教学难点:求平面的法向量 授课类型:专题复习 教学方法:启发引导式 教具准备:幻灯片20张 教学过程: 一、复习引入: 空间向量解决立体几何问题主要有两个基本方法:坐标法与基底法。本节课着重研究利 用坐标法解决立体几何解答题。 1、空间向量的有关知识:(幻灯片投影) (1)设点)z ,y ,B(x )z ,y ,A(x 222111、,则),,(121212z z y y x x AB ---=→ ; (2)设向量),,(),,,(222111z y x b z y x a ==→ →,则 ① 212121z z y y x x b a ++=?→ →; ② →a ∥),,(),,(222111z y x z y x b a b λλ=??=?→ →→; ③ 0212121=++=??⊥→ →→→z z y y x x b a b a ; (3)设向量),,(z y x a =→ ,则222z y x a ++= → ; (4)→ →→ →→ →→→?>=

l (3)解决问题:(幻灯片投影) (一)求空间角问题: 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角。 ① 求异面直线所成的角: 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos | ||||| a b a b 。 ② 求线面角: 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角 2 ,,2 π π θ- ><><-= → →→→n l n l 或 ③ 求二面角: 法一:在α内a l ⊥,在β内b l ⊥,其方向如图, 则二面角l αβ--的平面角=α法二:设m n 、 是二面角l αβ--的两个半平面的 法向量,其方向一个指向内侧,另一个指向外侧, 则二面角l αβ--的平面角=α (二)求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法。 设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ?== 二、例题讲解: 例1、四棱锥ABCD S -中,0 90=∠=∠ABC DAB ,⊥SA 平面ABCD ,a AD 2=, a BC AB SA ===。 (1)求证:平面⊥SAC 平面SCD ;(2)求A 到平面SCD 的距离;

平面直角坐标系难题(难)

第六章平面直角坐标系 一、基础知识 1:有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。 2:直线上点的位置:在一条直线上规定了原点,正方向和单位长度,就得到一个数轴,这时,数轴上的点就可以用一个数表示,这个数叫做点的坐标。 3:平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为正方向;两个坐标轴的交点为平面直角坐标系的原点。 点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。 建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。 4.由坐标确定点的方法:要确定由坐标(a,b)所表示的点P的位置,先在x轴上找到表示a的点,过这点做x轴的垂线,再在y轴上找到表示b的点,过这点作y轴的垂线,两条垂线的交点为P. 5由点求坐标的方法:先由已知点P分别向x轴和y轴作垂线,设垂足分别为A和B,再求出A在x 轴上的坐标a和B在y轴上的坐标b,则P的坐标为P(a,b). 6关于x轴,y轴,原点对称的点的坐标:关于x轴对称的点,其横坐标相同,纵坐标互为相反数;关于y轴对称的点,其横坐标互为相反数,纵坐标相同;关于原点对称的点,其横坐标,纵坐标均互为相反数。设点P(a,b),它关于x轴对称的点的坐标为(a,-b),关于y轴对称点的坐标为(-a,b),关于原点对称点的坐标为(-a,-b).反之亦成立。 7用坐标表示地理位置的过程 (1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称. 8用坐标表示平移的方法 规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a ,y );将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x ,y-b ). 二、精典题 一.选择部分 1点P(m,1)在第二象限内,则点Q(-m,0)在() (A)x轴正半轴上(B)x轴负半轴上(C)y轴正半轴上(D)y轴负半轴上 2.(2008年南昌)若点A(2、n)在x轴上则点B(n-2 ,n+1)在()

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

坐标法解空间几何题常用模型

如何用坐标法解空间几何题专题 (中保高中2017届1,2班) 徐学松 2017.5 模型思考 空间几何中涉及的定义、定理和性质比较多,在解决综合问题时,运用多个定义、定理和性质形成的综合题时,遇到多种多样的题型,每一种题型的解法又有多种.学习和记忆名目繁多的题型和解法直接影响了学习立体几何的兴趣和效率.有没有一种比较统一的方法,能够使得解题过程比较一致,变化不多的模型呢?使得学生解题流程固定,方法比较简单,从而使学生解题思路流畅,正确率提高呢.坐标法作为一种工具,在解决立体几何问题中有着无比的优越性.运用坐标法解题,可使几何问题代数化,大大简化思维程序,使解题思路直观明了,模式固定,流程明了. 模型例析 例1.(线线平行)已知A(1,0,0),B(0,1,0),C(0,0,2),求满足DB ∥AC ,DC ∥AB 的点D 的坐标. 解模与识模:这道题是一道线与线平行的问题.可设点D 坐标为(x ,y ,z), 则?→ ?DB = (-x ,1-y ,-z),?→?AC = (-1,0,2),?→ ?DC = (-x ,-y ,2-z), ?→ ?AB = (-1,1,0). ∵DB ∥AC ,DC ∥AB ,∴?→ ?DB ∥?→?AC ,?→?DC ∥?→ ?AB . 即???? ?? ???=--=--=--=--.02, 1 1,01,2 1z y x y z x ??????==-=.2,1,1z y x ,即此时点D 的坐标为(-1,1,2). 从这道题的推理过程可以看到在建立了坐标系的情况下,得到各点的坐标后,就能得到有关向量的坐标,根据向量的平行,利用公式建立方程组.这里的公式是若()111,,z y x a =→ , ()222,,z y x b =→ ,且222,,z y x 均不为零,→ →b a //? 2 12121z z y y x x ==.进而达到求解的目的. 例2(线线垂直)在正方体ABCD —A 1B 1C 1D 1中,M 是棱DD 1的中点,O 为正方形ABCD 的中心,求证:1OA ⊥AM . 解模与识模: 直线与直线的垂直可以转化为直线的方向向量互相垂直.设直线a ,b 的 方向向量分别是 ()111,,z y x a =→ ,()222,,z y x b =→,a ⊥b ? → a ⊥ → b ?0212121=++z z y y x x .要想利用坐标法解决这一问题首先要建立空间坐标系.常见

平面直角坐标系全章教案

1 2 345 6 7 654 321 纵排 横排 有序数对 【教学目标】 1、理解有序数对的意义。 2、能用有序数对表示实际生活中物体的位置 3、经历用有序数对表示位置的过程,体验数、符号是描述世界的重要手段,体验数形结合思想 【教学重点】利用有序数对准确地表示出一个点的位置 【教学难点】有序数对中有序的理解 教学过程 一、自主学习 问题:如果老师要提问同学(下面为某教室平面图) 1、只给一个数据“第3列”,你能确定回答问题的同学的位置吗? 2、给两个数据“第3列第2排”,你能确定该同学的位置吗? 3、你认为在平面中需要几个数据才能确定一个位置? 二、合作探究 通过找“列数”和“排数”的交叉点,我们就能找个具体的位置。 问题1、(约定“列数”在前,“排数”在后) (1) 请在教室内找到下表用数对表述的位置。 数对 列数 排数 列数 排数 1,3 3,1 4,6 6,4 2,5 5,2 3,6 6,3 (2)观察上面四组数对以及他们所对应的位置,思考:1,3和3,1表示的是不是同一位置? 归纳:有顺序的两个数a 与b 组成的数对,如果约定了前面的数表示“列数”,后面的数表示“排数”,那么a 与b 组成的数对就表示一个确定的位置。我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a ,b )。像表格中的数对可以记作(1,3)、(5,2)(3,6)。 问题2:利用有序数对可以准确表示一个位置,你能举出生活中用有序数对表示地理位置的例子吗? 三、巩固训练, 游戏情境:下面我们通过游戏来加强同学们对有序数对的了解。约定“列数”在前,“排数”在后,

B A 请找出与以下有序数对相对用的同学 (1,5)),(5,1),(2,4),(4,2),(3,3),(7,3),看看叫什么名字? 练习1、根据左下图例子(3,2),口答其他圆点的有序数对? 练习2、如右下图,红马的位置是(2,1),你能表示出红帅、红车、红炮的位置吗? 练习3、如果将一张“12排10号”的电影票记为(12,10),那么(10,12)的电影票表示的位置是 ,“6排25号”简单记为 练习4、下列数据不能确定物体位置的是( ) A 、希望路25号 B 、北偏东30° C 、东经118°,北纬40° D 、西南方向50米处 四、课堂小结:本节课主要学习了有序数对 1、什么叫做有序数对? 2、注意的问题:(1)表示平面内的点的位置可以用有序数对;(2)有序数对用符号表示时,中间用逗号隔开,外边必须加小括号。 平面直角坐标系(1) 【教学目标】 1、掌握平面直角坐标系的有关概念;了解点的坐标的意义 2、根据点的位置写出点的坐标,能建立平面直角坐标系,并根据坐标找点; 3、通过建立平面直角坐标系的过程,进一步渗透数形结合的思想 【教学重点】平面直角坐标系和点的坐标 【教学难点】在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点 教学过程 一、自主学习 问题:(1)什么是数轴,画出数轴. (2)指出课本图6.1.2中A 、B 点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置.

高中数学讲义微专题64 空间向量解立体几何(含综合题习题)

微专题64 利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面 ,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥ (3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?==

平面直角坐标系难题培训资料

精品文档 1、平面内,四条线段AB 、BC 、CD 、DA 首尾顺次相接,∠ABC =24°,∠ADC = 42°. ⑴∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小; ⑵ 点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 的平分线交于点N (如图2),则∠ANC =______. M D C B A 图1 N D C B A 图2 E 1、在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0)。 (1)求△ABC 的面积 (2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ??=?若存在,请求出点D 的坐标;若不存在,请说明理由. (3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积, 2、如图,在平面直角坐标系中,△AOB 是直角三角形,∠AOB=90°,斜边AB 与y 轴交于点C. (1)若∠A=∠AOC ,求 证:∠B=∠BOC ; (2)延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB=∠EOB ,∠OAE=∠OEA ,求∠A (3)如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P.当△ABO 绕O 点旋转时(斜边AB 与y 轴正半轴始终相 交于点C ),在(2)的条件下,试问∠P M

(5.23).如图,A、B两点坐标分别为A(a,4),B(b,0) ,且a,b满足0 9 2 )8 2 (2= - + + + -b a b a,E是y轴正半轴上一点。(1)求A、B两点坐标 (2)若C为y轴上一点且S△AOC= 5 1S △AOB ,求C点的坐标 (3)过B作BD∥y轴,∠DBF= 3 1 ∠DBA,∠EOF= 3 1 ∠EOA,求∠F与∠A间的数量关系 1、已知:如图,在△ABC中,A(a,0),B(b,0),C(0,c),且a、b、c满足 b=2 - - + -a c c a,BD⊥AC于D,交y轴于E.(1)如图1,求E点的坐标; (2)如图2,过A点作AG⊥BC于G,若∠BCO=30°,求证:AG+GC=CB+BO. (3)如图3,P为第一象限任意一点,连接PA作PQ⊥PA交y轴于Q点,在射线PQ上截取PH=PA,连接CH,F为CH 的中点,连接OP,当P点运动时(PQ不过点C), ∠OPF的大小是否发生变化,若不变,求其度数,若变化,求其变化范围. 1、在Rt△ABC中,∠ACB=90°,∠ABC=45°,点E在线段BC上,射线ED⊥AB于点D.(1)如图,点F在线段DEA上,过点F作MN∥BC,分别交AB、AC于点M、N,点G在线段AF上,且∠GFN=∠GNF,∠GDF=∠GFD. ①试判断线段DG与NG有怎样的位置关系,直接写出你的结论;②求证:∠1=∠2; (2)如图2,点F在线段ED的延长线上,过F作FN∥BC,分别交AB、AC于点M、N,点G在线段AF上,且∠GFN=∠GNF,∠GDF=∠GFD.探究线段DG与NG的位置关系,并说明理由. 图1 图2 图3

相关主题
文本预览
相关文档 最新文档