当前位置:文档之家› 专题7 分式方程的解法(必讲)(张乃贵)

专题7 分式方程的解法(必讲)(张乃贵)

专题7 分式方程的解法(必讲)(张乃贵)
专题7 分式方程的解法(必讲)(张乃贵)

专题7分式方程的解法

含有分式的方程叫做分式方程。

一、可化为一元二次方程的分式方程

1.去分母化分式方程为一元二次方程

例1解方程 2142122

4x x x x +-=+--. 分析:去分母,转化为整式方程.

解:原方程可化为: 14212(2)(2)2

x x x x x +-=++--

方程两边各项都乘以24x -:

2(2)42(2)4x x x x -+-+=-

即2364x x -=-, 整理得:2320x x -+=

解得:1x =或2x =.

检验:把1x =代入24x -,不等于0,所以1x =是原方程的解; 把2x =代入24x -,等于0,所以2x =是增根.

所以,原方程的解是1x =.

说明:

(1) 去分母解分式方程的步骤:

①把各分式的分母因式分解; ②在方程两边同乘以各分式的最简公分母; ③去括号,把所有项都移到左边,合并同类项; ④解一元二次方程; ⑤验根.

(2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大.而分式方程可能产生的增根,就是使分式方程的分母为0的根.因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0.若为0,即为增根;若不为0,即为原方程的解.

2.用换元法化分式方程为一元二次方程

例2解方程 2

2

23()4011

x x x x --=-- 分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程的结构特点,设2

1

x y x =-,即得到一个关于y 的一元二次方程.最后在已知y 的值的情况下,用去分母的方法解方程2

1

x y x =-.

解:设2

1

x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-. (1)当4y =时,2

41

x x =-,去分母,得224(1)4402x x x x x =-?-+=?=;

(2)当1y =-时,22211101x x x x x x x =-?=-+?+-=?=-. 检验:把各根分别代入原方程的分母,各分母都不为0.

所以,2x =,12

x -±=都是原方程的解. 说明:用换元法解分式方程常见的错误是只求出y 的值,而没有求到原方程的解,即x 的值.

例3解方程 22228(2)3(1)1112x x x x x x

+-+=-+. 分析:注意观察方程特点,可以看到分式2221x x x +-与2212x x x

-+互为倒数.因此,可以设2221

x x y x +=-,即可将原方程化为一个较为简单的分式方程. 解:设2221x x y x +=-,则22112x y

x x -=+ 原方程可化为:2338118113018

y y y y y y +=?-+=?==或. (1)当1y =时,22222112121

x x x x x x x +=?+=-?=--; (2)当38y =时,22222231816335163038

51x x x x x x x x x x +=?+=-?++=?=-=--或.

检验:把把各根分别代入原方程的分母,各分母都不为0. 所以,原方程的解是12x =-,3x =-,15

x =-. 说明:解决分式方程的方法就是采取去分母、换元等法,将分式方程转化为整式方程,体现了化归思想.

对于某些分式方程也可以采取特殊的方法去解决。

例4. 解方程:。

分析:在解分式方程的时候,要把分式方程变为整式方程。原方程的两边都要乘最简公

分母,在找最简公分母的时候要先把分式方程变形。

解:去分母得,即。

解之得

检验:当时,最简公分母。

所以是原方程的解。

评注:在解这个分式方程时一定要注意,方程等号右边的常数3也必须乘最简公分母。

例5. 解方程:。

分析:本题中分式的分子、分母均较复杂,需要先把每个分母进行分解,找到最简公分母。

解:原方程可变形为:

两边同时乘

解得

检验:当时,

所以是原方程的解。

评注:解比较复杂的分式方程的时候,需要把分式方程的每个分母进行分解,然后找到这个分式方程的最简公分母。

例6 解方程:。

分析:此方程如果直接去分母,得一元三次方程,不易解答。观察此方程可以发现,分子均相同,分母按大小排列依次相差2,所以此方程可采用特殊的方法来解。

解:移项,得:

方程两边通分,得:

方程的两边同乘,得:

评注:在解分母含有连续数字或具有特殊间隔规律数字的分式方程时,若直接去分母,运算量很大。若先移项,然后将方程两边分别通分,则出现相同的分子,可以使解分式方程的过程大大简化。

总之,要看清分式方程的特点,采用灵活的方式把分式方程转化为整式方程,在求出整式方程的解之后不要忘记检验。检验的方法有两种:一种是把求得的未知数的值代入原方程进行检验;另一种是把求得的未知数的值代入分式的最简公分母进行检验。

练一练:

1. 当x =______时,分式3x 与26x

-的值互为相反数. 2.仓库贮存水果a 吨,原计划每天供应市场m 吨,若每天多供应2吨,则要少供应______天.

3.x =______时,两分式

44-x 与1

3-x 的值相等. 4.当a =______时,关于x 的方程4

532=-+x a ax 的根是1. 5.若方程11

4112=---+x x x 有增根,则增根是______. 6.关于x 的方程11=+x a 的解是负数,则a 的取值范围为____________. 7. 解下列分式方程:

(1)

11322x x x -=---;(2)257233212x x x x x -=+-+--;(3)2210121

x x x x -+=-+-. 8. 甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.

9.有一个两位数,它的个位数字比十位数字大1,这个两位数被个位数字除时,商是8,余数是2,求这个两位数.

答案

1. 【答案】18;

【解析】

3206x x

+=-,解得18x =. 2. 【答案】222a m m

+; 【解析】原计划能供应a m 天,现在能供应2a m +天,则少供应222a m m +天.

3. 【答案】-8;

【解析】

4341

x x =--,解得8x =-. 4.【答案】173-; 【解析】将1x =代入原方程,得85512a a +=-,解得173

a =-

. 5.【答案】1x =;

【解析】原方程化为:()22141x x +-=-,解得1x =,经检验1x =是增根. 6.【答案】1a <且a ≠0;

【解析】原方程化为1

10a x x a =+=-<,,解得1a <.x ≠-1,解得a ≠0. 7.【解析】

解:(1)方程的两边都乘2x -,得113(2)x x =---.

解这个整式方程,得x =2.

检验:当x =2时,x -2=0,所以2是增根,所以原方程无解.

(2)方程两边同乘(2)(1)x x --约去分母,得572(2)3(1)x x x -=-+-. 整理,得5757x x -=-.这个式子为恒等式.

检验:当1x =,2x =时,(2)(1)0x x --=,

所以1x =和2x =是增根.

因此,原方程的解是1x ≠且2x ≠的任何实数.

(3)方程两边同乘(2)(1)(1)x x x ++-,

得(2)2(1)(1)(2)(1)0x x x x x x +-+-+++=. 解此方程,得45x =-

. 检验:把45x =-

代入(2)(1)(1)x x x ++- 得4442110555??????-+?-+?--≠ ? ? ???????

, 所以原方程的解是45x =-

. 8.【解析】

解:设自行车的速度为/xkm h ,汽车的速度为2.5/xkm h ,

由题意,

50500.522.5x x

=++, 解方程得:12550 6.25x =+

12x =

经检验,12x =是原方程的根,

2.530x =.所以自行车的速度为12/km h ,汽车的速度是30/km h . 答:自行车的速度为12/km h ,汽车的速度是30/km h .

9.解:设十位上的数字为x ,则个位上的数字为1x +, 则:10(1)2

81x x x ++-=+.

解方程得:3x =.

经检验:3x =是原方程的根.

所以个位上的数字为:1x +=3+1=4.

所以这个两位数是:3×10+4=34.

答:这个两位数是34.

江苏省兴化中学 张乃贵

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

【精品】分式方程的几种特殊解法

【关键字】精品 分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式,则可以通过在方程两边都加上分式,就将原方程化简成,从而轻松获解。 解:原方程两边都加上,则可得: 去分母,得: 解得: 经检验,是原分式方程的解。 二、巧用合比性质法。 例2:解方程:。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得: 去分母并化简得:,即 解得: 经检验,是原分式方程的解。 三、巧用等比性质法。 例3、解方程:。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原

方程化简后再求解。 解:由等比性质可得:。 化简得: 经检验,是原分式方程的解。 四、分组化简法。 例4、解方程:。 分析:此方程若直接通分将会出现高次方程,并且运算过程十分复杂,做法不可取。此题可采用分组组合后各自通分的方法来求解。 解:原方程可化为: 分别通分并化简,得: 解得: 经检验,是原分式方程的解。 五、倒数法。 例5、解方程:。 分析:本题若按常规方法去做,需通分和去分母,然后再求解,过程较复杂。但如果采用倒数法,则可以简化解题过程。 解:原方程两边取倒数,得: 移项化简,得: 方程两边取倒数,得: 解得: 经检验,是原分式方程的解。 六、列项变形法。 例6、解方程:。 分析:将该方程直接去分母,方程两边的运算十分繁杂。若注意到方程的分母特点是两个连续因式的积,它们的差为1。凡是这样的分式或分数都能拆开成两个分式或分数的差,使得除首、末两项之外的中间项可以相互抵消,从而达到化繁为简。。

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

知识点例题精讲 第7讲分式方程 解析

2021年中考数学一轮复习----知识点例题精讲第二章方程(组)与不等式(组)第7讲分式方程 【思维框图】 【知识点归纳】 知识点一分式方程及其解法 1.分式方程的有关概念 定义:分母中含有未知数的方程叫做分式方程。 2.解分式方程的步骤

3.分式方程的增根 分式方程中使分母为0的根是增根. 【注意】无解和增根是两个不同的概念,无解不一定产生增根,产生增根也不一定无解. 知识点二分式方程的应用 1.用分式方程解实际问题的一般步骤 【注意】双检验:1.检验x是否为分式方程的解;2.检验x是否符合实际意义.

2.常见类型 常见类型 数量关系 行程问题 时间速度 路程= 工程(效率) 问题 工作完成时间工作效率工作总量= 注:有时工作总量可以看做整体“1”,这时,工作效率工作时间 =1 购买(盈利)问题 数量单价总价=,单价数量总价= 【例题精讲】 考点1 分式方程的解法 例1:下列方程中,是分式方程的是( ) A .+=1 B .x +=2 C .2x =x ﹣5 D .x ﹣4y =1 【分析】根据分式方程的定义对各选项进行逐一分析即可. 【解答】解:A 、该方程是一元一次方程,故本选项不符合题意; B 、该方程符合分式方程的定义,故本选项符合题意; C 、该方程是一元一次方程,故本选项不符合题意; D 、该方程是二元一次方程,故本选项不符合题意; 故选:B .

针对训练 1.(2020秋?沙坪坝区校级月考)关于x的一元一次不等式组有且只有四个整数解,且使关于y的分式方程﹣1=有整数解,则符合条件的所有整数a个数为()A.1B.2C.3D.4 【分析】表示出不等式组的解集,由不等式有且只有4个整数解确定出a的值,再由方程的解为非负数求出满足题意整数a的值. 【解答】解:一元一次不等式组整理得:, 由不等式组有且只有四个整数解,得到﹣3≤<﹣2, 解得:﹣2≤a<2,即整数a=﹣2,﹣1,0,1, 解方程﹣1=得:y=, ∵关于y的分式方程﹣1=有整数解且≠1,即a≠0, ∴a为﹣2,符合条件的所有整数a个数为1. 故选:A. 2.解分式方程:

特殊分式方程的几种特殊解法

特殊分式方程的几种特殊解法 解分式方程最常用的方法是去分母法,把分式方程化为整式方程,以之求解的过程, 但在一些具体方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加 大,易出现错误,因此要善于观察具体方程的特点,对一些特殊分式方程,采用特殊方法, 会简化解题过程。 一 ?比例法 x 1 a b 例1.解方程 (b 0) x 1 a b A D 分式:观察方程,形如: 的形式,可根据比例"两外项之积等于两内项之积” B C 而直接求解。 解:原方程化为 (x 1)(a b) (a b)(x 1) 2a a x b 2 3x 3 2x 3x 1 2x 2 解:原方程化为 (2 3x)(2x 2) (3 2x)(3x 整理得13x 7, 7 x 13 经检验x —是原方程的根。 13 二.换元法 y 3 4y 8 例3.解方程 y 2 y 3 分析:本题若移项,形如— D ,如果用比例法则去分母后方程变为 B C 2 3y 24y 7 0,对一元二次方程我们还不能求解。因此,经观察发现 8 4 匚2,其中匚2与丄虫互为倒数关系,可利用换元法简便求解。 y 3 y 3 y 3 y 2 解:设'一3 A ,则原方程变形为 y 2 整理得2bx b 0, 例2.解方程: 1)

4 A 0 A 整理得A 2 4 A 2 y 3 当A 2时, 2,解得y i 7 ; y 2 当A 2时,乂卫 2,解得y y 3 3 1 、 经检验,y 1 7, y 2 都是原方程的解。 3 例4.解方程组 3 2 5 (1) x y x y 1 4 4 ⑵ y x x y 分析:方程(1),( 2)中都含有 --------------- x y 1 i 设 a , b x y x y 则方程组变形为 3b 2a 5 b 4a 4 解这个二元一次方程组, 1 1 求出a 、b 的值,代入 禾口 中,即可解出x , y 的值。 x y x y 三.倒数法 关系,可有下面解法。 解: x - 2,或x 1 4 4 因此可运用换元法, 例5.已知:x - x 分析:已知条件中, 1 ~2 x , 1 —互为倒数2- 2 21,求 x 2 2 1 ......... x , x 2 -,其中 2 2, 1 —互为倒数关系,利用此 2 1 ~~2 x 例6. 解方程: 2x 3x 2 17 分析: 3x 2 方程的左边两项为倒数之和, 2x 1 4 因此可用倒数法简化求解,

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧 【典型例题】 1. 局部通分法: 例1. 解方程:x x x x x x x x -----=-----34456778 分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。 解:方程两边分别通分并化简,得: 145178()()()() x x x x --=-- 去分母得:()()()()x x x x --=--4578 解之得:x =6 经检验:x =6是原分式方程的根。 点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。 但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。 2. 换元法: 例2. 解方程: 7643165469222x x x x x x ----+=--+ 分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。 解:设,则原方程可化为:k x x =-+265 793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930 ∴,k k ==-129320 当时,k x x =--=126702 ()()x x -+=710 解之得:,x x 1217=-=

当时,k x x =--+=-93206593202 2012019302x x -+= 解此方程此方程无解。 经检验:,是原分式方程的根。x x 1217=-= 点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。 3. 拆项裂项法: 例3. 解方程: 12442212x x x x ++-+-= 分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。 解:原方程拆项,变形为: ()()()()12222222221x x x x x x ++++-+---= 裂项为: 122222221x x x x ++-++--= 化简得:321x += 解之得:x =1 经检验:x =1是原分式方程的解。 4. 凑合法: 例4. 解方程:x x x x 4143412 +-=--- 分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。 解:部分移项得: x x x x 4143412=--+--- ∴x x x x 4143412=------ ∴x 412= ∴x =2 经检验:x =2是原分式方程的根。

分式方程的特殊解法

分式方程的特殊解法 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验2 7- =x 是原方程的解 练习:② 6 5327621+++++=+++++x x x x x x x x 解:29-=x 三、 巧添常数 例3、解方程 33224411+-++-=+-++-x x x x x x x x 解析:同样若整体通分,次数增高,运算复杂,求解困难,而方程中每个分式的分子和分母都是相同两数的差与和,可在每个分式中添加常数“1”,会使问题柳暗花明,迅捷可解,可谓别有洞天. )133()122()144()111(++-+++-=++-+++-x x x x x x x x ,即:3 2224212+++=+++x x x x x x x x

新人教版八年级数学分式方程

分式方程(1) 【学习目标】 1.了解分式方程的概念, 和产生无解的原因。 2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的解。 【重点】会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的解。 【自主学习】 1、预习内容:自学教材第149页 2、预习检测: 1) 中含有 的方程叫做分式方程。 2)你能再写出几个分式方程吗? 3)下列式子中,属于分式方程的是 ,属于整式方程的是 。 ①1213=-+x x ②21412x x -=- ③12312=+x x ④51≥x 【合作探究】 探究点一 类比学习探究分式方程的解法 1、解下列方程: (1)415-=x x (2)1 45-=x x ; 解:去分母(各项乘以公分母 ) 解:去分母(各项乘以最简 公分母________ _) ?-=?415 x x 约分得:()()54?=? 约分得:()()x x ?=-?)1( 去括号: 去括号: 移项: 移项: 合并同类项: 合并同类项: 系数化为1: 归纳:解分式方程的思路是将分式方程转化成 ,基本的方法是 (一般是方程两边同乘 )。且解分式方程必须 。 例1解方程 x x 332=- 例2解方程2)(1(311+-=--x x x x ?-=?145x x

2、解分式方程 1223x x =+ 2510512-=-x x 22411x x =-- 21133x x x x =+++ 例3、若关于x 的方程 021 1=--+x ax 无解,求a 的值 3、课后作业 1、=a 时,关于x 的方程 53221+-=-+a a x x 的解为零; 2、若关于x 的方程 3232-+=--x m x x 无解,则m 的值为 。 3、若代数式11 2--x 的值为零,则=x 4、若11-x 与1 2+x 互为相反数,则可得方程 ,解得=x 5、解方程: (1)1332+=-a a (2)88122-=--m m m (3) 22510x x x x -=+-

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

初三数学专题复习教案第7讲:分式方程及应用.

第7讲 分式方程及其应用 一、教学目标: 1.掌握解分式方程的方法步骤,并能熟练运用各种技巧解方程,会检验分式方程的根 2.能解决一些与分式方程有关的实际问题 3.培养学生的计算能力和分析问题、解决问题的能力 二、教学重难点: 重点:分式方程的解法、列分式方程解应用题。 难点:分式方程的实际应用问题 三、教学用具:多媒体 四、学情分析:学生的基础概念记忆模糊或理解不深,将实际问题转化为数学问题依然存在问题,教师在授课时要分析学生的认知特点和知识障碍,使复习教学成为学生再认识、再巩固、再提高的过程 五、教学方法:启发引导法、归纳分析 六、教学资源:课本、PPT 七、教学过程: 考点1 解分式方程 1.分式方程的有关概念 (1)分式方程:分母里含有未知数的方程叫做分式方程. (2)增根:在方程变形时,有时可能产生不适合原方程的根,使方程中的分母为零,因此解分式方程要验根,其方法是把根代入最简公分母中看其是不是为零. 2.解分式方程的一般步骤 (1)基本思想:把分式方程转化为整式方程, 即分式方程 整式方程. (2)直接去分母法: 方程两边同乘最简公分母,约去分母,化为整式方程,再求根验根. (3)将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则这个解不是原分式方程的解. 考点2 分式方程的实际应用 用分式方程解决实际问题的一般步骤:审 设 列 解 检验 答 注意:列分式方程解应用题的步骤与列其他方程解应用题的不同之处:要检验两次,既要检验求出来的解是否为原分式方程的解,又要检验是否符合题意. 常见类型及等量关系: 类型一、行程问题 类型二、工程问题 类型三、销售问题 例1.若关于x 的分式方程131 7-=+-x mx x 无解,则实数m= 例2.若分式方程2+1-kx x -2=12-x 有增根,则k = 例3.解方程:(1)3221+=x x (2)423532=-+-x x x (3)13321++=+x x x x 例3.若关于x 的分式方程 2122=--x a x 的解为非负数,则a 的取值范围是 ( ) A.a ≥1 B.a>1 C.a ≥1且a ≠4 D.a>1且a ≠4

解分式方程的特殊方法与技巧

分式方程意义及解法 一、内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程.即分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根。所以,必须验根。 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: (1)将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。 (2)为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去.注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0.

用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意: (1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。 (2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。 (3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

分式方程的几种特殊解法

分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程; (2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:2017 2018112017201811222++-=++-+x x x x x 。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式 2017 201812++x x ,则可以通过在方程两边都加上分式2017201812++x x ,就将原方程化简成112=+x ,从而轻松获解。 解:原方程两边都加上2017201812++x x ,则可得:11 2=+x 去分母,得:12+=x 解得:1=x 经检验,1=x 是原分式方程的解。 二、巧用合比性质法。

例2:解方程:7 81222++=++x x x x 。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得:7 7-811-2222+++=+++x x x x x x )()()()( ∴ 7 1112+=+x x 去分母并化简得:062=--x x ,即0)2)(3=+-x x ( 解得:23-==x x 或 经检验,23-==x x 或是原分式方程的解。 三、巧用等比性质法。 例3、解方程:1 3242344++=++x x x x 。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原方程化简后再求解。 解:由等比性质可得: 1324)13()23(2444++=+-++-+x x x x x x )()(。 ∴ 13242++= x x 化简得: 02=x ∴ 0=x 经检验,0=x 是原分式方程的解。

【计划】2018年中考数学真题分类汇编第7讲分式方程无答案

【关键字】计划 第7讲分式方程 知识点1 分式方程的解 知识点2 分式方程的解法 知识点3 分式方程的增根 知识点4 分式方程的实际应用 知识点1 分式方程的解 (2018株洲)5、关于的分式方程解为,则常数的值为 A、B、C、D、 (2018张家界)2.若关于的分式方程的解为,则的值为( ) 知识点2 分式方程的解法 (2018德州)8.分式方程的解为( D ) A.B. C. D.无解 (2018龙东) (2018荆州)5.解分式方程时,去分母可得() A. B. C. D. (2018成都)8.分式方程的解是(A ) A.x=1 B. C. D. (2018兰州) (2018哈尔滨)

(2018海南) (2018黄石)13、分式方程的解为________________ (2018铜仁) (2018甘肃) (2018湘潭)11.(3分)分式方程=1的解为x=2. (2018无锡) (2018常德)10.分式方程的解为. (2018眉山)15.已知关于x的分式方程-2=有一个正数解,则k的取值范围为. (2018广州)13.方程的解是__x= 2__. 知识点3 分式方程的增根 (2018潍坊)14.当时,解分式方程会出现增根. (2018达州)13.若关于的分式方程无解,则的值为. (2018齐齐哈尔) 知识点4 分式方程的实际应用 (2018临沂)10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1-5月份.每辆车的销售价格比去年 降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%。今年1-5月份每辆车的销售价格是多少万元?设今年1-5月份每辆车的销售价格为x万元根据题意.列方程正确的是() A. () 5000120% 5000 1 x x - = + B. () 50001+20% 5000 1 x x = + C. () 5000120% 5000 -1 x x - = D. () 50001+20% 5000 -1 x x = (2018黔东南、黔南、黔西南)8.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是() A.10001000 2 30 x x -= + B. 10001000 2 30 x x -= + C.10001000 2 30 x x -= - D. 10001000 2 30 x x -= - (2018淄博)10.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解 一、分式 1、分式的概念 一般地,用A 、B 表示两个整式,A ÷B就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。其中,A叫做分式的分子, B 叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则 ;;bc ad c d b a d c b a bd ac d c b a =?=÷=? );()(为整数n b a b a n n n = ;c b a c b c a ±=± bd bc ad d c b a ±=± 二、分式方程 1、分式方程 分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 名师点睛☆典例分类 考点典例一、分式的值 【例1】(2015·黑龙江绥化)若代数式6 265x 2-+-x x 的值等于0 ,则x=_________. 【点睛】分式6 265x 2-+-x x 的值为零则有x2-5x +6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】 1.要使分式x 1x 2 +-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211 x x -+的值为0,则x = 考点典例二、分式的化简 【例2】化简:2x x x 1x 1 ---=( ) A、0 B 、1 C 、x D、 1 x x - 【点睛】观察所给式子,能够发现是同分母的分式减法。利用同分母分式的减法法则计算即可得到结果. 【举一反三】 1.化简22 a b ab b a --结果正确的是【 】 2.若241()w 1a 42a +?=--,则w =( )

分式方程的解法及应用(提高)导学案+习题【含标准答案】

分式方程的解法及应用(提高) 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母 系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的 方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程 的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程 不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解 方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程 中没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程; (5)验根,检验是否是增根; (6)写出答案.

第七讲 分式方程和无理方程的解法

分式方程和无理方程的解法 初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握(1)不超过三个分式构成的分式方程的解法,会用”去分母”或”换元法”求方程的根,并会验根;(2)了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用”平方”或”换元法”求根,并会验根. 分析:去分母,转化为整式方程. 解:原方程可化为: 142 12(2)(2)2 x x x x x +-=++-- 方程两边各项都乘以2 4x -: 2(2)42(2)4x x x x -+-+=- 即2 364x x -=-, 整理得:2 320x x -+= 解得:1x =或2x =. 检验:把1x =代入2 4x -,不等于0,所以1x =是原方程的解; 把2x =代入24x -,等于0,所以2x =是增根. 所以,原方程的解是1x =. 说明: (1) 去分母解分式方程的步骤: ①把各分式的分母因式分解; ②在方程两边同乘以各分式的最简公分母; ③去括号,把所有项都移到左边,合并同类项; ④解一元二次方程; ⑤验根. (2) 验根的基本方法是代入原方程实行检验,但代入原方程计算量较大.而分式方程可能产生的增根,就是使分式方程的分母为0的根.所以我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为0.若为0,即为增根;若不为0,即为原方程的解. 2.用换元法化分式方程为一元二次方程 【例2】解方程 22 23()4011 x x x x --=-- 分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程的结构特点, 设 2 1x y x =-,即得到一个关于y 的一元二次方程.最后在已知y 的值的情况下,用去分母的方法解方程 2 1 x y x =-. 解:设 2 1 x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-.

分式方程的特殊解法

分式方程的特殊解法 四川省攀枝花市第二中学 617000 王琨 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验27-=x 是原方程的解 三、 韦达定理法: 例3、解方程71 )1(31)1(222=+++++x x x x 分析:该方程的常规解法是换元法,但通过进一步观察会发现含有未知数的两个代数式的和或积都等于常数,故联想韦达定理求解。 略解:设 1)1(22++=x x u 1 )1(32++=x x v 则易知u ,v 是方程0672=+-y y 的两个解,

解这个方程得1=u 6=v 或1 6==v u ???????=++=++∴ (2) 61 )1(3)1( 11)1(2 22x x x x 或???????=++=++(4) 11)13((3) 61)1(222x x x x 由(2) 1)(得 方程无解 由(4) (3)得 2 1732 1±=x 经检验,它们满足原方程。故原方程的解是 2173 1+=x 2 1732-=x 四、 配方法: 例4、解方程 )32(49422x x x x -=+ 分析:观察发现方程左边恰好是 2x 与x 3的平方和,而右边又含有式子x x 32-,故可通过配方的方法把左边写成2x 与x 3差的完全平方的形式,进而把原方程看作是以x x 32-为未知数的一元二次方程去求解。 略解:原方程可变形为 03)32(4)32(2=+---x x x x 解之得132=-x x 或 332=-x x 当132=-x x 时,解之得712 1±=x 当332=-x x 时,解之得1534 3±=x 经检验,它们都满足原方程。故原方程的解是 71 1+=x 712-=x 1533+=x 1534-=x 五、 运用方程c b c x b x +=+ 的解求解 方程c b c x b x +=+的解不难通过去分母法求得为c x =1,c b x =2运用这一结论可以使具备此方程特征的这类方程的解法简捷。 例5、解方程 25991=+++ x x x

相关主题
相关文档 最新文档